ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/brains/ForceManager.cpp
Revision: 1470
Committed: Mon Jul 19 18:48:23 2010 UTC (14 years, 9 months ago) by gezelter
File size: 12807 byte(s)
Log Message:
builds

File Contents

# Content
1 /*
2 * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 *
4 * The University of Notre Dame grants you ("Licensee") a
5 * non-exclusive, royalty free, license to use, modify and
6 * redistribute this software in source and binary code form, provided
7 * that the following conditions are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 *
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the
15 * distribution.
16 *
17 * This software is provided "AS IS," without a warranty of any
18 * kind. All express or implied conditions, representations and
19 * warranties, including any implied warranty of merchantability,
20 * fitness for a particular purpose or non-infringement, are hereby
21 * excluded. The University of Notre Dame and its licensors shall not
22 * be liable for any damages suffered by licensee as a result of
23 * using, modifying or distributing the software or its
24 * derivatives. In no event will the University of Notre Dame or its
25 * licensors be liable for any lost revenue, profit or data, or for
26 * direct, indirect, special, consequential, incidental or punitive
27 * damages, however caused and regardless of the theory of liability,
28 * arising out of the use of or inability to use software, even if the
29 * University of Notre Dame has been advised of the possibility of
30 * such damages.
31 *
32 * SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your
33 * research, please cite the appropriate papers when you publish your
34 * work. Good starting points are:
35 *
36 * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).
37 * [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).
38 * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).
39 * [4] Vardeman & Gezelter, in progress (2009).
40 */
41
42 /**
43 * @file ForceManager.cpp
44 * @author tlin
45 * @date 11/09/2004
46 * @time 10:39am
47 * @version 1.0
48 */
49
50 #include "brains/ForceManager.hpp"
51 #include "primitives/Molecule.hpp"
52 #include "UseTheForce/doForces_interface.h"
53 #define __OPENMD_C
54 #include "UseTheForce/DarkSide/fInteractionMap.h"
55 #include "utils/simError.h"
56 #include "primitives/Bond.hpp"
57 #include "primitives/Bend.hpp"
58 #include "primitives/Torsion.hpp"
59 #include "primitives/Inversion.hpp"
60
61 namespace OpenMD {
62
63 ForceManager::ForceManager(SimInfo * info) : info_(info),
64 NBforcesInitialized_(false) {
65 lj_ = LJ::Instance();
66 lj_->setForceField(info_->getForceField());
67 }
68
69 void ForceManager::calcForces() {
70
71 if (!info_->isFortranInitialized()) {
72 info_->update();
73 }
74
75 preCalculation();
76
77 calcShortRangeInteraction();
78
79 calcLongRangeInteraction();
80
81 postCalculation();
82
83 }
84
85 void ForceManager::preCalculation() {
86 SimInfo::MoleculeIterator mi;
87 Molecule* mol;
88 Molecule::AtomIterator ai;
89 Atom* atom;
90 Molecule::RigidBodyIterator rbIter;
91 RigidBody* rb;
92
93 // forces are zeroed here, before any are accumulated.
94 // NOTE: do not rezero the forces in Fortran.
95
96 for (mol = info_->beginMolecule(mi); mol != NULL;
97 mol = info_->nextMolecule(mi)) {
98 for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
99 atom->zeroForcesAndTorques();
100 }
101
102 //change the positions of atoms which belong to the rigidbodies
103 for (rb = mol->beginRigidBody(rbIter); rb != NULL;
104 rb = mol->nextRigidBody(rbIter)) {
105 rb->zeroForcesAndTorques();
106 }
107
108 }
109
110 // Zero out the stress tensor
111 tau *= 0.0;
112
113 }
114
115 void ForceManager::calcShortRangeInteraction() {
116 Molecule* mol;
117 RigidBody* rb;
118 Bond* bond;
119 Bend* bend;
120 Torsion* torsion;
121 Inversion* inversion;
122 SimInfo::MoleculeIterator mi;
123 Molecule::RigidBodyIterator rbIter;
124 Molecule::BondIterator bondIter;;
125 Molecule::BendIterator bendIter;
126 Molecule::TorsionIterator torsionIter;
127 Molecule::InversionIterator inversionIter;
128 RealType bondPotential = 0.0;
129 RealType bendPotential = 0.0;
130 RealType torsionPotential = 0.0;
131 RealType inversionPotential = 0.0;
132
133 //calculate short range interactions
134 for (mol = info_->beginMolecule(mi); mol != NULL;
135 mol = info_->nextMolecule(mi)) {
136
137 //change the positions of atoms which belong to the rigidbodies
138 for (rb = mol->beginRigidBody(rbIter); rb != NULL;
139 rb = mol->nextRigidBody(rbIter)) {
140 rb->updateAtoms();
141 }
142
143 for (bond = mol->beginBond(bondIter); bond != NULL;
144 bond = mol->nextBond(bondIter)) {
145 bond->calcForce();
146 bondPotential += bond->getPotential();
147 }
148
149 for (bend = mol->beginBend(bendIter); bend != NULL;
150 bend = mol->nextBend(bendIter)) {
151
152 RealType angle;
153 bend->calcForce(angle);
154 RealType currBendPot = bend->getPotential();
155
156 bendPotential += bend->getPotential();
157 std::map<Bend*, BendDataSet>::iterator i = bendDataSets.find(bend);
158 if (i == bendDataSets.end()) {
159 BendDataSet dataSet;
160 dataSet.prev.angle = dataSet.curr.angle = angle;
161 dataSet.prev.potential = dataSet.curr.potential = currBendPot;
162 dataSet.deltaV = 0.0;
163 bendDataSets.insert(std::map<Bend*, BendDataSet>::value_type(bend, dataSet));
164 }else {
165 i->second.prev.angle = i->second.curr.angle;
166 i->second.prev.potential = i->second.curr.potential;
167 i->second.curr.angle = angle;
168 i->second.curr.potential = currBendPot;
169 i->second.deltaV = fabs(i->second.curr.potential -
170 i->second.prev.potential);
171 }
172 }
173
174 for (torsion = mol->beginTorsion(torsionIter); torsion != NULL;
175 torsion = mol->nextTorsion(torsionIter)) {
176 RealType angle;
177 torsion->calcForce(angle);
178 RealType currTorsionPot = torsion->getPotential();
179 torsionPotential += torsion->getPotential();
180 std::map<Torsion*, TorsionDataSet>::iterator i = torsionDataSets.find(torsion);
181 if (i == torsionDataSets.end()) {
182 TorsionDataSet dataSet;
183 dataSet.prev.angle = dataSet.curr.angle = angle;
184 dataSet.prev.potential = dataSet.curr.potential = currTorsionPot;
185 dataSet.deltaV = 0.0;
186 torsionDataSets.insert(std::map<Torsion*, TorsionDataSet>::value_type(torsion, dataSet));
187 }else {
188 i->second.prev.angle = i->second.curr.angle;
189 i->second.prev.potential = i->second.curr.potential;
190 i->second.curr.angle = angle;
191 i->second.curr.potential = currTorsionPot;
192 i->second.deltaV = fabs(i->second.curr.potential -
193 i->second.prev.potential);
194 }
195 }
196
197 for (inversion = mol->beginInversion(inversionIter);
198 inversion != NULL;
199 inversion = mol->nextInversion(inversionIter)) {
200 RealType angle;
201 inversion->calcForce(angle);
202 RealType currInversionPot = inversion->getPotential();
203 inversionPotential += inversion->getPotential();
204 std::map<Inversion*, InversionDataSet>::iterator i = inversionDataSets.find(inversion);
205 if (i == inversionDataSets.end()) {
206 InversionDataSet dataSet;
207 dataSet.prev.angle = dataSet.curr.angle = angle;
208 dataSet.prev.potential = dataSet.curr.potential = currInversionPot;
209 dataSet.deltaV = 0.0;
210 inversionDataSets.insert(std::map<Inversion*, InversionDataSet>::value_type(inversion, dataSet));
211 }else {
212 i->second.prev.angle = i->second.curr.angle;
213 i->second.prev.potential = i->second.curr.potential;
214 i->second.curr.angle = angle;
215 i->second.curr.potential = currInversionPot;
216 i->second.deltaV = fabs(i->second.curr.potential -
217 i->second.prev.potential);
218 }
219 }
220 }
221
222 RealType shortRangePotential = bondPotential + bendPotential +
223 torsionPotential + inversionPotential;
224 Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
225 curSnapshot->statData[Stats::SHORT_RANGE_POTENTIAL] = shortRangePotential;
226 curSnapshot->statData[Stats::BOND_POTENTIAL] = bondPotential;
227 curSnapshot->statData[Stats::BEND_POTENTIAL] = bendPotential;
228 curSnapshot->statData[Stats::DIHEDRAL_POTENTIAL] = torsionPotential;
229 curSnapshot->statData[Stats::INVERSION_POTENTIAL] = inversionPotential;
230
231 }
232
233 void ForceManager::calcLongRangeInteraction() {
234 Snapshot* curSnapshot;
235 DataStorage* config;
236 RealType* frc;
237 RealType* pos;
238 RealType* trq;
239 RealType* A;
240 RealType* electroFrame;
241 RealType* rc;
242 RealType* particlePot;
243
244 //get current snapshot from SimInfo
245 curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
246
247 //get array pointers
248 config = &(curSnapshot->atomData);
249 frc = config->getArrayPointer(DataStorage::dslForce);
250 pos = config->getArrayPointer(DataStorage::dslPosition);
251 trq = config->getArrayPointer(DataStorage::dslTorque);
252 A = config->getArrayPointer(DataStorage::dslAmat);
253 electroFrame = config->getArrayPointer(DataStorage::dslElectroFrame);
254 particlePot = config->getArrayPointer(DataStorage::dslParticlePot);
255
256 //calculate the center of mass of cutoff group
257 SimInfo::MoleculeIterator mi;
258 Molecule* mol;
259 Molecule::CutoffGroupIterator ci;
260 CutoffGroup* cg;
261 Vector3d com;
262 std::vector<Vector3d> rcGroup;
263
264 if(info_->getNCutoffGroups() > 0){
265
266 for (mol = info_->beginMolecule(mi); mol != NULL;
267 mol = info_->nextMolecule(mi)) {
268 for(cg = mol->beginCutoffGroup(ci); cg != NULL;
269 cg = mol->nextCutoffGroup(ci)) {
270 cg->getCOM(com);
271 rcGroup.push_back(com);
272 }
273 }// end for (mol)
274
275 rc = rcGroup[0].getArrayPointer();
276 } else {
277 // center of mass of the group is the same as position of the atom
278 // if cutoff group does not exist
279 rc = pos;
280 }
281
282 //initialize data before passing to fortran
283 RealType longRangePotential[LR_POT_TYPES];
284 RealType lrPot = 0.0;
285 Vector3d totalDipole;
286 int isError = 0;
287
288 for (int i=0; i<LR_POT_TYPES;i++){
289 longRangePotential[i]=0.0; //Initialize array
290 }
291
292 doForceLoop(pos,
293 rc,
294 A,
295 electroFrame,
296 frc,
297 trq,
298 tau.getArrayPointer(),
299 longRangePotential,
300 particlePot,
301 &isError );
302
303 if( isError ){
304 sprintf( painCave.errMsg,
305 "Error returned from the fortran force calculation.\n" );
306 painCave.isFatal = 1;
307 simError();
308 }
309 for (int i=0; i<LR_POT_TYPES;i++){
310 lrPot += longRangePotential[i]; //Quick hack
311 }
312
313 // grab the simulation box dipole moment if specified
314 if (info_->getCalcBoxDipole()){
315 getAccumulatedBoxDipole(totalDipole.getArrayPointer());
316
317 curSnapshot->statData[Stats::BOX_DIPOLE_X] = totalDipole(0);
318 curSnapshot->statData[Stats::BOX_DIPOLE_Y] = totalDipole(1);
319 curSnapshot->statData[Stats::BOX_DIPOLE_Z] = totalDipole(2);
320 }
321
322 //store the tau and long range potential
323 curSnapshot->statData[Stats::LONG_RANGE_POTENTIAL] = lrPot;
324 curSnapshot->statData[Stats::VANDERWAALS_POTENTIAL] = longRangePotential[VDW_POT];
325 curSnapshot->statData[Stats::ELECTROSTATIC_POTENTIAL] = longRangePotential[ELECTROSTATIC_POT];
326 }
327
328
329 void ForceManager::postCalculation() {
330 SimInfo::MoleculeIterator mi;
331 Molecule* mol;
332 Molecule::RigidBodyIterator rbIter;
333 RigidBody* rb;
334 Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
335
336 // collect the atomic forces onto rigid bodies
337
338 for (mol = info_->beginMolecule(mi); mol != NULL;
339 mol = info_->nextMolecule(mi)) {
340 for (rb = mol->beginRigidBody(rbIter); rb != NULL;
341 rb = mol->nextRigidBody(rbIter)) {
342 Mat3x3d rbTau = rb->calcForcesAndTorquesAndVirial();
343 tau += rbTau;
344 }
345 }
346
347 #ifdef IS_MPI
348 Mat3x3d tmpTau(tau);
349 MPI_Allreduce(tmpTau.getArrayPointer(), tau.getArrayPointer(),
350 9, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
351 #endif
352 curSnapshot->statData.setTau(tau);
353 }
354
355 } //end namespace OpenMD

Properties

Name Value
svn:executable *
svn:keywords Author Id Revision Date