ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/brains/ForceManager.cpp
Revision: 1485
Committed: Wed Jul 28 19:52:00 2010 UTC (14 years, 9 months ago) by gezelter
File size: 13047 byte(s)
Log Message:
Converting Sticky over to C++

File Contents

# Content
1 /*
2 * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 *
4 * The University of Notre Dame grants you ("Licensee") a
5 * non-exclusive, royalty free, license to use, modify and
6 * redistribute this software in source and binary code form, provided
7 * that the following conditions are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 *
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the
15 * distribution.
16 *
17 * This software is provided "AS IS," without a warranty of any
18 * kind. All express or implied conditions, representations and
19 * warranties, including any implied warranty of merchantability,
20 * fitness for a particular purpose or non-infringement, are hereby
21 * excluded. The University of Notre Dame and its licensors shall not
22 * be liable for any damages suffered by licensee as a result of
23 * using, modifying or distributing the software or its
24 * derivatives. In no event will the University of Notre Dame or its
25 * licensors be liable for any lost revenue, profit or data, or for
26 * direct, indirect, special, consequential, incidental or punitive
27 * damages, however caused and regardless of the theory of liability,
28 * arising out of the use of or inability to use software, even if the
29 * University of Notre Dame has been advised of the possibility of
30 * such damages.
31 *
32 * SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your
33 * research, please cite the appropriate papers when you publish your
34 * work. Good starting points are:
35 *
36 * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).
37 * [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).
38 * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).
39 * [4] Vardeman & Gezelter, in progress (2009).
40 */
41
42 /**
43 * @file ForceManager.cpp
44 * @author tlin
45 * @date 11/09/2004
46 * @time 10:39am
47 * @version 1.0
48 */
49
50 #include "brains/ForceManager.hpp"
51 #include "primitives/Molecule.hpp"
52 #include "UseTheForce/doForces_interface.h"
53 #define __OPENMD_C
54 #include "UseTheForce/DarkSide/fInteractionMap.h"
55 #include "utils/simError.h"
56 #include "primitives/Bond.hpp"
57 #include "primitives/Bend.hpp"
58 #include "primitives/Torsion.hpp"
59 #include "primitives/Inversion.hpp"
60
61 namespace OpenMD {
62
63 ForceManager::ForceManager(SimInfo * info) : info_(info),
64 NBforcesInitialized_(false) {
65 lj_ = LJ::Instance();
66 lj_->setForceField(info_->getForceField());
67
68 gb_ = GB::Instance();
69 gb_->setForceField(info_->getForceField());
70
71 sticky_ = Sticky::Instance();
72 sticky_->setForceField(info_->getForceField());
73
74 eam_ = EAM::Instance();
75 eam_->setForceField(info_->getForceField());
76 }
77
78 void ForceManager::calcForces() {
79
80 if (!info_->isFortranInitialized()) {
81 info_->update();
82 }
83
84 preCalculation();
85
86 calcShortRangeInteraction();
87
88 calcLongRangeInteraction();
89
90 postCalculation();
91
92 }
93
94 void ForceManager::preCalculation() {
95 SimInfo::MoleculeIterator mi;
96 Molecule* mol;
97 Molecule::AtomIterator ai;
98 Atom* atom;
99 Molecule::RigidBodyIterator rbIter;
100 RigidBody* rb;
101
102 // forces are zeroed here, before any are accumulated.
103 // NOTE: do not rezero the forces in Fortran.
104
105 for (mol = info_->beginMolecule(mi); mol != NULL;
106 mol = info_->nextMolecule(mi)) {
107 for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
108 atom->zeroForcesAndTorques();
109 }
110
111 //change the positions of atoms which belong to the rigidbodies
112 for (rb = mol->beginRigidBody(rbIter); rb != NULL;
113 rb = mol->nextRigidBody(rbIter)) {
114 rb->zeroForcesAndTorques();
115 }
116
117 }
118
119 // Zero out the stress tensor
120 tau *= 0.0;
121
122 }
123
124 void ForceManager::calcShortRangeInteraction() {
125 Molecule* mol;
126 RigidBody* rb;
127 Bond* bond;
128 Bend* bend;
129 Torsion* torsion;
130 Inversion* inversion;
131 SimInfo::MoleculeIterator mi;
132 Molecule::RigidBodyIterator rbIter;
133 Molecule::BondIterator bondIter;;
134 Molecule::BendIterator bendIter;
135 Molecule::TorsionIterator torsionIter;
136 Molecule::InversionIterator inversionIter;
137 RealType bondPotential = 0.0;
138 RealType bendPotential = 0.0;
139 RealType torsionPotential = 0.0;
140 RealType inversionPotential = 0.0;
141
142 //calculate short range interactions
143 for (mol = info_->beginMolecule(mi); mol != NULL;
144 mol = info_->nextMolecule(mi)) {
145
146 //change the positions of atoms which belong to the rigidbodies
147 for (rb = mol->beginRigidBody(rbIter); rb != NULL;
148 rb = mol->nextRigidBody(rbIter)) {
149 rb->updateAtoms();
150 }
151
152 for (bond = mol->beginBond(bondIter); bond != NULL;
153 bond = mol->nextBond(bondIter)) {
154 bond->calcForce();
155 bondPotential += bond->getPotential();
156 }
157
158 for (bend = mol->beginBend(bendIter); bend != NULL;
159 bend = mol->nextBend(bendIter)) {
160
161 RealType angle;
162 bend->calcForce(angle);
163 RealType currBendPot = bend->getPotential();
164
165 bendPotential += bend->getPotential();
166 std::map<Bend*, BendDataSet>::iterator i = bendDataSets.find(bend);
167 if (i == bendDataSets.end()) {
168 BendDataSet dataSet;
169 dataSet.prev.angle = dataSet.curr.angle = angle;
170 dataSet.prev.potential = dataSet.curr.potential = currBendPot;
171 dataSet.deltaV = 0.0;
172 bendDataSets.insert(std::map<Bend*, BendDataSet>::value_type(bend, dataSet));
173 }else {
174 i->second.prev.angle = i->second.curr.angle;
175 i->second.prev.potential = i->second.curr.potential;
176 i->second.curr.angle = angle;
177 i->second.curr.potential = currBendPot;
178 i->second.deltaV = fabs(i->second.curr.potential -
179 i->second.prev.potential);
180 }
181 }
182
183 for (torsion = mol->beginTorsion(torsionIter); torsion != NULL;
184 torsion = mol->nextTorsion(torsionIter)) {
185 RealType angle;
186 torsion->calcForce(angle);
187 RealType currTorsionPot = torsion->getPotential();
188 torsionPotential += torsion->getPotential();
189 std::map<Torsion*, TorsionDataSet>::iterator i = torsionDataSets.find(torsion);
190 if (i == torsionDataSets.end()) {
191 TorsionDataSet dataSet;
192 dataSet.prev.angle = dataSet.curr.angle = angle;
193 dataSet.prev.potential = dataSet.curr.potential = currTorsionPot;
194 dataSet.deltaV = 0.0;
195 torsionDataSets.insert(std::map<Torsion*, TorsionDataSet>::value_type(torsion, dataSet));
196 }else {
197 i->second.prev.angle = i->second.curr.angle;
198 i->second.prev.potential = i->second.curr.potential;
199 i->second.curr.angle = angle;
200 i->second.curr.potential = currTorsionPot;
201 i->second.deltaV = fabs(i->second.curr.potential -
202 i->second.prev.potential);
203 }
204 }
205
206 for (inversion = mol->beginInversion(inversionIter);
207 inversion != NULL;
208 inversion = mol->nextInversion(inversionIter)) {
209 RealType angle;
210 inversion->calcForce(angle);
211 RealType currInversionPot = inversion->getPotential();
212 inversionPotential += inversion->getPotential();
213 std::map<Inversion*, InversionDataSet>::iterator i = inversionDataSets.find(inversion);
214 if (i == inversionDataSets.end()) {
215 InversionDataSet dataSet;
216 dataSet.prev.angle = dataSet.curr.angle = angle;
217 dataSet.prev.potential = dataSet.curr.potential = currInversionPot;
218 dataSet.deltaV = 0.0;
219 inversionDataSets.insert(std::map<Inversion*, InversionDataSet>::value_type(inversion, dataSet));
220 }else {
221 i->second.prev.angle = i->second.curr.angle;
222 i->second.prev.potential = i->second.curr.potential;
223 i->second.curr.angle = angle;
224 i->second.curr.potential = currInversionPot;
225 i->second.deltaV = fabs(i->second.curr.potential -
226 i->second.prev.potential);
227 }
228 }
229 }
230
231 RealType shortRangePotential = bondPotential + bendPotential +
232 torsionPotential + inversionPotential;
233 Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
234 curSnapshot->statData[Stats::SHORT_RANGE_POTENTIAL] = shortRangePotential;
235 curSnapshot->statData[Stats::BOND_POTENTIAL] = bondPotential;
236 curSnapshot->statData[Stats::BEND_POTENTIAL] = bendPotential;
237 curSnapshot->statData[Stats::DIHEDRAL_POTENTIAL] = torsionPotential;
238 curSnapshot->statData[Stats::INVERSION_POTENTIAL] = inversionPotential;
239
240 }
241
242 void ForceManager::calcLongRangeInteraction() {
243 Snapshot* curSnapshot;
244 DataStorage* config;
245 RealType* frc;
246 RealType* pos;
247 RealType* trq;
248 RealType* A;
249 RealType* electroFrame;
250 RealType* rc;
251 RealType* particlePot;
252
253 //get current snapshot from SimInfo
254 curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
255
256 //get array pointers
257 config = &(curSnapshot->atomData);
258 frc = config->getArrayPointer(DataStorage::dslForce);
259 pos = config->getArrayPointer(DataStorage::dslPosition);
260 trq = config->getArrayPointer(DataStorage::dslTorque);
261 A = config->getArrayPointer(DataStorage::dslAmat);
262 electroFrame = config->getArrayPointer(DataStorage::dslElectroFrame);
263 particlePot = config->getArrayPointer(DataStorage::dslParticlePot);
264
265 //calculate the center of mass of cutoff group
266 SimInfo::MoleculeIterator mi;
267 Molecule* mol;
268 Molecule::CutoffGroupIterator ci;
269 CutoffGroup* cg;
270 Vector3d com;
271 std::vector<Vector3d> rcGroup;
272
273 if(info_->getNCutoffGroups() > 0){
274
275 for (mol = info_->beginMolecule(mi); mol != NULL;
276 mol = info_->nextMolecule(mi)) {
277 for(cg = mol->beginCutoffGroup(ci); cg != NULL;
278 cg = mol->nextCutoffGroup(ci)) {
279 cg->getCOM(com);
280 rcGroup.push_back(com);
281 }
282 }// end for (mol)
283
284 rc = rcGroup[0].getArrayPointer();
285 } else {
286 // center of mass of the group is the same as position of the atom
287 // if cutoff group does not exist
288 rc = pos;
289 }
290
291 //initialize data before passing to fortran
292 RealType longRangePotential[LR_POT_TYPES];
293 RealType lrPot = 0.0;
294 Vector3d totalDipole;
295 int isError = 0;
296
297 for (int i=0; i<LR_POT_TYPES;i++){
298 longRangePotential[i]=0.0; //Initialize array
299 }
300
301 doForceLoop(pos,
302 rc,
303 A,
304 electroFrame,
305 frc,
306 trq,
307 tau.getArrayPointer(),
308 longRangePotential,
309 particlePot,
310 &isError );
311
312 if( isError ){
313 sprintf( painCave.errMsg,
314 "Error returned from the fortran force calculation.\n" );
315 painCave.isFatal = 1;
316 simError();
317 }
318 for (int i=0; i<LR_POT_TYPES;i++){
319 lrPot += longRangePotential[i]; //Quick hack
320 }
321
322 // grab the simulation box dipole moment if specified
323 if (info_->getCalcBoxDipole()){
324 getAccumulatedBoxDipole(totalDipole.getArrayPointer());
325
326 curSnapshot->statData[Stats::BOX_DIPOLE_X] = totalDipole(0);
327 curSnapshot->statData[Stats::BOX_DIPOLE_Y] = totalDipole(1);
328 curSnapshot->statData[Stats::BOX_DIPOLE_Z] = totalDipole(2);
329 }
330
331 //store the tau and long range potential
332 curSnapshot->statData[Stats::LONG_RANGE_POTENTIAL] = lrPot;
333 curSnapshot->statData[Stats::VANDERWAALS_POTENTIAL] = longRangePotential[VDW_POT];
334 curSnapshot->statData[Stats::ELECTROSTATIC_POTENTIAL] = longRangePotential[ELECTROSTATIC_POT];
335 }
336
337
338 void ForceManager::postCalculation() {
339 SimInfo::MoleculeIterator mi;
340 Molecule* mol;
341 Molecule::RigidBodyIterator rbIter;
342 RigidBody* rb;
343 Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
344
345 // collect the atomic forces onto rigid bodies
346
347 for (mol = info_->beginMolecule(mi); mol != NULL;
348 mol = info_->nextMolecule(mi)) {
349 for (rb = mol->beginRigidBody(rbIter); rb != NULL;
350 rb = mol->nextRigidBody(rbIter)) {
351 Mat3x3d rbTau = rb->calcForcesAndTorquesAndVirial();
352 tau += rbTau;
353 }
354 }
355
356 #ifdef IS_MPI
357 Mat3x3d tmpTau(tau);
358 MPI_Allreduce(tmpTau.getArrayPointer(), tau.getArrayPointer(),
359 9, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
360 #endif
361 curSnapshot->statData.setTau(tau);
362 }
363
364 } //end namespace OpenMD

Properties

Name Value
svn:executable *
svn:keywords Author Id Revision Date