1 |
gezelter |
507 |
/* |
2 |
gezelter |
246 |
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
|
|
* |
4 |
|
|
* The University of Notre Dame grants you ("Licensee") a |
5 |
|
|
* non-exclusive, royalty free, license to use, modify and |
6 |
|
|
* redistribute this software in source and binary code form, provided |
7 |
|
|
* that the following conditions are met: |
8 |
|
|
* |
9 |
gezelter |
1390 |
* 1. Redistributions of source code must retain the above copyright |
10 |
gezelter |
246 |
* notice, this list of conditions and the following disclaimer. |
11 |
|
|
* |
12 |
gezelter |
1390 |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
gezelter |
246 |
* notice, this list of conditions and the following disclaimer in the |
14 |
|
|
* documentation and/or other materials provided with the |
15 |
|
|
* distribution. |
16 |
|
|
* |
17 |
|
|
* This software is provided "AS IS," without a warranty of any |
18 |
|
|
* kind. All express or implied conditions, representations and |
19 |
|
|
* warranties, including any implied warranty of merchantability, |
20 |
|
|
* fitness for a particular purpose or non-infringement, are hereby |
21 |
|
|
* excluded. The University of Notre Dame and its licensors shall not |
22 |
|
|
* be liable for any damages suffered by licensee as a result of |
23 |
|
|
* using, modifying or distributing the software or its |
24 |
|
|
* derivatives. In no event will the University of Notre Dame or its |
25 |
|
|
* licensors be liable for any lost revenue, profit or data, or for |
26 |
|
|
* direct, indirect, special, consequential, incidental or punitive |
27 |
|
|
* damages, however caused and regardless of the theory of liability, |
28 |
|
|
* arising out of the use of or inability to use software, even if the |
29 |
|
|
* University of Notre Dame has been advised of the possibility of |
30 |
|
|
* such damages. |
31 |
gezelter |
1390 |
* |
32 |
|
|
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
|
|
* research, please cite the appropriate papers when you publish your |
34 |
|
|
* work. Good starting points are: |
35 |
|
|
* |
36 |
|
|
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
|
|
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
|
|
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 |
|
|
* [4] Vardeman & Gezelter, in progress (2009). |
40 |
gezelter |
246 |
*/ |
41 |
|
|
|
42 |
gezelter |
507 |
/** |
43 |
|
|
* @file ForceManager.cpp |
44 |
|
|
* @author tlin |
45 |
|
|
* @date 11/09/2004 |
46 |
|
|
* @time 10:39am |
47 |
|
|
* @version 1.0 |
48 |
|
|
*/ |
49 |
gezelter |
246 |
|
50 |
gezelter |
1576 |
|
51 |
gezelter |
246 |
#include "brains/ForceManager.hpp" |
52 |
|
|
#include "primitives/Molecule.hpp" |
53 |
gezelter |
1390 |
#define __OPENMD_C |
54 |
gezelter |
246 |
#include "utils/simError.h" |
55 |
xsun |
1215 |
#include "primitives/Bond.hpp" |
56 |
tim |
749 |
#include "primitives/Bend.hpp" |
57 |
cli2 |
1275 |
#include "primitives/Torsion.hpp" |
58 |
|
|
#include "primitives/Inversion.hpp" |
59 |
gezelter |
1551 |
#include "nonbonded/NonBondedInteraction.hpp" |
60 |
gezelter |
1549 |
#include "parallel/ForceMatrixDecomposition.hpp" |
61 |
gezelter |
1467 |
|
62 |
gezelter |
1583 |
#include <cstdio> |
63 |
|
|
#include <iostream> |
64 |
|
|
#include <iomanip> |
65 |
|
|
|
66 |
gezelter |
1545 |
using namespace std; |
67 |
gezelter |
1390 |
namespace OpenMD { |
68 |
gezelter |
1469 |
|
69 |
gezelter |
1545 |
ForceManager::ForceManager(SimInfo * info) : info_(info) { |
70 |
gezelter |
1576 |
forceField_ = info_->getForceField(); |
71 |
gezelter |
1577 |
interactionMan_ = new InteractionManager(); |
72 |
gezelter |
1579 |
fDecomp_ = new ForceMatrixDecomposition(info_, interactionMan_); |
73 |
gezelter |
1469 |
} |
74 |
gezelter |
1576 |
|
75 |
|
|
/** |
76 |
|
|
* setupCutoffs |
77 |
|
|
* |
78 |
|
|
* Sets the values of cutoffRadius, cutoffMethod, and cutoffPolicy |
79 |
|
|
* |
80 |
|
|
* cutoffRadius : realType |
81 |
|
|
* If the cutoffRadius was explicitly set, use that value. |
82 |
|
|
* If the cutoffRadius was not explicitly set: |
83 |
|
|
* Are there electrostatic atoms? Use 12.0 Angstroms. |
84 |
|
|
* No electrostatic atoms? Poll the atom types present in the |
85 |
|
|
* simulation for suggested cutoff values (e.g. 2.5 * sigma). |
86 |
|
|
* Use the maximum suggested value that was found. |
87 |
|
|
* |
88 |
|
|
* cutoffMethod : (one of HARD, SWITCHED, SHIFTED_FORCE, SHIFTED_POTENTIAL) |
89 |
|
|
* If cutoffMethod was explicitly set, use that choice. |
90 |
|
|
* If cutoffMethod was not explicitly set, use SHIFTED_FORCE |
91 |
|
|
* |
92 |
|
|
* cutoffPolicy : (one of MIX, MAX, TRADITIONAL) |
93 |
|
|
* If cutoffPolicy was explicitly set, use that choice. |
94 |
|
|
* If cutoffPolicy was not explicitly set, use TRADITIONAL |
95 |
|
|
*/ |
96 |
|
|
void ForceManager::setupCutoffs() { |
97 |
|
|
|
98 |
|
|
Globals* simParams_ = info_->getSimParams(); |
99 |
|
|
ForceFieldOptions& forceFieldOptions_ = forceField_->getForceFieldOptions(); |
100 |
|
|
|
101 |
|
|
if (simParams_->haveCutoffRadius()) { |
102 |
|
|
rCut_ = simParams_->getCutoffRadius(); |
103 |
|
|
} else { |
104 |
|
|
if (info_->usesElectrostaticAtoms()) { |
105 |
|
|
sprintf(painCave.errMsg, |
106 |
|
|
"ForceManager::setupCutoffs: No value was set for the cutoffRadius.\n" |
107 |
|
|
"\tOpenMD will use a default value of 12.0 angstroms" |
108 |
|
|
"\tfor the cutoffRadius.\n"); |
109 |
|
|
painCave.isFatal = 0; |
110 |
|
|
painCave.severity = OPENMD_INFO; |
111 |
|
|
simError(); |
112 |
|
|
rCut_ = 12.0; |
113 |
|
|
} else { |
114 |
|
|
RealType thisCut; |
115 |
|
|
set<AtomType*>::iterator i; |
116 |
|
|
set<AtomType*> atomTypes; |
117 |
|
|
atomTypes = info_->getSimulatedAtomTypes(); |
118 |
|
|
for (i = atomTypes.begin(); i != atomTypes.end(); ++i) { |
119 |
|
|
thisCut = interactionMan_->getSuggestedCutoffRadius((*i)); |
120 |
|
|
rCut_ = max(thisCut, rCut_); |
121 |
|
|
} |
122 |
|
|
sprintf(painCave.errMsg, |
123 |
|
|
"ForceManager::setupCutoffs: No value was set for the cutoffRadius.\n" |
124 |
|
|
"\tOpenMD will use %lf angstroms.\n", |
125 |
|
|
rCut_); |
126 |
|
|
painCave.isFatal = 0; |
127 |
|
|
painCave.severity = OPENMD_INFO; |
128 |
|
|
simError(); |
129 |
gezelter |
1579 |
} |
130 |
gezelter |
1576 |
} |
131 |
|
|
|
132 |
gezelter |
1583 |
fDecomp_->setUserCutoff(rCut_); |
133 |
|
|
|
134 |
gezelter |
1576 |
map<string, CutoffMethod> stringToCutoffMethod; |
135 |
|
|
stringToCutoffMethod["HARD"] = HARD; |
136 |
|
|
stringToCutoffMethod["SWITCHED"] = SWITCHED; |
137 |
|
|
stringToCutoffMethod["SHIFTED_POTENTIAL"] = SHIFTED_POTENTIAL; |
138 |
|
|
stringToCutoffMethod["SHIFTED_FORCE"] = SHIFTED_FORCE; |
139 |
gezelter |
1545 |
|
140 |
gezelter |
1576 |
if (simParams_->haveCutoffMethod()) { |
141 |
|
|
string cutMeth = toUpperCopy(simParams_->getCutoffMethod()); |
142 |
|
|
map<string, CutoffMethod>::iterator i; |
143 |
|
|
i = stringToCutoffMethod.find(cutMeth); |
144 |
|
|
if (i == stringToCutoffMethod.end()) { |
145 |
|
|
sprintf(painCave.errMsg, |
146 |
|
|
"ForceManager::setupCutoffs: Could not find chosen cutoffMethod %s\n" |
147 |
|
|
"\tShould be one of: " |
148 |
|
|
"HARD, SWITCHED, SHIFTED_POTENTIAL, or SHIFTED_FORCE\n", |
149 |
|
|
cutMeth.c_str()); |
150 |
|
|
painCave.isFatal = 1; |
151 |
|
|
painCave.severity = OPENMD_ERROR; |
152 |
|
|
simError(); |
153 |
|
|
} else { |
154 |
|
|
cutoffMethod_ = i->second; |
155 |
|
|
} |
156 |
|
|
} else { |
157 |
|
|
sprintf(painCave.errMsg, |
158 |
|
|
"ForceManager::setupCutoffs: No value was set for the cutoffMethod.\n" |
159 |
|
|
"\tOpenMD will use SHIFTED_FORCE.\n"); |
160 |
|
|
painCave.isFatal = 0; |
161 |
|
|
painCave.severity = OPENMD_INFO; |
162 |
|
|
simError(); |
163 |
|
|
cutoffMethod_ = SHIFTED_FORCE; |
164 |
|
|
} |
165 |
|
|
|
166 |
|
|
map<string, CutoffPolicy> stringToCutoffPolicy; |
167 |
|
|
stringToCutoffPolicy["MIX"] = MIX; |
168 |
|
|
stringToCutoffPolicy["MAX"] = MAX; |
169 |
|
|
stringToCutoffPolicy["TRADITIONAL"] = TRADITIONAL; |
170 |
|
|
|
171 |
|
|
std::string cutPolicy; |
172 |
|
|
if (forceFieldOptions_.haveCutoffPolicy()){ |
173 |
|
|
cutPolicy = forceFieldOptions_.getCutoffPolicy(); |
174 |
|
|
}else if (simParams_->haveCutoffPolicy()) { |
175 |
|
|
cutPolicy = simParams_->getCutoffPolicy(); |
176 |
|
|
} |
177 |
|
|
|
178 |
|
|
if (!cutPolicy.empty()){ |
179 |
|
|
toUpper(cutPolicy); |
180 |
|
|
map<string, CutoffPolicy>::iterator i; |
181 |
|
|
i = stringToCutoffPolicy.find(cutPolicy); |
182 |
|
|
|
183 |
|
|
if (i == stringToCutoffPolicy.end()) { |
184 |
|
|
sprintf(painCave.errMsg, |
185 |
|
|
"ForceManager::setupCutoffs: Could not find chosen cutoffPolicy %s\n" |
186 |
|
|
"\tShould be one of: " |
187 |
|
|
"MIX, MAX, or TRADITIONAL\n", |
188 |
|
|
cutPolicy.c_str()); |
189 |
|
|
painCave.isFatal = 1; |
190 |
|
|
painCave.severity = OPENMD_ERROR; |
191 |
|
|
simError(); |
192 |
|
|
} else { |
193 |
|
|
cutoffPolicy_ = i->second; |
194 |
|
|
} |
195 |
|
|
} else { |
196 |
|
|
sprintf(painCave.errMsg, |
197 |
|
|
"ForceManager::setupCutoffs: No value was set for the cutoffPolicy.\n" |
198 |
|
|
"\tOpenMD will use TRADITIONAL.\n"); |
199 |
|
|
painCave.isFatal = 0; |
200 |
|
|
painCave.severity = OPENMD_INFO; |
201 |
|
|
simError(); |
202 |
|
|
cutoffPolicy_ = TRADITIONAL; |
203 |
|
|
} |
204 |
gezelter |
1579 |
fDecomp_->setCutoffPolicy(cutoffPolicy_); |
205 |
gezelter |
1576 |
} |
206 |
|
|
|
207 |
|
|
/** |
208 |
|
|
* setupSwitching |
209 |
|
|
* |
210 |
|
|
* Sets the values of switchingRadius and |
211 |
|
|
* If the switchingRadius was explicitly set, use that value (but check it) |
212 |
|
|
* If the switchingRadius was not explicitly set: use 0.85 * cutoffRadius_ |
213 |
|
|
*/ |
214 |
|
|
void ForceManager::setupSwitching() { |
215 |
|
|
Globals* simParams_ = info_->getSimParams(); |
216 |
gezelter |
1577 |
|
217 |
|
|
// create the switching function object: |
218 |
|
|
switcher_ = new SwitchingFunction(); |
219 |
gezelter |
1126 |
|
220 |
gezelter |
1576 |
if (simParams_->haveSwitchingRadius()) { |
221 |
|
|
rSwitch_ = simParams_->getSwitchingRadius(); |
222 |
|
|
if (rSwitch_ > rCut_) { |
223 |
|
|
sprintf(painCave.errMsg, |
224 |
gezelter |
1577 |
"ForceManager::setupSwitching: switchingRadius (%f) is larger " |
225 |
|
|
"than the cutoffRadius(%f)\n", rSwitch_, rCut_); |
226 |
gezelter |
1576 |
painCave.isFatal = 1; |
227 |
|
|
painCave.severity = OPENMD_ERROR; |
228 |
|
|
simError(); |
229 |
|
|
} |
230 |
|
|
} else { |
231 |
|
|
rSwitch_ = 0.85 * rCut_; |
232 |
|
|
sprintf(painCave.errMsg, |
233 |
|
|
"ForceManager::setupSwitching: No value was set for the switchingRadius.\n" |
234 |
|
|
"\tOpenMD will use a default value of 85 percent of the cutoffRadius.\n" |
235 |
|
|
"\tswitchingRadius = %f. for this simulation\n", rSwitch_); |
236 |
|
|
painCave.isFatal = 0; |
237 |
|
|
painCave.severity = OPENMD_WARNING; |
238 |
|
|
simError(); |
239 |
|
|
} |
240 |
|
|
|
241 |
gezelter |
1577 |
// Default to cubic switching function. |
242 |
|
|
sft_ = cubic; |
243 |
gezelter |
1576 |
if (simParams_->haveSwitchingFunctionType()) { |
244 |
|
|
string funcType = simParams_->getSwitchingFunctionType(); |
245 |
|
|
toUpper(funcType); |
246 |
|
|
if (funcType == "CUBIC") { |
247 |
|
|
sft_ = cubic; |
248 |
|
|
} else { |
249 |
|
|
if (funcType == "FIFTH_ORDER_POLYNOMIAL") { |
250 |
|
|
sft_ = fifth_order_poly; |
251 |
|
|
} else { |
252 |
|
|
// throw error |
253 |
|
|
sprintf( painCave.errMsg, |
254 |
|
|
"ForceManager::setupSwitching : Unknown switchingFunctionType. (Input file specified %s .)\n" |
255 |
|
|
"\tswitchingFunctionType must be one of: " |
256 |
|
|
"\"cubic\" or \"fifth_order_polynomial\".", |
257 |
|
|
funcType.c_str() ); |
258 |
|
|
painCave.isFatal = 1; |
259 |
|
|
painCave.severity = OPENMD_ERROR; |
260 |
|
|
simError(); |
261 |
|
|
} |
262 |
|
|
} |
263 |
|
|
} |
264 |
|
|
switcher_->setSwitchType(sft_); |
265 |
|
|
switcher_->setSwitch(rSwitch_, rCut_); |
266 |
|
|
} |
267 |
|
|
|
268 |
|
|
void ForceManager::initialize() { |
269 |
|
|
|
270 |
gezelter |
1569 |
if (!info_->isTopologyDone()) { |
271 |
gezelter |
507 |
info_->update(); |
272 |
gezelter |
1546 |
interactionMan_->setSimInfo(info_); |
273 |
|
|
interactionMan_->initialize(); |
274 |
gezelter |
1576 |
|
275 |
|
|
// We want to delay the cutoffs until after the interaction |
276 |
|
|
// manager has set up the atom-atom interactions so that we can |
277 |
|
|
// query them for suggested cutoff values |
278 |
|
|
|
279 |
|
|
setupCutoffs(); |
280 |
|
|
setupSwitching(); |
281 |
|
|
|
282 |
|
|
info_->prepareTopology(); |
283 |
gezelter |
246 |
} |
284 |
gezelter |
1576 |
|
285 |
|
|
ForceFieldOptions& fopts = forceField_->getForceFieldOptions(); |
286 |
gezelter |
1126 |
|
287 |
gezelter |
1576 |
// Force fields can set options on how to scale van der Waals and electrostatic |
288 |
|
|
// interactions for atoms connected via bonds, bends and torsions |
289 |
|
|
// in this case the topological distance between atoms is: |
290 |
|
|
// 0 = topologically unconnected |
291 |
|
|
// 1 = bonded together |
292 |
|
|
// 2 = connected via a bend |
293 |
|
|
// 3 = connected via a torsion |
294 |
|
|
|
295 |
|
|
vdwScale_.reserve(4); |
296 |
|
|
fill(vdwScale_.begin(), vdwScale_.end(), 0.0); |
297 |
|
|
|
298 |
|
|
electrostaticScale_.reserve(4); |
299 |
|
|
fill(electrostaticScale_.begin(), electrostaticScale_.end(), 0.0); |
300 |
|
|
|
301 |
|
|
vdwScale_[0] = 1.0; |
302 |
|
|
vdwScale_[1] = fopts.getvdw12scale(); |
303 |
|
|
vdwScale_[2] = fopts.getvdw13scale(); |
304 |
|
|
vdwScale_[3] = fopts.getvdw14scale(); |
305 |
|
|
|
306 |
|
|
electrostaticScale_[0] = 1.0; |
307 |
|
|
electrostaticScale_[1] = fopts.getelectrostatic12scale(); |
308 |
|
|
electrostaticScale_[2] = fopts.getelectrostatic13scale(); |
309 |
|
|
electrostaticScale_[3] = fopts.getelectrostatic14scale(); |
310 |
|
|
|
311 |
|
|
fDecomp_->distributeInitialData(); |
312 |
|
|
|
313 |
|
|
initialized_ = true; |
314 |
|
|
|
315 |
|
|
} |
316 |
|
|
|
317 |
|
|
void ForceManager::calcForces() { |
318 |
|
|
|
319 |
|
|
if (!initialized_) initialize(); |
320 |
|
|
|
321 |
gezelter |
1544 |
preCalculation(); |
322 |
gezelter |
1546 |
shortRangeInteractions(); |
323 |
|
|
longRangeInteractions(); |
324 |
gezelter |
1576 |
postCalculation(); |
325 |
gezelter |
507 |
} |
326 |
gezelter |
1126 |
|
327 |
gezelter |
507 |
void ForceManager::preCalculation() { |
328 |
gezelter |
246 |
SimInfo::MoleculeIterator mi; |
329 |
|
|
Molecule* mol; |
330 |
|
|
Molecule::AtomIterator ai; |
331 |
|
|
Atom* atom; |
332 |
|
|
Molecule::RigidBodyIterator rbIter; |
333 |
|
|
RigidBody* rb; |
334 |
gezelter |
1540 |
Molecule::CutoffGroupIterator ci; |
335 |
|
|
CutoffGroup* cg; |
336 |
gezelter |
246 |
|
337 |
|
|
// forces are zeroed here, before any are accumulated. |
338 |
chuckv |
1245 |
|
339 |
gezelter |
1126 |
for (mol = info_->beginMolecule(mi); mol != NULL; |
340 |
|
|
mol = info_->nextMolecule(mi)) { |
341 |
gezelter |
507 |
for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) { |
342 |
|
|
atom->zeroForcesAndTorques(); |
343 |
|
|
} |
344 |
chuckv |
1245 |
|
345 |
gezelter |
507 |
//change the positions of atoms which belong to the rigidbodies |
346 |
gezelter |
1126 |
for (rb = mol->beginRigidBody(rbIter); rb != NULL; |
347 |
|
|
rb = mol->nextRigidBody(rbIter)) { |
348 |
gezelter |
507 |
rb->zeroForcesAndTorques(); |
349 |
|
|
} |
350 |
gezelter |
1540 |
|
351 |
|
|
if(info_->getNGlobalCutoffGroups() != info_->getNGlobalAtoms()){ |
352 |
|
|
for(cg = mol->beginCutoffGroup(ci); cg != NULL; |
353 |
|
|
cg = mol->nextCutoffGroup(ci)) { |
354 |
|
|
//calculate the center of mass of cutoff group |
355 |
|
|
cg->updateCOM(); |
356 |
|
|
} |
357 |
|
|
} |
358 |
gezelter |
246 |
} |
359 |
gezelter |
1540 |
|
360 |
gezelter |
1126 |
// Zero out the stress tensor |
361 |
|
|
tau *= 0.0; |
362 |
|
|
|
363 |
gezelter |
507 |
} |
364 |
gezelter |
1126 |
|
365 |
gezelter |
1546 |
void ForceManager::shortRangeInteractions() { |
366 |
gezelter |
246 |
Molecule* mol; |
367 |
|
|
RigidBody* rb; |
368 |
|
|
Bond* bond; |
369 |
|
|
Bend* bend; |
370 |
|
|
Torsion* torsion; |
371 |
cli2 |
1275 |
Inversion* inversion; |
372 |
gezelter |
246 |
SimInfo::MoleculeIterator mi; |
373 |
|
|
Molecule::RigidBodyIterator rbIter; |
374 |
|
|
Molecule::BondIterator bondIter;; |
375 |
|
|
Molecule::BendIterator bendIter; |
376 |
|
|
Molecule::TorsionIterator torsionIter; |
377 |
cli2 |
1275 |
Molecule::InversionIterator inversionIter; |
378 |
tim |
963 |
RealType bondPotential = 0.0; |
379 |
|
|
RealType bendPotential = 0.0; |
380 |
|
|
RealType torsionPotential = 0.0; |
381 |
cli2 |
1275 |
RealType inversionPotential = 0.0; |
382 |
gezelter |
246 |
|
383 |
|
|
//calculate short range interactions |
384 |
gezelter |
1126 |
for (mol = info_->beginMolecule(mi); mol != NULL; |
385 |
|
|
mol = info_->nextMolecule(mi)) { |
386 |
gezelter |
246 |
|
387 |
gezelter |
507 |
//change the positions of atoms which belong to the rigidbodies |
388 |
gezelter |
1126 |
for (rb = mol->beginRigidBody(rbIter); rb != NULL; |
389 |
|
|
rb = mol->nextRigidBody(rbIter)) { |
390 |
|
|
rb->updateAtoms(); |
391 |
gezelter |
507 |
} |
392 |
gezelter |
246 |
|
393 |
gezelter |
1126 |
for (bond = mol->beginBond(bondIter); bond != NULL; |
394 |
|
|
bond = mol->nextBond(bondIter)) { |
395 |
tim |
749 |
bond->calcForce(); |
396 |
|
|
bondPotential += bond->getPotential(); |
397 |
gezelter |
507 |
} |
398 |
gezelter |
246 |
|
399 |
gezelter |
1126 |
for (bend = mol->beginBend(bendIter); bend != NULL; |
400 |
|
|
bend = mol->nextBend(bendIter)) { |
401 |
|
|
|
402 |
|
|
RealType angle; |
403 |
|
|
bend->calcForce(angle); |
404 |
|
|
RealType currBendPot = bend->getPotential(); |
405 |
gezelter |
1448 |
|
406 |
gezelter |
1126 |
bendPotential += bend->getPotential(); |
407 |
gezelter |
1545 |
map<Bend*, BendDataSet>::iterator i = bendDataSets.find(bend); |
408 |
gezelter |
1126 |
if (i == bendDataSets.end()) { |
409 |
|
|
BendDataSet dataSet; |
410 |
|
|
dataSet.prev.angle = dataSet.curr.angle = angle; |
411 |
|
|
dataSet.prev.potential = dataSet.curr.potential = currBendPot; |
412 |
|
|
dataSet.deltaV = 0.0; |
413 |
gezelter |
1545 |
bendDataSets.insert(map<Bend*, BendDataSet>::value_type(bend, dataSet)); |
414 |
gezelter |
1126 |
}else { |
415 |
|
|
i->second.prev.angle = i->second.curr.angle; |
416 |
|
|
i->second.prev.potential = i->second.curr.potential; |
417 |
|
|
i->second.curr.angle = angle; |
418 |
|
|
i->second.curr.potential = currBendPot; |
419 |
|
|
i->second.deltaV = fabs(i->second.curr.potential - |
420 |
|
|
i->second.prev.potential); |
421 |
|
|
} |
422 |
gezelter |
507 |
} |
423 |
gezelter |
1126 |
|
424 |
|
|
for (torsion = mol->beginTorsion(torsionIter); torsion != NULL; |
425 |
|
|
torsion = mol->nextTorsion(torsionIter)) { |
426 |
tim |
963 |
RealType angle; |
427 |
gezelter |
1126 |
torsion->calcForce(angle); |
428 |
tim |
963 |
RealType currTorsionPot = torsion->getPotential(); |
429 |
gezelter |
1126 |
torsionPotential += torsion->getPotential(); |
430 |
gezelter |
1545 |
map<Torsion*, TorsionDataSet>::iterator i = torsionDataSets.find(torsion); |
431 |
gezelter |
1126 |
if (i == torsionDataSets.end()) { |
432 |
|
|
TorsionDataSet dataSet; |
433 |
|
|
dataSet.prev.angle = dataSet.curr.angle = angle; |
434 |
|
|
dataSet.prev.potential = dataSet.curr.potential = currTorsionPot; |
435 |
|
|
dataSet.deltaV = 0.0; |
436 |
gezelter |
1545 |
torsionDataSets.insert(map<Torsion*, TorsionDataSet>::value_type(torsion, dataSet)); |
437 |
gezelter |
1126 |
}else { |
438 |
|
|
i->second.prev.angle = i->second.curr.angle; |
439 |
|
|
i->second.prev.potential = i->second.curr.potential; |
440 |
|
|
i->second.curr.angle = angle; |
441 |
|
|
i->second.curr.potential = currTorsionPot; |
442 |
|
|
i->second.deltaV = fabs(i->second.curr.potential - |
443 |
|
|
i->second.prev.potential); |
444 |
|
|
} |
445 |
|
|
} |
446 |
gezelter |
1545 |
|
447 |
cli2 |
1275 |
for (inversion = mol->beginInversion(inversionIter); |
448 |
|
|
inversion != NULL; |
449 |
|
|
inversion = mol->nextInversion(inversionIter)) { |
450 |
|
|
RealType angle; |
451 |
|
|
inversion->calcForce(angle); |
452 |
|
|
RealType currInversionPot = inversion->getPotential(); |
453 |
|
|
inversionPotential += inversion->getPotential(); |
454 |
gezelter |
1545 |
map<Inversion*, InversionDataSet>::iterator i = inversionDataSets.find(inversion); |
455 |
cli2 |
1275 |
if (i == inversionDataSets.end()) { |
456 |
|
|
InversionDataSet dataSet; |
457 |
|
|
dataSet.prev.angle = dataSet.curr.angle = angle; |
458 |
|
|
dataSet.prev.potential = dataSet.curr.potential = currInversionPot; |
459 |
|
|
dataSet.deltaV = 0.0; |
460 |
gezelter |
1545 |
inversionDataSets.insert(map<Inversion*, InversionDataSet>::value_type(inversion, dataSet)); |
461 |
cli2 |
1275 |
}else { |
462 |
|
|
i->second.prev.angle = i->second.curr.angle; |
463 |
|
|
i->second.prev.potential = i->second.curr.potential; |
464 |
|
|
i->second.curr.angle = angle; |
465 |
|
|
i->second.curr.potential = currInversionPot; |
466 |
|
|
i->second.deltaV = fabs(i->second.curr.potential - |
467 |
|
|
i->second.prev.potential); |
468 |
|
|
} |
469 |
|
|
} |
470 |
gezelter |
246 |
} |
471 |
|
|
|
472 |
gezelter |
1126 |
RealType shortRangePotential = bondPotential + bendPotential + |
473 |
cli2 |
1275 |
torsionPotential + inversionPotential; |
474 |
gezelter |
246 |
Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); |
475 |
|
|
curSnapshot->statData[Stats::SHORT_RANGE_POTENTIAL] = shortRangePotential; |
476 |
tim |
665 |
curSnapshot->statData[Stats::BOND_POTENTIAL] = bondPotential; |
477 |
|
|
curSnapshot->statData[Stats::BEND_POTENTIAL] = bendPotential; |
478 |
|
|
curSnapshot->statData[Stats::DIHEDRAL_POTENTIAL] = torsionPotential; |
479 |
gezelter |
1545 |
curSnapshot->statData[Stats::INVERSION_POTENTIAL] = inversionPotential; |
480 |
gezelter |
507 |
} |
481 |
gezelter |
1126 |
|
482 |
gezelter |
1546 |
void ForceManager::longRangeInteractions() { |
483 |
gezelter |
1581 |
|
484 |
gezelter |
1545 |
Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); |
485 |
|
|
DataStorage* config = &(curSnapshot->atomData); |
486 |
|
|
DataStorage* cgConfig = &(curSnapshot->cgData); |
487 |
|
|
|
488 |
gezelter |
1581 |
//calculate the center of mass of cutoff group |
489 |
|
|
|
490 |
|
|
SimInfo::MoleculeIterator mi; |
491 |
|
|
Molecule* mol; |
492 |
|
|
Molecule::CutoffGroupIterator ci; |
493 |
|
|
CutoffGroup* cg; |
494 |
|
|
|
495 |
|
|
if(info_->getNCutoffGroups() > 0){ |
496 |
|
|
for (mol = info_->beginMolecule(mi); mol != NULL; |
497 |
|
|
mol = info_->nextMolecule(mi)) { |
498 |
|
|
for(cg = mol->beginCutoffGroup(ci); cg != NULL; |
499 |
|
|
cg = mol->nextCutoffGroup(ci)) { |
500 |
|
|
cg->updateCOM(); |
501 |
|
|
} |
502 |
|
|
} |
503 |
|
|
} else { |
504 |
|
|
// center of mass of the group is the same as position of the atom |
505 |
|
|
// if cutoff group does not exist |
506 |
|
|
cgConfig->position = config->position; |
507 |
|
|
} |
508 |
|
|
|
509 |
gezelter |
1575 |
fDecomp_->zeroWorkArrays(); |
510 |
gezelter |
1549 |
fDecomp_->distributeData(); |
511 |
gezelter |
1579 |
|
512 |
|
|
int cg1, cg2, atom1, atom2, topoDist; |
513 |
|
|
Vector3d d_grp, dag, d; |
514 |
|
|
RealType rgrpsq, rgrp, r2, r; |
515 |
|
|
RealType electroMult, vdwMult; |
516 |
gezelter |
1549 |
RealType vij; |
517 |
gezelter |
1581 |
Vector3d fij, fg, f1; |
518 |
gezelter |
1576 |
tuple3<RealType, RealType, RealType> cuts; |
519 |
gezelter |
1545 |
RealType rCutSq; |
520 |
|
|
bool in_switching_region; |
521 |
|
|
RealType sw, dswdr, swderiv; |
522 |
gezelter |
1549 |
vector<int> atomListColumn, atomListRow, atomListLocal; |
523 |
gezelter |
1545 |
InteractionData idat; |
524 |
gezelter |
1546 |
SelfData sdat; |
525 |
|
|
RealType mf; |
526 |
gezelter |
1575 |
RealType lrPot; |
527 |
gezelter |
1579 |
RealType vpair; |
528 |
gezelter |
1583 |
potVec longRangePotential(0.0); |
529 |
|
|
potVec workPot(0.0); |
530 |
gezelter |
1544 |
|
531 |
gezelter |
1545 |
int loopStart, loopEnd; |
532 |
gezelter |
1544 |
|
533 |
gezelter |
1581 |
idat.vdwMult = &vdwMult; |
534 |
|
|
idat.electroMult = &electroMult; |
535 |
gezelter |
1583 |
idat.pot = &workPot; |
536 |
|
|
sdat.pot = fDecomp_->getEmbeddingPotential(); |
537 |
gezelter |
1581 |
idat.vpair = &vpair; |
538 |
|
|
idat.f1 = &f1; |
539 |
|
|
idat.sw = &sw; |
540 |
gezelter |
1583 |
idat.shiftedPot = (cutoffMethod_ == SHIFTED_POTENTIAL) ? true : false; |
541 |
|
|
idat.shiftedForce = (cutoffMethod_ == SHIFTED_FORCE) ? true : false; |
542 |
|
|
|
543 |
gezelter |
1545 |
loopEnd = PAIR_LOOP; |
544 |
gezelter |
1546 |
if (info_->requiresPrepair() ) { |
545 |
gezelter |
1545 |
loopStart = PREPAIR_LOOP; |
546 |
|
|
} else { |
547 |
|
|
loopStart = PAIR_LOOP; |
548 |
|
|
} |
549 |
gezelter |
1583 |
|
550 |
gezelter |
1579 |
for (int iLoop = loopStart; iLoop <= loopEnd; iLoop++) { |
551 |
|
|
|
552 |
gezelter |
1545 |
if (iLoop == loopStart) { |
553 |
gezelter |
1549 |
bool update_nlist = fDecomp_->checkNeighborList(); |
554 |
gezelter |
1545 |
if (update_nlist) |
555 |
gezelter |
1549 |
neighborList = fDecomp_->buildNeighborList(); |
556 |
gezelter |
1579 |
} |
557 |
|
|
|
558 |
gezelter |
1545 |
for (vector<pair<int, int> >::iterator it = neighborList.begin(); |
559 |
|
|
it != neighborList.end(); ++it) { |
560 |
gezelter |
1579 |
|
561 |
gezelter |
1545 |
cg1 = (*it).first; |
562 |
|
|
cg2 = (*it).second; |
563 |
gezelter |
1576 |
|
564 |
|
|
cuts = fDecomp_->getGroupCutoffs(cg1, cg2); |
565 |
gezelter |
1545 |
|
566 |
gezelter |
1549 |
d_grp = fDecomp_->getIntergroupVector(cg1, cg2); |
567 |
gezelter |
1545 |
curSnapshot->wrapVector(d_grp); |
568 |
|
|
rgrpsq = d_grp.lengthSquare(); |
569 |
|
|
|
570 |
gezelter |
1576 |
rCutSq = cuts.second; |
571 |
|
|
|
572 |
gezelter |
1545 |
if (rgrpsq < rCutSq) { |
573 |
gezelter |
1579 |
idat.rcut = &cuts.first; |
574 |
gezelter |
1545 |
if (iLoop == PAIR_LOOP) { |
575 |
gezelter |
1546 |
vij *= 0.0; |
576 |
gezelter |
1545 |
fij = V3Zero; |
577 |
|
|
} |
578 |
|
|
|
579 |
gezelter |
1579 |
in_switching_region = switcher_->getSwitch(rgrpsq, sw, dswdr, |
580 |
gezelter |
1576 |
rgrp); |
581 |
|
|
|
582 |
gezelter |
1549 |
atomListRow = fDecomp_->getAtomsInGroupRow(cg1); |
583 |
|
|
atomListColumn = fDecomp_->getAtomsInGroupColumn(cg2); |
584 |
gezelter |
1545 |
|
585 |
gezelter |
1549 |
for (vector<int>::iterator ia = atomListRow.begin(); |
586 |
|
|
ia != atomListRow.end(); ++ia) { |
587 |
gezelter |
1545 |
atom1 = (*ia); |
588 |
|
|
|
589 |
gezelter |
1549 |
for (vector<int>::iterator jb = atomListColumn.begin(); |
590 |
|
|
jb != atomListColumn.end(); ++jb) { |
591 |
gezelter |
1545 |
atom2 = (*jb); |
592 |
gezelter |
1583 |
|
593 |
gezelter |
1549 |
if (!fDecomp_->skipAtomPair(atom1, atom2)) { |
594 |
gezelter |
1579 |
vpair = 0.0; |
595 |
gezelter |
1583 |
workPot = 0.0; |
596 |
gezelter |
1581 |
f1 = V3Zero; |
597 |
gezelter |
1575 |
|
598 |
gezelter |
1581 |
fDecomp_->fillInteractionData(idat, atom1, atom2); |
599 |
gezelter |
1579 |
|
600 |
|
|
topoDist = fDecomp_->getTopologicalDistance(atom1, atom2); |
601 |
|
|
vdwMult = vdwScale_[topoDist]; |
602 |
|
|
electroMult = electrostaticScale_[topoDist]; |
603 |
gezelter |
1546 |
|
604 |
gezelter |
1549 |
if (atomListRow.size() == 1 && atomListColumn.size() == 1) { |
605 |
gezelter |
1579 |
idat.d = &d_grp; |
606 |
|
|
idat.r2 = &rgrpsq; |
607 |
gezelter |
1545 |
} else { |
608 |
gezelter |
1579 |
d = fDecomp_->getInteratomicVector(atom1, atom2); |
609 |
|
|
curSnapshot->wrapVector( d ); |
610 |
|
|
r2 = d.lengthSquare(); |
611 |
|
|
idat.d = &d; |
612 |
|
|
idat.r2 = &r2; |
613 |
gezelter |
1545 |
} |
614 |
|
|
|
615 |
gezelter |
1581 |
r = sqrt( *(idat.r2) ); |
616 |
gezelter |
1579 |
idat.rij = &r; |
617 |
gezelter |
1546 |
|
618 |
gezelter |
1545 |
if (iLoop == PREPAIR_LOOP) { |
619 |
|
|
interactionMan_->doPrePair(idat); |
620 |
|
|
} else { |
621 |
|
|
interactionMan_->doPair(idat); |
622 |
gezelter |
1575 |
fDecomp_->unpackInteractionData(idat, atom1, atom2); |
623 |
gezelter |
1581 |
vij += vpair; |
624 |
|
|
fij += f1; |
625 |
|
|
tau -= outProduct( *(idat.d), f1); |
626 |
gezelter |
1545 |
} |
627 |
|
|
} |
628 |
|
|
} |
629 |
|
|
} |
630 |
|
|
|
631 |
|
|
if (iLoop == PAIR_LOOP) { |
632 |
|
|
if (in_switching_region) { |
633 |
|
|
swderiv = vij * dswdr / rgrp; |
634 |
|
|
fg = swderiv * d_grp; |
635 |
|
|
|
636 |
|
|
fij += fg; |
637 |
|
|
|
638 |
gezelter |
1549 |
if (atomListRow.size() == 1 && atomListColumn.size() == 1) { |
639 |
gezelter |
1554 |
tau -= outProduct( *(idat.d), fg); |
640 |
gezelter |
1545 |
} |
641 |
|
|
|
642 |
gezelter |
1549 |
for (vector<int>::iterator ia = atomListRow.begin(); |
643 |
|
|
ia != atomListRow.end(); ++ia) { |
644 |
gezelter |
1545 |
atom1 = (*ia); |
645 |
gezelter |
1569 |
mf = fDecomp_->getMassFactorRow(atom1); |
646 |
gezelter |
1545 |
// fg is the force on atom ia due to cutoff group's |
647 |
|
|
// presence in switching region |
648 |
|
|
fg = swderiv * d_grp * mf; |
649 |
gezelter |
1549 |
fDecomp_->addForceToAtomRow(atom1, fg); |
650 |
gezelter |
1545 |
|
651 |
gezelter |
1549 |
if (atomListRow.size() > 1) { |
652 |
gezelter |
1546 |
if (info_->usesAtomicVirial()) { |
653 |
gezelter |
1545 |
// find the distance between the atom |
654 |
|
|
// and the center of the cutoff group: |
655 |
gezelter |
1549 |
dag = fDecomp_->getAtomToGroupVectorRow(atom1, cg1); |
656 |
gezelter |
1545 |
tau -= outProduct(dag, fg); |
657 |
|
|
} |
658 |
|
|
} |
659 |
|
|
} |
660 |
gezelter |
1549 |
for (vector<int>::iterator jb = atomListColumn.begin(); |
661 |
|
|
jb != atomListColumn.end(); ++jb) { |
662 |
gezelter |
1545 |
atom2 = (*jb); |
663 |
gezelter |
1569 |
mf = fDecomp_->getMassFactorColumn(atom2); |
664 |
gezelter |
1545 |
// fg is the force on atom jb due to cutoff group's |
665 |
|
|
// presence in switching region |
666 |
|
|
fg = -swderiv * d_grp * mf; |
667 |
gezelter |
1549 |
fDecomp_->addForceToAtomColumn(atom2, fg); |
668 |
gezelter |
1545 |
|
669 |
gezelter |
1549 |
if (atomListColumn.size() > 1) { |
670 |
gezelter |
1546 |
if (info_->usesAtomicVirial()) { |
671 |
gezelter |
1545 |
// find the distance between the atom |
672 |
|
|
// and the center of the cutoff group: |
673 |
gezelter |
1549 |
dag = fDecomp_->getAtomToGroupVectorColumn(atom2, cg2); |
674 |
gezelter |
1545 |
tau -= outProduct(dag, fg); |
675 |
|
|
} |
676 |
|
|
} |
677 |
|
|
} |
678 |
|
|
} |
679 |
|
|
//if (!SIM_uses_AtomicVirial) { |
680 |
|
|
// tau -= outProduct(d_grp, fij); |
681 |
|
|
//} |
682 |
|
|
} |
683 |
|
|
} |
684 |
|
|
} |
685 |
|
|
|
686 |
|
|
if (iLoop == PREPAIR_LOOP) { |
687 |
gezelter |
1546 |
if (info_->requiresPrepair()) { |
688 |
gezelter |
1549 |
fDecomp_->collectIntermediateData(); |
689 |
gezelter |
1570 |
|
690 |
|
|
for (int atom1 = 0; atom1 < info_->getNAtoms(); atom1++) { |
691 |
gezelter |
1581 |
fDecomp_->fillSelfData(sdat, atom1); |
692 |
gezelter |
1545 |
interactionMan_->doPreForce(sdat); |
693 |
|
|
} |
694 |
gezelter |
1583 |
|
695 |
|
|
|
696 |
gezelter |
1549 |
fDecomp_->distributeIntermediateData(); |
697 |
gezelter |
1545 |
} |
698 |
|
|
} |
699 |
|
|
|
700 |
gezelter |
1544 |
} |
701 |
gezelter |
1545 |
|
702 |
gezelter |
1549 |
fDecomp_->collectData(); |
703 |
gezelter |
1545 |
|
704 |
gezelter |
1570 |
if ( info_->requiresSkipCorrection() ) { |
705 |
|
|
|
706 |
|
|
for (int atom1 = 0; atom1 < fDecomp_->getNAtomsInRow(); atom1++) { |
707 |
gezelter |
1544 |
|
708 |
gezelter |
1579 |
vector<int> skipList = fDecomp_->getSkipsForAtom( atom1 ); |
709 |
gezelter |
1570 |
|
710 |
|
|
for (vector<int>::iterator jb = skipList.begin(); |
711 |
|
|
jb != skipList.end(); ++jb) { |
712 |
|
|
|
713 |
|
|
atom2 = (*jb); |
714 |
gezelter |
1581 |
fDecomp_->fillSkipData(idat, atom1, atom2); |
715 |
gezelter |
1570 |
interactionMan_->doSkipCorrection(idat); |
716 |
gezelter |
1583 |
fDecomp_->unpackSkipData(idat, atom1, atom2); |
717 |
gezelter |
1570 |
|
718 |
gezelter |
1545 |
} |
719 |
|
|
} |
720 |
gezelter |
246 |
} |
721 |
gezelter |
1570 |
|
722 |
|
|
if (info_->requiresSelfCorrection()) { |
723 |
gezelter |
1545 |
|
724 |
gezelter |
1570 |
for (int atom1 = 0; atom1 < info_->getNAtoms(); atom1++) { |
725 |
gezelter |
1581 |
fDecomp_->fillSelfData(sdat, atom1); |
726 |
gezelter |
1570 |
interactionMan_->doSelfCorrection(sdat); |
727 |
|
|
} |
728 |
|
|
|
729 |
|
|
} |
730 |
|
|
|
731 |
gezelter |
1583 |
longRangePotential = *(fDecomp_->getEmbeddingPotential()) + |
732 |
|
|
*(fDecomp_->getPairwisePotential()); |
733 |
|
|
|
734 |
gezelter |
1575 |
lrPot = longRangePotential.sum(); |
735 |
|
|
|
736 |
gezelter |
246 |
//store the tau and long range potential |
737 |
chuckv |
664 |
curSnapshot->statData[Stats::LONG_RANGE_POTENTIAL] = lrPot; |
738 |
gezelter |
1550 |
curSnapshot->statData[Stats::VANDERWAALS_POTENTIAL] = longRangePotential[VANDERWAALS_FAMILY]; |
739 |
|
|
curSnapshot->statData[Stats::ELECTROSTATIC_POTENTIAL] = longRangePotential[ELECTROSTATIC_FAMILY]; |
740 |
gezelter |
507 |
} |
741 |
gezelter |
246 |
|
742 |
gezelter |
1126 |
|
743 |
gezelter |
1464 |
void ForceManager::postCalculation() { |
744 |
gezelter |
246 |
SimInfo::MoleculeIterator mi; |
745 |
|
|
Molecule* mol; |
746 |
|
|
Molecule::RigidBodyIterator rbIter; |
747 |
|
|
RigidBody* rb; |
748 |
gezelter |
1126 |
Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); |
749 |
gezelter |
246 |
|
750 |
|
|
// collect the atomic forces onto rigid bodies |
751 |
gezelter |
1126 |
|
752 |
|
|
for (mol = info_->beginMolecule(mi); mol != NULL; |
753 |
|
|
mol = info_->nextMolecule(mi)) { |
754 |
|
|
for (rb = mol->beginRigidBody(rbIter); rb != NULL; |
755 |
|
|
rb = mol->nextRigidBody(rbIter)) { |
756 |
gezelter |
1464 |
Mat3x3d rbTau = rb->calcForcesAndTorquesAndVirial(); |
757 |
|
|
tau += rbTau; |
758 |
gezelter |
507 |
} |
759 |
gezelter |
1126 |
} |
760 |
gezelter |
1464 |
|
761 |
gezelter |
1126 |
#ifdef IS_MPI |
762 |
gezelter |
1464 |
Mat3x3d tmpTau(tau); |
763 |
|
|
MPI_Allreduce(tmpTau.getArrayPointer(), tau.getArrayPointer(), |
764 |
|
|
9, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD); |
765 |
gezelter |
1126 |
#endif |
766 |
gezelter |
1464 |
curSnapshot->statData.setTau(tau); |
767 |
gezelter |
507 |
} |
768 |
gezelter |
246 |
|
769 |
gezelter |
1390 |
} //end namespace OpenMD |