ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/brains/ForceManager.cpp
Revision: 1577
Committed: Wed Jun 8 20:26:56 2011 UTC (13 years, 10 months ago) by gezelter
File size: 26629 byte(s)
Log Message:
bug fixes

File Contents

# User Rev Content
1 gezelter 507 /*
2 gezelter 246 * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3     *
4     * The University of Notre Dame grants you ("Licensee") a
5     * non-exclusive, royalty free, license to use, modify and
6     * redistribute this software in source and binary code form, provided
7     * that the following conditions are met:
8     *
9 gezelter 1390 * 1. Redistributions of source code must retain the above copyright
10 gezelter 246 * notice, this list of conditions and the following disclaimer.
11     *
12 gezelter 1390 * 2. Redistributions in binary form must reproduce the above copyright
13 gezelter 246 * notice, this list of conditions and the following disclaimer in the
14     * documentation and/or other materials provided with the
15     * distribution.
16     *
17     * This software is provided "AS IS," without a warranty of any
18     * kind. All express or implied conditions, representations and
19     * warranties, including any implied warranty of merchantability,
20     * fitness for a particular purpose or non-infringement, are hereby
21     * excluded. The University of Notre Dame and its licensors shall not
22     * be liable for any damages suffered by licensee as a result of
23     * using, modifying or distributing the software or its
24     * derivatives. In no event will the University of Notre Dame or its
25     * licensors be liable for any lost revenue, profit or data, or for
26     * direct, indirect, special, consequential, incidental or punitive
27     * damages, however caused and regardless of the theory of liability,
28     * arising out of the use of or inability to use software, even if the
29     * University of Notre Dame has been advised of the possibility of
30     * such damages.
31 gezelter 1390 *
32     * SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your
33     * research, please cite the appropriate papers when you publish your
34     * work. Good starting points are:
35     *
36     * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).
37     * [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).
38     * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).
39     * [4] Vardeman & Gezelter, in progress (2009).
40 gezelter 246 */
41    
42 gezelter 507 /**
43     * @file ForceManager.cpp
44     * @author tlin
45     * @date 11/09/2004
46     * @time 10:39am
47     * @version 1.0
48     */
49 gezelter 246
50 gezelter 1576
51 gezelter 246 #include "brains/ForceManager.hpp"
52     #include "primitives/Molecule.hpp"
53 gezelter 1390 #define __OPENMD_C
54 gezelter 246 #include "utils/simError.h"
55 xsun 1215 #include "primitives/Bond.hpp"
56 tim 749 #include "primitives/Bend.hpp"
57 cli2 1275 #include "primitives/Torsion.hpp"
58     #include "primitives/Inversion.hpp"
59 gezelter 1551 #include "nonbonded/NonBondedInteraction.hpp"
60 gezelter 1549 #include "parallel/ForceMatrixDecomposition.hpp"
61 gezelter 1467
62 gezelter 1545 using namespace std;
63 gezelter 1390 namespace OpenMD {
64 gezelter 1469
65 gezelter 1545 ForceManager::ForceManager(SimInfo * info) : info_(info) {
66 gezelter 1576 forceField_ = info_->getForceField();
67 gezelter 1549 fDecomp_ = new ForceMatrixDecomposition(info_);
68 gezelter 1577 interactionMan_ = new InteractionManager();
69 gezelter 1469 }
70 gezelter 1576
71     /**
72     * setupCutoffs
73     *
74     * Sets the values of cutoffRadius, cutoffMethod, and cutoffPolicy
75     *
76     * cutoffRadius : realType
77     * If the cutoffRadius was explicitly set, use that value.
78     * If the cutoffRadius was not explicitly set:
79     * Are there electrostatic atoms? Use 12.0 Angstroms.
80     * No electrostatic atoms? Poll the atom types present in the
81     * simulation for suggested cutoff values (e.g. 2.5 * sigma).
82     * Use the maximum suggested value that was found.
83     *
84     * cutoffMethod : (one of HARD, SWITCHED, SHIFTED_FORCE, SHIFTED_POTENTIAL)
85     * If cutoffMethod was explicitly set, use that choice.
86     * If cutoffMethod was not explicitly set, use SHIFTED_FORCE
87     *
88     * cutoffPolicy : (one of MIX, MAX, TRADITIONAL)
89     * If cutoffPolicy was explicitly set, use that choice.
90     * If cutoffPolicy was not explicitly set, use TRADITIONAL
91     */
92     void ForceManager::setupCutoffs() {
93    
94     Globals* simParams_ = info_->getSimParams();
95     ForceFieldOptions& forceFieldOptions_ = forceField_->getForceFieldOptions();
96    
97     if (simParams_->haveCutoffRadius()) {
98     rCut_ = simParams_->getCutoffRadius();
99     } else {
100     if (info_->usesElectrostaticAtoms()) {
101     sprintf(painCave.errMsg,
102     "ForceManager::setupCutoffs: No value was set for the cutoffRadius.\n"
103     "\tOpenMD will use a default value of 12.0 angstroms"
104     "\tfor the cutoffRadius.\n");
105     painCave.isFatal = 0;
106     painCave.severity = OPENMD_INFO;
107     simError();
108     rCut_ = 12.0;
109     } else {
110     RealType thisCut;
111     set<AtomType*>::iterator i;
112     set<AtomType*> atomTypes;
113     atomTypes = info_->getSimulatedAtomTypes();
114     for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
115     thisCut = interactionMan_->getSuggestedCutoffRadius((*i));
116     rCut_ = max(thisCut, rCut_);
117     }
118     sprintf(painCave.errMsg,
119     "ForceManager::setupCutoffs: No value was set for the cutoffRadius.\n"
120     "\tOpenMD will use %lf angstroms.\n",
121     rCut_);
122     painCave.isFatal = 0;
123     painCave.severity = OPENMD_INFO;
124     simError();
125     }
126     }
127    
128     map<string, CutoffMethod> stringToCutoffMethod;
129     stringToCutoffMethod["HARD"] = HARD;
130     stringToCutoffMethod["SWITCHED"] = SWITCHED;
131     stringToCutoffMethod["SHIFTED_POTENTIAL"] = SHIFTED_POTENTIAL;
132     stringToCutoffMethod["SHIFTED_FORCE"] = SHIFTED_FORCE;
133 gezelter 1545
134 gezelter 1576 if (simParams_->haveCutoffMethod()) {
135     string cutMeth = toUpperCopy(simParams_->getCutoffMethod());
136     map<string, CutoffMethod>::iterator i;
137     i = stringToCutoffMethod.find(cutMeth);
138     if (i == stringToCutoffMethod.end()) {
139     sprintf(painCave.errMsg,
140     "ForceManager::setupCutoffs: Could not find chosen cutoffMethod %s\n"
141     "\tShould be one of: "
142     "HARD, SWITCHED, SHIFTED_POTENTIAL, or SHIFTED_FORCE\n",
143     cutMeth.c_str());
144     painCave.isFatal = 1;
145     painCave.severity = OPENMD_ERROR;
146     simError();
147     } else {
148     cutoffMethod_ = i->second;
149     }
150     } else {
151     sprintf(painCave.errMsg,
152     "ForceManager::setupCutoffs: No value was set for the cutoffMethod.\n"
153     "\tOpenMD will use SHIFTED_FORCE.\n");
154     painCave.isFatal = 0;
155     painCave.severity = OPENMD_INFO;
156     simError();
157     cutoffMethod_ = SHIFTED_FORCE;
158     }
159    
160     map<string, CutoffPolicy> stringToCutoffPolicy;
161     stringToCutoffPolicy["MIX"] = MIX;
162     stringToCutoffPolicy["MAX"] = MAX;
163     stringToCutoffPolicy["TRADITIONAL"] = TRADITIONAL;
164    
165     std::string cutPolicy;
166     if (forceFieldOptions_.haveCutoffPolicy()){
167     cutPolicy = forceFieldOptions_.getCutoffPolicy();
168     }else if (simParams_->haveCutoffPolicy()) {
169     cutPolicy = simParams_->getCutoffPolicy();
170     }
171    
172     if (!cutPolicy.empty()){
173     toUpper(cutPolicy);
174     map<string, CutoffPolicy>::iterator i;
175     i = stringToCutoffPolicy.find(cutPolicy);
176    
177     if (i == stringToCutoffPolicy.end()) {
178     sprintf(painCave.errMsg,
179     "ForceManager::setupCutoffs: Could not find chosen cutoffPolicy %s\n"
180     "\tShould be one of: "
181     "MIX, MAX, or TRADITIONAL\n",
182     cutPolicy.c_str());
183     painCave.isFatal = 1;
184     painCave.severity = OPENMD_ERROR;
185     simError();
186     } else {
187     cutoffPolicy_ = i->second;
188     }
189     } else {
190     sprintf(painCave.errMsg,
191     "ForceManager::setupCutoffs: No value was set for the cutoffPolicy.\n"
192     "\tOpenMD will use TRADITIONAL.\n");
193     painCave.isFatal = 0;
194     painCave.severity = OPENMD_INFO;
195     simError();
196     cutoffPolicy_ = TRADITIONAL;
197     }
198     }
199    
200     /**
201     * setupSwitching
202     *
203     * Sets the values of switchingRadius and
204     * If the switchingRadius was explicitly set, use that value (but check it)
205     * If the switchingRadius was not explicitly set: use 0.85 * cutoffRadius_
206     */
207     void ForceManager::setupSwitching() {
208     Globals* simParams_ = info_->getSimParams();
209 gezelter 1577
210     // create the switching function object:
211     switcher_ = new SwitchingFunction();
212 gezelter 1126
213 gezelter 1576 if (simParams_->haveSwitchingRadius()) {
214     rSwitch_ = simParams_->getSwitchingRadius();
215     if (rSwitch_ > rCut_) {
216     sprintf(painCave.errMsg,
217 gezelter 1577 "ForceManager::setupSwitching: switchingRadius (%f) is larger "
218     "than the cutoffRadius(%f)\n", rSwitch_, rCut_);
219 gezelter 1576 painCave.isFatal = 1;
220     painCave.severity = OPENMD_ERROR;
221     simError();
222     }
223     } else {
224     rSwitch_ = 0.85 * rCut_;
225     sprintf(painCave.errMsg,
226     "ForceManager::setupSwitching: No value was set for the switchingRadius.\n"
227     "\tOpenMD will use a default value of 85 percent of the cutoffRadius.\n"
228     "\tswitchingRadius = %f. for this simulation\n", rSwitch_);
229     painCave.isFatal = 0;
230     painCave.severity = OPENMD_WARNING;
231     simError();
232     }
233    
234 gezelter 1577 // Default to cubic switching function.
235     sft_ = cubic;
236 gezelter 1576 if (simParams_->haveSwitchingFunctionType()) {
237     string funcType = simParams_->getSwitchingFunctionType();
238     toUpper(funcType);
239     if (funcType == "CUBIC") {
240     sft_ = cubic;
241     } else {
242     if (funcType == "FIFTH_ORDER_POLYNOMIAL") {
243     sft_ = fifth_order_poly;
244     } else {
245     // throw error
246     sprintf( painCave.errMsg,
247     "ForceManager::setupSwitching : Unknown switchingFunctionType. (Input file specified %s .)\n"
248     "\tswitchingFunctionType must be one of: "
249     "\"cubic\" or \"fifth_order_polynomial\".",
250     funcType.c_str() );
251     painCave.isFatal = 1;
252     painCave.severity = OPENMD_ERROR;
253     simError();
254     }
255     }
256     }
257     switcher_->setSwitchType(sft_);
258     switcher_->setSwitch(rSwitch_, rCut_);
259     }
260    
261     void ForceManager::initialize() {
262    
263 gezelter 1569 if (!info_->isTopologyDone()) {
264 gezelter 507 info_->update();
265 gezelter 1546 interactionMan_->setSimInfo(info_);
266     interactionMan_->initialize();
267 gezelter 1576
268     // We want to delay the cutoffs until after the interaction
269     // manager has set up the atom-atom interactions so that we can
270     // query them for suggested cutoff values
271    
272     setupCutoffs();
273     setupSwitching();
274    
275     info_->prepareTopology();
276 gezelter 246 }
277 gezelter 1576
278     ForceFieldOptions& fopts = forceField_->getForceFieldOptions();
279 gezelter 1126
280 gezelter 1576 // Force fields can set options on how to scale van der Waals and electrostatic
281     // interactions for atoms connected via bonds, bends and torsions
282     // in this case the topological distance between atoms is:
283     // 0 = topologically unconnected
284     // 1 = bonded together
285     // 2 = connected via a bend
286     // 3 = connected via a torsion
287    
288     vdwScale_.reserve(4);
289     fill(vdwScale_.begin(), vdwScale_.end(), 0.0);
290    
291     electrostaticScale_.reserve(4);
292     fill(electrostaticScale_.begin(), electrostaticScale_.end(), 0.0);
293    
294     vdwScale_[0] = 1.0;
295     vdwScale_[1] = fopts.getvdw12scale();
296     vdwScale_[2] = fopts.getvdw13scale();
297     vdwScale_[3] = fopts.getvdw14scale();
298    
299     electrostaticScale_[0] = 1.0;
300     electrostaticScale_[1] = fopts.getelectrostatic12scale();
301     electrostaticScale_[2] = fopts.getelectrostatic13scale();
302     electrostaticScale_[3] = fopts.getelectrostatic14scale();
303    
304     fDecomp_->distributeInitialData();
305    
306     initialized_ = true;
307    
308     }
309    
310     void ForceManager::calcForces() {
311    
312     if (!initialized_) initialize();
313    
314 gezelter 1544 preCalculation();
315 gezelter 1546 shortRangeInteractions();
316     longRangeInteractions();
317 gezelter 1576 postCalculation();
318 gezelter 507 }
319 gezelter 1126
320 gezelter 507 void ForceManager::preCalculation() {
321 gezelter 246 SimInfo::MoleculeIterator mi;
322     Molecule* mol;
323     Molecule::AtomIterator ai;
324     Atom* atom;
325     Molecule::RigidBodyIterator rbIter;
326     RigidBody* rb;
327 gezelter 1540 Molecule::CutoffGroupIterator ci;
328     CutoffGroup* cg;
329 gezelter 246
330     // forces are zeroed here, before any are accumulated.
331 chuckv 1245
332 gezelter 1126 for (mol = info_->beginMolecule(mi); mol != NULL;
333     mol = info_->nextMolecule(mi)) {
334 gezelter 507 for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
335     atom->zeroForcesAndTorques();
336     }
337 chuckv 1245
338 gezelter 507 //change the positions of atoms which belong to the rigidbodies
339 gezelter 1126 for (rb = mol->beginRigidBody(rbIter); rb != NULL;
340     rb = mol->nextRigidBody(rbIter)) {
341 gezelter 507 rb->zeroForcesAndTorques();
342     }
343 gezelter 1540
344     if(info_->getNGlobalCutoffGroups() != info_->getNGlobalAtoms()){
345     for(cg = mol->beginCutoffGroup(ci); cg != NULL;
346     cg = mol->nextCutoffGroup(ci)) {
347     //calculate the center of mass of cutoff group
348     cg->updateCOM();
349     }
350     }
351 gezelter 246 }
352 gezelter 1540
353 gezelter 1126 // Zero out the stress tensor
354     tau *= 0.0;
355    
356 gezelter 507 }
357 gezelter 1126
358 gezelter 1546 void ForceManager::shortRangeInteractions() {
359 gezelter 246 Molecule* mol;
360     RigidBody* rb;
361     Bond* bond;
362     Bend* bend;
363     Torsion* torsion;
364 cli2 1275 Inversion* inversion;
365 gezelter 246 SimInfo::MoleculeIterator mi;
366     Molecule::RigidBodyIterator rbIter;
367     Molecule::BondIterator bondIter;;
368     Molecule::BendIterator bendIter;
369     Molecule::TorsionIterator torsionIter;
370 cli2 1275 Molecule::InversionIterator inversionIter;
371 tim 963 RealType bondPotential = 0.0;
372     RealType bendPotential = 0.0;
373     RealType torsionPotential = 0.0;
374 cli2 1275 RealType inversionPotential = 0.0;
375 gezelter 246
376     //calculate short range interactions
377 gezelter 1126 for (mol = info_->beginMolecule(mi); mol != NULL;
378     mol = info_->nextMolecule(mi)) {
379 gezelter 246
380 gezelter 507 //change the positions of atoms which belong to the rigidbodies
381 gezelter 1126 for (rb = mol->beginRigidBody(rbIter); rb != NULL;
382     rb = mol->nextRigidBody(rbIter)) {
383     rb->updateAtoms();
384 gezelter 507 }
385 gezelter 246
386 gezelter 1126 for (bond = mol->beginBond(bondIter); bond != NULL;
387     bond = mol->nextBond(bondIter)) {
388 tim 749 bond->calcForce();
389     bondPotential += bond->getPotential();
390 gezelter 507 }
391 gezelter 246
392 gezelter 1126 for (bend = mol->beginBend(bendIter); bend != NULL;
393     bend = mol->nextBend(bendIter)) {
394    
395     RealType angle;
396     bend->calcForce(angle);
397     RealType currBendPot = bend->getPotential();
398 gezelter 1448
399 gezelter 1126 bendPotential += bend->getPotential();
400 gezelter 1545 map<Bend*, BendDataSet>::iterator i = bendDataSets.find(bend);
401 gezelter 1126 if (i == bendDataSets.end()) {
402     BendDataSet dataSet;
403     dataSet.prev.angle = dataSet.curr.angle = angle;
404     dataSet.prev.potential = dataSet.curr.potential = currBendPot;
405     dataSet.deltaV = 0.0;
406 gezelter 1545 bendDataSets.insert(map<Bend*, BendDataSet>::value_type(bend, dataSet));
407 gezelter 1126 }else {
408     i->second.prev.angle = i->second.curr.angle;
409     i->second.prev.potential = i->second.curr.potential;
410     i->second.curr.angle = angle;
411     i->second.curr.potential = currBendPot;
412     i->second.deltaV = fabs(i->second.curr.potential -
413     i->second.prev.potential);
414     }
415 gezelter 507 }
416 gezelter 1126
417     for (torsion = mol->beginTorsion(torsionIter); torsion != NULL;
418     torsion = mol->nextTorsion(torsionIter)) {
419 tim 963 RealType angle;
420 gezelter 1126 torsion->calcForce(angle);
421 tim 963 RealType currTorsionPot = torsion->getPotential();
422 gezelter 1126 torsionPotential += torsion->getPotential();
423 gezelter 1545 map<Torsion*, TorsionDataSet>::iterator i = torsionDataSets.find(torsion);
424 gezelter 1126 if (i == torsionDataSets.end()) {
425     TorsionDataSet dataSet;
426     dataSet.prev.angle = dataSet.curr.angle = angle;
427     dataSet.prev.potential = dataSet.curr.potential = currTorsionPot;
428     dataSet.deltaV = 0.0;
429 gezelter 1545 torsionDataSets.insert(map<Torsion*, TorsionDataSet>::value_type(torsion, dataSet));
430 gezelter 1126 }else {
431     i->second.prev.angle = i->second.curr.angle;
432     i->second.prev.potential = i->second.curr.potential;
433     i->second.curr.angle = angle;
434     i->second.curr.potential = currTorsionPot;
435     i->second.deltaV = fabs(i->second.curr.potential -
436     i->second.prev.potential);
437     }
438     }
439 gezelter 1545
440 cli2 1275 for (inversion = mol->beginInversion(inversionIter);
441     inversion != NULL;
442     inversion = mol->nextInversion(inversionIter)) {
443     RealType angle;
444     inversion->calcForce(angle);
445     RealType currInversionPot = inversion->getPotential();
446     inversionPotential += inversion->getPotential();
447 gezelter 1545 map<Inversion*, InversionDataSet>::iterator i = inversionDataSets.find(inversion);
448 cli2 1275 if (i == inversionDataSets.end()) {
449     InversionDataSet dataSet;
450     dataSet.prev.angle = dataSet.curr.angle = angle;
451     dataSet.prev.potential = dataSet.curr.potential = currInversionPot;
452     dataSet.deltaV = 0.0;
453 gezelter 1545 inversionDataSets.insert(map<Inversion*, InversionDataSet>::value_type(inversion, dataSet));
454 cli2 1275 }else {
455     i->second.prev.angle = i->second.curr.angle;
456     i->second.prev.potential = i->second.curr.potential;
457     i->second.curr.angle = angle;
458     i->second.curr.potential = currInversionPot;
459     i->second.deltaV = fabs(i->second.curr.potential -
460     i->second.prev.potential);
461     }
462     }
463 gezelter 246 }
464    
465 gezelter 1126 RealType shortRangePotential = bondPotential + bendPotential +
466 cli2 1275 torsionPotential + inversionPotential;
467 gezelter 246 Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
468     curSnapshot->statData[Stats::SHORT_RANGE_POTENTIAL] = shortRangePotential;
469 tim 665 curSnapshot->statData[Stats::BOND_POTENTIAL] = bondPotential;
470     curSnapshot->statData[Stats::BEND_POTENTIAL] = bendPotential;
471     curSnapshot->statData[Stats::DIHEDRAL_POTENTIAL] = torsionPotential;
472 gezelter 1545 curSnapshot->statData[Stats::INVERSION_POTENTIAL] = inversionPotential;
473 gezelter 507 }
474 gezelter 1126
475 gezelter 1546 void ForceManager::longRangeInteractions() {
476 gezelter 246
477 gezelter 1545 // some of this initial stuff will go away:
478     Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
479     DataStorage* config = &(curSnapshot->atomData);
480     DataStorage* cgConfig = &(curSnapshot->cgData);
481     RealType* frc = config->getArrayPointer(DataStorage::dslForce);
482     RealType* pos = config->getArrayPointer(DataStorage::dslPosition);
483     RealType* trq = config->getArrayPointer(DataStorage::dslTorque);
484     RealType* A = config->getArrayPointer(DataStorage::dslAmat);
485     RealType* electroFrame = config->getArrayPointer(DataStorage::dslElectroFrame);
486     RealType* particlePot = config->getArrayPointer(DataStorage::dslParticlePot);
487     RealType* rc;
488    
489 gezelter 1540 if(info_->getNGlobalCutoffGroups() != info_->getNGlobalAtoms()){
490     rc = cgConfig->getArrayPointer(DataStorage::dslPosition);
491 gezelter 246 } else {
492 gezelter 1126 // center of mass of the group is the same as position of the atom
493     // if cutoff group does not exist
494 gezelter 507 rc = pos;
495 gezelter 246 }
496 gezelter 1126
497 gezelter 1545 // new stuff starts here:
498 gezelter 1575 fDecomp_->zeroWorkArrays();
499 gezelter 1549 fDecomp_->distributeData();
500 gezelter 1545
501 gezelter 1546 int cg1, cg2, atom1, atom2;
502     Vector3d d_grp, dag;
503 gezelter 1545 RealType rgrpsq, rgrp;
504 gezelter 1549 RealType vij;
505 gezelter 1545 Vector3d fij, fg;
506 gezelter 1576 tuple3<RealType, RealType, RealType> cuts;
507 gezelter 1545 RealType rCutSq;
508     bool in_switching_region;
509     RealType sw, dswdr, swderiv;
510 gezelter 1549 vector<int> atomListColumn, atomListRow, atomListLocal;
511 gezelter 1545 InteractionData idat;
512 gezelter 1546 SelfData sdat;
513     RealType mf;
514 gezelter 1575 potVec pot(0.0);
515     potVec longRangePotential(0.0);
516     RealType lrPot;
517 gezelter 1544
518 gezelter 1545 int loopStart, loopEnd;
519 gezelter 1544
520 gezelter 1545 loopEnd = PAIR_LOOP;
521 gezelter 1546 if (info_->requiresPrepair() ) {
522 gezelter 1545 loopStart = PREPAIR_LOOP;
523     } else {
524     loopStart = PAIR_LOOP;
525     }
526    
527     for (int iLoop = loopStart; iLoop < loopEnd; iLoop++) {
528    
529     if (iLoop == loopStart) {
530 gezelter 1549 bool update_nlist = fDecomp_->checkNeighborList();
531 gezelter 1545 if (update_nlist)
532 gezelter 1549 neighborList = fDecomp_->buildNeighborList();
533 gezelter 1544 }
534 gezelter 1545
535     for (vector<pair<int, int> >::iterator it = neighborList.begin();
536     it != neighborList.end(); ++it) {
537    
538     cg1 = (*it).first;
539     cg2 = (*it).second;
540 gezelter 1576
541     cuts = fDecomp_->getGroupCutoffs(cg1, cg2);
542 gezelter 1545
543 gezelter 1549 d_grp = fDecomp_->getIntergroupVector(cg1, cg2);
544 gezelter 1545 curSnapshot->wrapVector(d_grp);
545     rgrpsq = d_grp.lengthSquare();
546    
547 gezelter 1576 rCutSq = cuts.second;
548    
549 gezelter 1545 if (rgrpsq < rCutSq) {
550 gezelter 1576 *(idat.rcut) = cuts.first;
551 gezelter 1545 if (iLoop == PAIR_LOOP) {
552 gezelter 1546 vij *= 0.0;
553 gezelter 1545 fij = V3Zero;
554     }
555    
556 gezelter 1576 in_switching_region = switcher_->getSwitch(rgrpsq, *(idat.sw), dswdr,
557     rgrp);
558    
559 gezelter 1549 atomListRow = fDecomp_->getAtomsInGroupRow(cg1);
560     atomListColumn = fDecomp_->getAtomsInGroupColumn(cg2);
561 gezelter 1545
562 gezelter 1549 for (vector<int>::iterator ia = atomListRow.begin();
563     ia != atomListRow.end(); ++ia) {
564 gezelter 1545 atom1 = (*ia);
565    
566 gezelter 1549 for (vector<int>::iterator jb = atomListColumn.begin();
567     jb != atomListColumn.end(); ++jb) {
568 gezelter 1545 atom2 = (*jb);
569    
570 gezelter 1549 if (!fDecomp_->skipAtomPair(atom1, atom2)) {
571 gezelter 1545
572 gezelter 1575 pot *= 0.0;
573    
574 gezelter 1549 idat = fDecomp_->fillInteractionData(atom1, atom2);
575 gezelter 1575 *(idat.pot) = pot;
576 gezelter 1546
577 gezelter 1549 if (atomListRow.size() == 1 && atomListColumn.size() == 1) {
578 gezelter 1554 *(idat.d) = d_grp;
579     *(idat.r2) = rgrpsq;
580 gezelter 1545 } else {
581 gezelter 1554 *(idat.d) = fDecomp_->getInteratomicVector(atom1, atom2);
582     curSnapshot->wrapVector( *(idat.d) );
583     *(idat.r2) = idat.d->lengthSquare();
584 gezelter 1545 }
585    
586 gezelter 1554 *(idat.rij) = sqrt( *(idat.r2) );
587 gezelter 1546
588 gezelter 1545 if (iLoop == PREPAIR_LOOP) {
589     interactionMan_->doPrePair(idat);
590     } else {
591     interactionMan_->doPair(idat);
592 gezelter 1575 fDecomp_->unpackInteractionData(idat, atom1, atom2);
593 gezelter 1554 vij += *(idat.vpair);
594     fij += *(idat.f1);
595     tau -= outProduct( *(idat.d), *(idat.f1));
596 gezelter 1545 }
597     }
598     }
599     }
600    
601     if (iLoop == PAIR_LOOP) {
602     if (in_switching_region) {
603     swderiv = vij * dswdr / rgrp;
604     fg = swderiv * d_grp;
605    
606     fij += fg;
607    
608 gezelter 1549 if (atomListRow.size() == 1 && atomListColumn.size() == 1) {
609 gezelter 1554 tau -= outProduct( *(idat.d), fg);
610 gezelter 1545 }
611    
612 gezelter 1549 for (vector<int>::iterator ia = atomListRow.begin();
613     ia != atomListRow.end(); ++ia) {
614 gezelter 1545 atom1 = (*ia);
615 gezelter 1569 mf = fDecomp_->getMassFactorRow(atom1);
616 gezelter 1545 // fg is the force on atom ia due to cutoff group's
617     // presence in switching region
618     fg = swderiv * d_grp * mf;
619 gezelter 1549 fDecomp_->addForceToAtomRow(atom1, fg);
620 gezelter 1545
621 gezelter 1549 if (atomListRow.size() > 1) {
622 gezelter 1546 if (info_->usesAtomicVirial()) {
623 gezelter 1545 // find the distance between the atom
624     // and the center of the cutoff group:
625 gezelter 1549 dag = fDecomp_->getAtomToGroupVectorRow(atom1, cg1);
626 gezelter 1545 tau -= outProduct(dag, fg);
627     }
628     }
629     }
630 gezelter 1549 for (vector<int>::iterator jb = atomListColumn.begin();
631     jb != atomListColumn.end(); ++jb) {
632 gezelter 1545 atom2 = (*jb);
633 gezelter 1569 mf = fDecomp_->getMassFactorColumn(atom2);
634 gezelter 1545 // fg is the force on atom jb due to cutoff group's
635     // presence in switching region
636     fg = -swderiv * d_grp * mf;
637 gezelter 1549 fDecomp_->addForceToAtomColumn(atom2, fg);
638 gezelter 1545
639 gezelter 1549 if (atomListColumn.size() > 1) {
640 gezelter 1546 if (info_->usesAtomicVirial()) {
641 gezelter 1545 // find the distance between the atom
642     // and the center of the cutoff group:
643 gezelter 1549 dag = fDecomp_->getAtomToGroupVectorColumn(atom2, cg2);
644 gezelter 1545 tau -= outProduct(dag, fg);
645     }
646     }
647     }
648     }
649     //if (!SIM_uses_AtomicVirial) {
650     // tau -= outProduct(d_grp, fij);
651     //}
652     }
653     }
654     }
655    
656     if (iLoop == PREPAIR_LOOP) {
657 gezelter 1546 if (info_->requiresPrepair()) {
658 gezelter 1549 fDecomp_->collectIntermediateData();
659 gezelter 1570
660     for (int atom1 = 0; atom1 < info_->getNAtoms(); atom1++) {
661 gezelter 1549 sdat = fDecomp_->fillSelfData(atom1);
662 gezelter 1545 interactionMan_->doPreForce(sdat);
663     }
664 gezelter 1570
665 gezelter 1549 fDecomp_->distributeIntermediateData();
666 gezelter 1545 }
667     }
668    
669 gezelter 1544 }
670 gezelter 1545
671 gezelter 1549 fDecomp_->collectData();
672 gezelter 1545
673 gezelter 1570 if ( info_->requiresSkipCorrection() ) {
674    
675     for (int atom1 = 0; atom1 < fDecomp_->getNAtomsInRow(); atom1++) {
676 gezelter 1544
677 gezelter 1570 vector<int> skipList = fDecomp_->getSkipsForRowAtom( atom1 );
678    
679     for (vector<int>::iterator jb = skipList.begin();
680     jb != skipList.end(); ++jb) {
681    
682     atom2 = (*jb);
683     idat = fDecomp_->fillSkipData(atom1, atom2);
684     interactionMan_->doSkipCorrection(idat);
685    
686 gezelter 1545 }
687     }
688 gezelter 246 }
689 gezelter 1570
690     if (info_->requiresSelfCorrection()) {
691 gezelter 1545
692 gezelter 1570 for (int atom1 = 0; atom1 < info_->getNAtoms(); atom1++) {
693     sdat = fDecomp_->fillSelfData(atom1);
694     interactionMan_->doSelfCorrection(sdat);
695     }
696    
697     }
698    
699 gezelter 1575 longRangePotential = fDecomp_->getLongRangePotential();
700     lrPot = longRangePotential.sum();
701    
702 gezelter 246 //store the tau and long range potential
703 chuckv 664 curSnapshot->statData[Stats::LONG_RANGE_POTENTIAL] = lrPot;
704 gezelter 1550 curSnapshot->statData[Stats::VANDERWAALS_POTENTIAL] = longRangePotential[VANDERWAALS_FAMILY];
705     curSnapshot->statData[Stats::ELECTROSTATIC_POTENTIAL] = longRangePotential[ELECTROSTATIC_FAMILY];
706 gezelter 507 }
707 gezelter 246
708 gezelter 1126
709 gezelter 1464 void ForceManager::postCalculation() {
710 gezelter 246 SimInfo::MoleculeIterator mi;
711     Molecule* mol;
712     Molecule::RigidBodyIterator rbIter;
713     RigidBody* rb;
714 gezelter 1126 Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
715 gezelter 246
716     // collect the atomic forces onto rigid bodies
717 gezelter 1126
718     for (mol = info_->beginMolecule(mi); mol != NULL;
719     mol = info_->nextMolecule(mi)) {
720     for (rb = mol->beginRigidBody(rbIter); rb != NULL;
721     rb = mol->nextRigidBody(rbIter)) {
722 gezelter 1464 Mat3x3d rbTau = rb->calcForcesAndTorquesAndVirial();
723     tau += rbTau;
724 gezelter 507 }
725 gezelter 1126 }
726 gezelter 1464
727 gezelter 1126 #ifdef IS_MPI
728 gezelter 1464 Mat3x3d tmpTau(tau);
729     MPI_Allreduce(tmpTau.getArrayPointer(), tau.getArrayPointer(),
730     9, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
731 gezelter 1126 #endif
732 gezelter 1464 curSnapshot->statData.setTau(tau);
733 gezelter 507 }
734 gezelter 246
735 gezelter 1390 } //end namespace OpenMD

Properties

Name Value
svn:executable *
svn:keywords Author Id Revision Date