ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/brains/ForceManager.cpp
Revision: 1503
Committed: Sat Oct 2 19:54:41 2010 UTC (14 years, 7 months ago) by gezelter
File size: 12336 byte(s)
Log Message:
Changes to remove more of the low level stuff from the fortran side.

File Contents

# Content
1 /*
2 * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 *
4 * The University of Notre Dame grants you ("Licensee") a
5 * non-exclusive, royalty free, license to use, modify and
6 * redistribute this software in source and binary code form, provided
7 * that the following conditions are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 *
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the
15 * distribution.
16 *
17 * This software is provided "AS IS," without a warranty of any
18 * kind. All express or implied conditions, representations and
19 * warranties, including any implied warranty of merchantability,
20 * fitness for a particular purpose or non-infringement, are hereby
21 * excluded. The University of Notre Dame and its licensors shall not
22 * be liable for any damages suffered by licensee as a result of
23 * using, modifying or distributing the software or its
24 * derivatives. In no event will the University of Notre Dame or its
25 * licensors be liable for any lost revenue, profit or data, or for
26 * direct, indirect, special, consequential, incidental or punitive
27 * damages, however caused and regardless of the theory of liability,
28 * arising out of the use of or inability to use software, even if the
29 * University of Notre Dame has been advised of the possibility of
30 * such damages.
31 *
32 * SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your
33 * research, please cite the appropriate papers when you publish your
34 * work. Good starting points are:
35 *
36 * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).
37 * [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).
38 * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).
39 * [4] Vardeman & Gezelter, in progress (2009).
40 */
41
42 /**
43 * @file ForceManager.cpp
44 * @author tlin
45 * @date 11/09/2004
46 * @time 10:39am
47 * @version 1.0
48 */
49
50 #include "brains/ForceManager.hpp"
51 #include "primitives/Molecule.hpp"
52 #include "UseTheForce/doForces_interface.h"
53 #define __OPENMD_C
54 #include "UseTheForce/DarkSide/fInteractionMap.h"
55 #include "utils/simError.h"
56 #include "primitives/Bond.hpp"
57 #include "primitives/Bend.hpp"
58 #include "primitives/Torsion.hpp"
59 #include "primitives/Inversion.hpp"
60
61 namespace OpenMD {
62
63 ForceManager::ForceManager(SimInfo * info) : info_(info),
64 NBforcesInitialized_(false) {
65 }
66
67 void ForceManager::calcForces() {
68
69 if (!info_->isFortranInitialized()) {
70 info_->update();
71 }
72
73 preCalculation();
74
75 calcShortRangeInteraction();
76
77 calcLongRangeInteraction();
78
79 postCalculation();
80
81 }
82
83 void ForceManager::preCalculation() {
84 SimInfo::MoleculeIterator mi;
85 Molecule* mol;
86 Molecule::AtomIterator ai;
87 Atom* atom;
88 Molecule::RigidBodyIterator rbIter;
89 RigidBody* rb;
90
91 // forces are zeroed here, before any are accumulated.
92 // NOTE: do not rezero the forces in Fortran.
93
94 for (mol = info_->beginMolecule(mi); mol != NULL;
95 mol = info_->nextMolecule(mi)) {
96 for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
97 atom->zeroForcesAndTorques();
98 }
99
100 //change the positions of atoms which belong to the rigidbodies
101 for (rb = mol->beginRigidBody(rbIter); rb != NULL;
102 rb = mol->nextRigidBody(rbIter)) {
103 rb->zeroForcesAndTorques();
104 }
105
106 }
107
108 // Zero out the stress tensor
109 tau *= 0.0;
110
111 }
112
113 void ForceManager::calcShortRangeInteraction() {
114 Molecule* mol;
115 RigidBody* rb;
116 Bond* bond;
117 Bend* bend;
118 Torsion* torsion;
119 Inversion* inversion;
120 SimInfo::MoleculeIterator mi;
121 Molecule::RigidBodyIterator rbIter;
122 Molecule::BondIterator bondIter;;
123 Molecule::BendIterator bendIter;
124 Molecule::TorsionIterator torsionIter;
125 Molecule::InversionIterator inversionIter;
126 RealType bondPotential = 0.0;
127 RealType bendPotential = 0.0;
128 RealType torsionPotential = 0.0;
129 RealType inversionPotential = 0.0;
130
131 //calculate short range interactions
132 for (mol = info_->beginMolecule(mi); mol != NULL;
133 mol = info_->nextMolecule(mi)) {
134
135 //change the positions of atoms which belong to the rigidbodies
136 for (rb = mol->beginRigidBody(rbIter); rb != NULL;
137 rb = mol->nextRigidBody(rbIter)) {
138 rb->updateAtoms();
139 }
140
141 for (bond = mol->beginBond(bondIter); bond != NULL;
142 bond = mol->nextBond(bondIter)) {
143 bond->calcForce();
144 bondPotential += bond->getPotential();
145 }
146
147 for (bend = mol->beginBend(bendIter); bend != NULL;
148 bend = mol->nextBend(bendIter)) {
149
150 RealType angle;
151 bend->calcForce(angle);
152 RealType currBendPot = bend->getPotential();
153
154 bendPotential += bend->getPotential();
155 std::map<Bend*, BendDataSet>::iterator i = bendDataSets.find(bend);
156 if (i == bendDataSets.end()) {
157 BendDataSet dataSet;
158 dataSet.prev.angle = dataSet.curr.angle = angle;
159 dataSet.prev.potential = dataSet.curr.potential = currBendPot;
160 dataSet.deltaV = 0.0;
161 bendDataSets.insert(std::map<Bend*, BendDataSet>::value_type(bend, dataSet));
162 }else {
163 i->second.prev.angle = i->second.curr.angle;
164 i->second.prev.potential = i->second.curr.potential;
165 i->second.curr.angle = angle;
166 i->second.curr.potential = currBendPot;
167 i->second.deltaV = fabs(i->second.curr.potential -
168 i->second.prev.potential);
169 }
170 }
171
172 for (torsion = mol->beginTorsion(torsionIter); torsion != NULL;
173 torsion = mol->nextTorsion(torsionIter)) {
174 RealType angle;
175 torsion->calcForce(angle);
176 RealType currTorsionPot = torsion->getPotential();
177 torsionPotential += torsion->getPotential();
178 std::map<Torsion*, TorsionDataSet>::iterator i = torsionDataSets.find(torsion);
179 if (i == torsionDataSets.end()) {
180 TorsionDataSet dataSet;
181 dataSet.prev.angle = dataSet.curr.angle = angle;
182 dataSet.prev.potential = dataSet.curr.potential = currTorsionPot;
183 dataSet.deltaV = 0.0;
184 torsionDataSets.insert(std::map<Torsion*, TorsionDataSet>::value_type(torsion, dataSet));
185 }else {
186 i->second.prev.angle = i->second.curr.angle;
187 i->second.prev.potential = i->second.curr.potential;
188 i->second.curr.angle = angle;
189 i->second.curr.potential = currTorsionPot;
190 i->second.deltaV = fabs(i->second.curr.potential -
191 i->second.prev.potential);
192 }
193 }
194
195 for (inversion = mol->beginInversion(inversionIter);
196 inversion != NULL;
197 inversion = mol->nextInversion(inversionIter)) {
198 RealType angle;
199 inversion->calcForce(angle);
200 RealType currInversionPot = inversion->getPotential();
201 inversionPotential += inversion->getPotential();
202 std::map<Inversion*, InversionDataSet>::iterator i = inversionDataSets.find(inversion);
203 if (i == inversionDataSets.end()) {
204 InversionDataSet dataSet;
205 dataSet.prev.angle = dataSet.curr.angle = angle;
206 dataSet.prev.potential = dataSet.curr.potential = currInversionPot;
207 dataSet.deltaV = 0.0;
208 inversionDataSets.insert(std::map<Inversion*, InversionDataSet>::value_type(inversion, dataSet));
209 }else {
210 i->second.prev.angle = i->second.curr.angle;
211 i->second.prev.potential = i->second.curr.potential;
212 i->second.curr.angle = angle;
213 i->second.curr.potential = currInversionPot;
214 i->second.deltaV = fabs(i->second.curr.potential -
215 i->second.prev.potential);
216 }
217 }
218 }
219
220 RealType shortRangePotential = bondPotential + bendPotential +
221 torsionPotential + inversionPotential;
222 Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
223 curSnapshot->statData[Stats::SHORT_RANGE_POTENTIAL] = shortRangePotential;
224 curSnapshot->statData[Stats::BOND_POTENTIAL] = bondPotential;
225 curSnapshot->statData[Stats::BEND_POTENTIAL] = bendPotential;
226 curSnapshot->statData[Stats::DIHEDRAL_POTENTIAL] = torsionPotential;
227 curSnapshot->statData[Stats::INVERSION_POTENTIAL] = inversionPotential;
228
229 }
230
231 void ForceManager::calcLongRangeInteraction() {
232 Snapshot* curSnapshot;
233 DataStorage* config;
234 RealType* frc;
235 RealType* pos;
236 RealType* trq;
237 RealType* A;
238 RealType* electroFrame;
239 RealType* rc;
240 RealType* particlePot;
241
242 //get current snapshot from SimInfo
243 curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
244
245 //get array pointers
246 config = &(curSnapshot->atomData);
247 frc = config->getArrayPointer(DataStorage::dslForce);
248 pos = config->getArrayPointer(DataStorage::dslPosition);
249 trq = config->getArrayPointer(DataStorage::dslTorque);
250 A = config->getArrayPointer(DataStorage::dslAmat);
251 electroFrame = config->getArrayPointer(DataStorage::dslElectroFrame);
252 particlePot = config->getArrayPointer(DataStorage::dslParticlePot);
253
254 //calculate the center of mass of cutoff group
255 SimInfo::MoleculeIterator mi;
256 Molecule* mol;
257 Molecule::CutoffGroupIterator ci;
258 CutoffGroup* cg;
259 Vector3d com;
260 std::vector<Vector3d> rcGroup;
261
262 if(info_->getNCutoffGroups() > 0){
263
264 for (mol = info_->beginMolecule(mi); mol != NULL;
265 mol = info_->nextMolecule(mi)) {
266 for(cg = mol->beginCutoffGroup(ci); cg != NULL;
267 cg = mol->nextCutoffGroup(ci)) {
268 cg->getCOM(com);
269 rcGroup.push_back(com);
270 }
271 }// end for (mol)
272
273 rc = rcGroup[0].getArrayPointer();
274 } else {
275 // center of mass of the group is the same as position of the atom
276 // if cutoff group does not exist
277 rc = pos;
278 }
279
280 //initialize data before passing to fortran
281 RealType longRangePotential[LR_POT_TYPES];
282 RealType lrPot = 0.0;
283 int isError = 0;
284
285 for (int i=0; i<LR_POT_TYPES;i++){
286 longRangePotential[i]=0.0; //Initialize array
287 }
288
289 doForceLoop(pos,
290 rc,
291 A,
292 electroFrame,
293 frc,
294 trq,
295 tau.getArrayPointer(),
296 longRangePotential,
297 particlePot,
298 &isError );
299
300 if( isError ){
301 sprintf( painCave.errMsg,
302 "Error returned from the fortran force calculation.\n" );
303 painCave.isFatal = 1;
304 simError();
305 }
306 for (int i=0; i<LR_POT_TYPES;i++){
307 lrPot += longRangePotential[i]; //Quick hack
308 }
309
310 //store the tau and long range potential
311 curSnapshot->statData[Stats::LONG_RANGE_POTENTIAL] = lrPot;
312 curSnapshot->statData[Stats::VANDERWAALS_POTENTIAL] = longRangePotential[VDW_POT];
313 curSnapshot->statData[Stats::ELECTROSTATIC_POTENTIAL] = longRangePotential[ELECTROSTATIC_POT];
314 }
315
316
317 void ForceManager::postCalculation() {
318 SimInfo::MoleculeIterator mi;
319 Molecule* mol;
320 Molecule::RigidBodyIterator rbIter;
321 RigidBody* rb;
322 Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
323
324 // collect the atomic forces onto rigid bodies
325
326 for (mol = info_->beginMolecule(mi); mol != NULL;
327 mol = info_->nextMolecule(mi)) {
328 for (rb = mol->beginRigidBody(rbIter); rb != NULL;
329 rb = mol->nextRigidBody(rbIter)) {
330 Mat3x3d rbTau = rb->calcForcesAndTorquesAndVirial();
331 tau += rbTau;
332 }
333 }
334
335 #ifdef IS_MPI
336 Mat3x3d tmpTau(tau);
337 MPI_Allreduce(tmpTau.getArrayPointer(), tau.getArrayPointer(),
338 9, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
339 #endif
340 curSnapshot->statData.setTau(tau);
341 }
342
343 } //end namespace OpenMD

Properties

Name Value
svn:executable *
svn:keywords Author Id Revision Date