1 |
/* |
2 |
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
* |
4 |
* The University of Notre Dame grants you ("Licensee") a |
5 |
* non-exclusive, royalty free, license to use, modify and |
6 |
* redistribute this software in source and binary code form, provided |
7 |
* that the following conditions are met: |
8 |
* |
9 |
* 1. Redistributions of source code must retain the above copyright |
10 |
* notice, this list of conditions and the following disclaimer. |
11 |
* |
12 |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
* notice, this list of conditions and the following disclaimer in the |
14 |
* documentation and/or other materials provided with the |
15 |
* distribution. |
16 |
* |
17 |
* This software is provided "AS IS," without a warranty of any |
18 |
* kind. All express or implied conditions, representations and |
19 |
* warranties, including any implied warranty of merchantability, |
20 |
* fitness for a particular purpose or non-infringement, are hereby |
21 |
* excluded. The University of Notre Dame and its licensors shall not |
22 |
* be liable for any damages suffered by licensee as a result of |
23 |
* using, modifying or distributing the software or its |
24 |
* derivatives. In no event will the University of Notre Dame or its |
25 |
* licensors be liable for any lost revenue, profit or data, or for |
26 |
* direct, indirect, special, consequential, incidental or punitive |
27 |
* damages, however caused and regardless of the theory of liability, |
28 |
* arising out of the use of or inability to use software, even if the |
29 |
* University of Notre Dame has been advised of the possibility of |
30 |
* such damages. |
31 |
* |
32 |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
* research, please cite the appropriate papers when you publish your |
34 |
* work. Good starting points are: |
35 |
* |
36 |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 |
* [4] Vardeman & Gezelter, in progress (2009). |
40 |
*/ |
41 |
|
42 |
/** |
43 |
* @file ForceManager.cpp |
44 |
* @author tlin |
45 |
* @date 11/09/2004 |
46 |
* @time 10:39am |
47 |
* @version 1.0 |
48 |
*/ |
49 |
|
50 |
#include "brains/ForceManager.hpp" |
51 |
#include "primitives/Molecule.hpp" |
52 |
#include "UseTheForce/doForces_interface.h" |
53 |
#define __OPENMD_C |
54 |
#include "UseTheForce/DarkSide/fInteractionMap.h" |
55 |
#include "utils/simError.h" |
56 |
#include "primitives/Bond.hpp" |
57 |
#include "primitives/Bend.hpp" |
58 |
#include "primitives/Torsion.hpp" |
59 |
#include "primitives/Inversion.hpp" |
60 |
|
61 |
namespace OpenMD { |
62 |
|
63 |
ForceManager::ForceManager(SimInfo * info) : info_(info), |
64 |
NBforcesInitialized_(false) { |
65 |
lj_ = LJ::Instance(); |
66 |
lj_->setForceField(info_->getForceField()); |
67 |
|
68 |
gb_ = GB::Instance(); |
69 |
gb_->setForceField(info_->getForceField()); |
70 |
|
71 |
sticky_ = Sticky::Instance(); |
72 |
sticky_->setForceField(info_->getForceField()); |
73 |
|
74 |
eam_ = EAM::Instance(); |
75 |
eam_->setForceField(info_->getForceField()); |
76 |
} |
77 |
|
78 |
void ForceManager::calcForces() { |
79 |
|
80 |
if (!info_->isFortranInitialized()) { |
81 |
info_->update(); |
82 |
} |
83 |
|
84 |
preCalculation(); |
85 |
|
86 |
calcShortRangeInteraction(); |
87 |
|
88 |
calcLongRangeInteraction(); |
89 |
|
90 |
postCalculation(); |
91 |
|
92 |
} |
93 |
|
94 |
void ForceManager::preCalculation() { |
95 |
SimInfo::MoleculeIterator mi; |
96 |
Molecule* mol; |
97 |
Molecule::AtomIterator ai; |
98 |
Atom* atom; |
99 |
Molecule::RigidBodyIterator rbIter; |
100 |
RigidBody* rb; |
101 |
|
102 |
// forces are zeroed here, before any are accumulated. |
103 |
// NOTE: do not rezero the forces in Fortran. |
104 |
|
105 |
for (mol = info_->beginMolecule(mi); mol != NULL; |
106 |
mol = info_->nextMolecule(mi)) { |
107 |
for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) { |
108 |
atom->zeroForcesAndTorques(); |
109 |
} |
110 |
|
111 |
//change the positions of atoms which belong to the rigidbodies |
112 |
for (rb = mol->beginRigidBody(rbIter); rb != NULL; |
113 |
rb = mol->nextRigidBody(rbIter)) { |
114 |
rb->zeroForcesAndTorques(); |
115 |
} |
116 |
|
117 |
} |
118 |
|
119 |
// Zero out the stress tensor |
120 |
tau *= 0.0; |
121 |
|
122 |
} |
123 |
|
124 |
void ForceManager::calcShortRangeInteraction() { |
125 |
Molecule* mol; |
126 |
RigidBody* rb; |
127 |
Bond* bond; |
128 |
Bend* bend; |
129 |
Torsion* torsion; |
130 |
Inversion* inversion; |
131 |
SimInfo::MoleculeIterator mi; |
132 |
Molecule::RigidBodyIterator rbIter; |
133 |
Molecule::BondIterator bondIter;; |
134 |
Molecule::BendIterator bendIter; |
135 |
Molecule::TorsionIterator torsionIter; |
136 |
Molecule::InversionIterator inversionIter; |
137 |
RealType bondPotential = 0.0; |
138 |
RealType bendPotential = 0.0; |
139 |
RealType torsionPotential = 0.0; |
140 |
RealType inversionPotential = 0.0; |
141 |
|
142 |
//calculate short range interactions |
143 |
for (mol = info_->beginMolecule(mi); mol != NULL; |
144 |
mol = info_->nextMolecule(mi)) { |
145 |
|
146 |
//change the positions of atoms which belong to the rigidbodies |
147 |
for (rb = mol->beginRigidBody(rbIter); rb != NULL; |
148 |
rb = mol->nextRigidBody(rbIter)) { |
149 |
rb->updateAtoms(); |
150 |
} |
151 |
|
152 |
for (bond = mol->beginBond(bondIter); bond != NULL; |
153 |
bond = mol->nextBond(bondIter)) { |
154 |
bond->calcForce(); |
155 |
bondPotential += bond->getPotential(); |
156 |
} |
157 |
|
158 |
for (bend = mol->beginBend(bendIter); bend != NULL; |
159 |
bend = mol->nextBend(bendIter)) { |
160 |
|
161 |
RealType angle; |
162 |
bend->calcForce(angle); |
163 |
RealType currBendPot = bend->getPotential(); |
164 |
|
165 |
bendPotential += bend->getPotential(); |
166 |
std::map<Bend*, BendDataSet>::iterator i = bendDataSets.find(bend); |
167 |
if (i == bendDataSets.end()) { |
168 |
BendDataSet dataSet; |
169 |
dataSet.prev.angle = dataSet.curr.angle = angle; |
170 |
dataSet.prev.potential = dataSet.curr.potential = currBendPot; |
171 |
dataSet.deltaV = 0.0; |
172 |
bendDataSets.insert(std::map<Bend*, BendDataSet>::value_type(bend, dataSet)); |
173 |
}else { |
174 |
i->second.prev.angle = i->second.curr.angle; |
175 |
i->second.prev.potential = i->second.curr.potential; |
176 |
i->second.curr.angle = angle; |
177 |
i->second.curr.potential = currBendPot; |
178 |
i->second.deltaV = fabs(i->second.curr.potential - |
179 |
i->second.prev.potential); |
180 |
} |
181 |
} |
182 |
|
183 |
for (torsion = mol->beginTorsion(torsionIter); torsion != NULL; |
184 |
torsion = mol->nextTorsion(torsionIter)) { |
185 |
RealType angle; |
186 |
torsion->calcForce(angle); |
187 |
RealType currTorsionPot = torsion->getPotential(); |
188 |
torsionPotential += torsion->getPotential(); |
189 |
std::map<Torsion*, TorsionDataSet>::iterator i = torsionDataSets.find(torsion); |
190 |
if (i == torsionDataSets.end()) { |
191 |
TorsionDataSet dataSet; |
192 |
dataSet.prev.angle = dataSet.curr.angle = angle; |
193 |
dataSet.prev.potential = dataSet.curr.potential = currTorsionPot; |
194 |
dataSet.deltaV = 0.0; |
195 |
torsionDataSets.insert(std::map<Torsion*, TorsionDataSet>::value_type(torsion, dataSet)); |
196 |
}else { |
197 |
i->second.prev.angle = i->second.curr.angle; |
198 |
i->second.prev.potential = i->second.curr.potential; |
199 |
i->second.curr.angle = angle; |
200 |
i->second.curr.potential = currTorsionPot; |
201 |
i->second.deltaV = fabs(i->second.curr.potential - |
202 |
i->second.prev.potential); |
203 |
} |
204 |
} |
205 |
|
206 |
for (inversion = mol->beginInversion(inversionIter); |
207 |
inversion != NULL; |
208 |
inversion = mol->nextInversion(inversionIter)) { |
209 |
RealType angle; |
210 |
inversion->calcForce(angle); |
211 |
RealType currInversionPot = inversion->getPotential(); |
212 |
inversionPotential += inversion->getPotential(); |
213 |
std::map<Inversion*, InversionDataSet>::iterator i = inversionDataSets.find(inversion); |
214 |
if (i == inversionDataSets.end()) { |
215 |
InversionDataSet dataSet; |
216 |
dataSet.prev.angle = dataSet.curr.angle = angle; |
217 |
dataSet.prev.potential = dataSet.curr.potential = currInversionPot; |
218 |
dataSet.deltaV = 0.0; |
219 |
inversionDataSets.insert(std::map<Inversion*, InversionDataSet>::value_type(inversion, dataSet)); |
220 |
}else { |
221 |
i->second.prev.angle = i->second.curr.angle; |
222 |
i->second.prev.potential = i->second.curr.potential; |
223 |
i->second.curr.angle = angle; |
224 |
i->second.curr.potential = currInversionPot; |
225 |
i->second.deltaV = fabs(i->second.curr.potential - |
226 |
i->second.prev.potential); |
227 |
} |
228 |
} |
229 |
} |
230 |
|
231 |
RealType shortRangePotential = bondPotential + bendPotential + |
232 |
torsionPotential + inversionPotential; |
233 |
Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); |
234 |
curSnapshot->statData[Stats::SHORT_RANGE_POTENTIAL] = shortRangePotential; |
235 |
curSnapshot->statData[Stats::BOND_POTENTIAL] = bondPotential; |
236 |
curSnapshot->statData[Stats::BEND_POTENTIAL] = bendPotential; |
237 |
curSnapshot->statData[Stats::DIHEDRAL_POTENTIAL] = torsionPotential; |
238 |
curSnapshot->statData[Stats::INVERSION_POTENTIAL] = inversionPotential; |
239 |
|
240 |
} |
241 |
|
242 |
void ForceManager::calcLongRangeInteraction() { |
243 |
Snapshot* curSnapshot; |
244 |
DataStorage* config; |
245 |
RealType* frc; |
246 |
RealType* pos; |
247 |
RealType* trq; |
248 |
RealType* A; |
249 |
RealType* electroFrame; |
250 |
RealType* rc; |
251 |
RealType* particlePot; |
252 |
|
253 |
//get current snapshot from SimInfo |
254 |
curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); |
255 |
|
256 |
//get array pointers |
257 |
config = &(curSnapshot->atomData); |
258 |
frc = config->getArrayPointer(DataStorage::dslForce); |
259 |
pos = config->getArrayPointer(DataStorage::dslPosition); |
260 |
trq = config->getArrayPointer(DataStorage::dslTorque); |
261 |
A = config->getArrayPointer(DataStorage::dslAmat); |
262 |
electroFrame = config->getArrayPointer(DataStorage::dslElectroFrame); |
263 |
particlePot = config->getArrayPointer(DataStorage::dslParticlePot); |
264 |
|
265 |
//calculate the center of mass of cutoff group |
266 |
SimInfo::MoleculeIterator mi; |
267 |
Molecule* mol; |
268 |
Molecule::CutoffGroupIterator ci; |
269 |
CutoffGroup* cg; |
270 |
Vector3d com; |
271 |
std::vector<Vector3d> rcGroup; |
272 |
|
273 |
if(info_->getNCutoffGroups() > 0){ |
274 |
|
275 |
for (mol = info_->beginMolecule(mi); mol != NULL; |
276 |
mol = info_->nextMolecule(mi)) { |
277 |
for(cg = mol->beginCutoffGroup(ci); cg != NULL; |
278 |
cg = mol->nextCutoffGroup(ci)) { |
279 |
cg->getCOM(com); |
280 |
rcGroup.push_back(com); |
281 |
} |
282 |
}// end for (mol) |
283 |
|
284 |
rc = rcGroup[0].getArrayPointer(); |
285 |
} else { |
286 |
// center of mass of the group is the same as position of the atom |
287 |
// if cutoff group does not exist |
288 |
rc = pos; |
289 |
} |
290 |
|
291 |
//initialize data before passing to fortran |
292 |
RealType longRangePotential[LR_POT_TYPES]; |
293 |
RealType lrPot = 0.0; |
294 |
Vector3d totalDipole; |
295 |
int isError = 0; |
296 |
|
297 |
for (int i=0; i<LR_POT_TYPES;i++){ |
298 |
longRangePotential[i]=0.0; //Initialize array |
299 |
} |
300 |
|
301 |
doForceLoop(pos, |
302 |
rc, |
303 |
A, |
304 |
electroFrame, |
305 |
frc, |
306 |
trq, |
307 |
tau.getArrayPointer(), |
308 |
longRangePotential, |
309 |
particlePot, |
310 |
&isError ); |
311 |
|
312 |
if( isError ){ |
313 |
sprintf( painCave.errMsg, |
314 |
"Error returned from the fortran force calculation.\n" ); |
315 |
painCave.isFatal = 1; |
316 |
simError(); |
317 |
} |
318 |
for (int i=0; i<LR_POT_TYPES;i++){ |
319 |
lrPot += longRangePotential[i]; //Quick hack |
320 |
} |
321 |
|
322 |
// grab the simulation box dipole moment if specified |
323 |
if (info_->getCalcBoxDipole()){ |
324 |
getAccumulatedBoxDipole(totalDipole.getArrayPointer()); |
325 |
|
326 |
curSnapshot->statData[Stats::BOX_DIPOLE_X] = totalDipole(0); |
327 |
curSnapshot->statData[Stats::BOX_DIPOLE_Y] = totalDipole(1); |
328 |
curSnapshot->statData[Stats::BOX_DIPOLE_Z] = totalDipole(2); |
329 |
} |
330 |
|
331 |
//store the tau and long range potential |
332 |
curSnapshot->statData[Stats::LONG_RANGE_POTENTIAL] = lrPot; |
333 |
curSnapshot->statData[Stats::VANDERWAALS_POTENTIAL] = longRangePotential[VDW_POT]; |
334 |
curSnapshot->statData[Stats::ELECTROSTATIC_POTENTIAL] = longRangePotential[ELECTROSTATIC_POT]; |
335 |
} |
336 |
|
337 |
|
338 |
void ForceManager::postCalculation() { |
339 |
SimInfo::MoleculeIterator mi; |
340 |
Molecule* mol; |
341 |
Molecule::RigidBodyIterator rbIter; |
342 |
RigidBody* rb; |
343 |
Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); |
344 |
|
345 |
// collect the atomic forces onto rigid bodies |
346 |
|
347 |
for (mol = info_->beginMolecule(mi); mol != NULL; |
348 |
mol = info_->nextMolecule(mi)) { |
349 |
for (rb = mol->beginRigidBody(rbIter); rb != NULL; |
350 |
rb = mol->nextRigidBody(rbIter)) { |
351 |
Mat3x3d rbTau = rb->calcForcesAndTorquesAndVirial(); |
352 |
tau += rbTau; |
353 |
} |
354 |
} |
355 |
|
356 |
#ifdef IS_MPI |
357 |
Mat3x3d tmpTau(tau); |
358 |
MPI_Allreduce(tmpTau.getArrayPointer(), tau.getArrayPointer(), |
359 |
9, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD); |
360 |
#endif |
361 |
curSnapshot->statData.setTau(tau); |
362 |
} |
363 |
|
364 |
} //end namespace OpenMD |