1 |
gezelter |
507 |
/* |
2 |
gezelter |
246 |
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
|
|
* |
4 |
|
|
* The University of Notre Dame grants you ("Licensee") a |
5 |
|
|
* non-exclusive, royalty free, license to use, modify and |
6 |
|
|
* redistribute this software in source and binary code form, provided |
7 |
|
|
* that the following conditions are met: |
8 |
|
|
* |
9 |
gezelter |
1390 |
* 1. Redistributions of source code must retain the above copyright |
10 |
gezelter |
246 |
* notice, this list of conditions and the following disclaimer. |
11 |
|
|
* |
12 |
gezelter |
1390 |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
gezelter |
246 |
* notice, this list of conditions and the following disclaimer in the |
14 |
|
|
* documentation and/or other materials provided with the |
15 |
|
|
* distribution. |
16 |
|
|
* |
17 |
|
|
* This software is provided "AS IS," without a warranty of any |
18 |
|
|
* kind. All express or implied conditions, representations and |
19 |
|
|
* warranties, including any implied warranty of merchantability, |
20 |
|
|
* fitness for a particular purpose or non-infringement, are hereby |
21 |
|
|
* excluded. The University of Notre Dame and its licensors shall not |
22 |
|
|
* be liable for any damages suffered by licensee as a result of |
23 |
|
|
* using, modifying or distributing the software or its |
24 |
|
|
* derivatives. In no event will the University of Notre Dame or its |
25 |
|
|
* licensors be liable for any lost revenue, profit or data, or for |
26 |
|
|
* direct, indirect, special, consequential, incidental or punitive |
27 |
|
|
* damages, however caused and regardless of the theory of liability, |
28 |
|
|
* arising out of the use of or inability to use software, even if the |
29 |
|
|
* University of Notre Dame has been advised of the possibility of |
30 |
|
|
* such damages. |
31 |
gezelter |
1390 |
* |
32 |
|
|
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
|
|
* research, please cite the appropriate papers when you publish your |
34 |
|
|
* work. Good starting points are: |
35 |
|
|
* |
36 |
|
|
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
|
|
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
|
|
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 |
|
|
* [4] Vardeman & Gezelter, in progress (2009). |
40 |
gezelter |
246 |
*/ |
41 |
|
|
|
42 |
gezelter |
507 |
/** |
43 |
|
|
* @file ForceManager.cpp |
44 |
|
|
* @author tlin |
45 |
|
|
* @date 11/09/2004 |
46 |
|
|
* @time 10:39am |
47 |
|
|
* @version 1.0 |
48 |
|
|
*/ |
49 |
gezelter |
246 |
|
50 |
|
|
#include "brains/ForceManager.hpp" |
51 |
|
|
#include "primitives/Molecule.hpp" |
52 |
gezelter |
1390 |
#define __OPENMD_C |
53 |
gezelter |
246 |
#include "utils/simError.h" |
54 |
xsun |
1215 |
#include "primitives/Bond.hpp" |
55 |
tim |
749 |
#include "primitives/Bend.hpp" |
56 |
cli2 |
1275 |
#include "primitives/Torsion.hpp" |
57 |
|
|
#include "primitives/Inversion.hpp" |
58 |
gezelter |
1551 |
#include "nonbonded/NonBondedInteraction.hpp" |
59 |
gezelter |
1549 |
#include "parallel/ForceMatrixDecomposition.hpp" |
60 |
gezelter |
1467 |
|
61 |
gezelter |
1545 |
using namespace std; |
62 |
gezelter |
1390 |
namespace OpenMD { |
63 |
gezelter |
1469 |
|
64 |
gezelter |
1545 |
ForceManager::ForceManager(SimInfo * info) : info_(info) { |
65 |
|
|
|
66 |
gezelter |
1544 |
#ifdef IS_MPI |
67 |
gezelter |
1549 |
fDecomp_ = new ForceMatrixDecomposition(info_); |
68 |
gezelter |
1544 |
#else |
69 |
gezelter |
1549 |
// fDecomp_ = new ForceSerialDecomposition(info); |
70 |
gezelter |
1544 |
#endif |
71 |
gezelter |
1469 |
} |
72 |
gezelter |
1545 |
|
73 |
gezelter |
1464 |
void ForceManager::calcForces() { |
74 |
gezelter |
1126 |
|
75 |
gezelter |
1569 |
if (!info_->isTopologyDone()) { |
76 |
gezelter |
507 |
info_->update(); |
77 |
gezelter |
1546 |
interactionMan_->setSimInfo(info_); |
78 |
|
|
interactionMan_->initialize(); |
79 |
|
|
swfun_ = interactionMan_->getSwitchingFunction(); |
80 |
gezelter |
1549 |
fDecomp_->distributeInitialData(); |
81 |
gezelter |
1569 |
info_->prepareTopology(); |
82 |
gezelter |
246 |
} |
83 |
gezelter |
1126 |
|
84 |
gezelter |
1544 |
preCalculation(); |
85 |
gezelter |
1546 |
shortRangeInteractions(); |
86 |
|
|
longRangeInteractions(); |
87 |
gezelter |
1464 |
postCalculation(); |
88 |
tim |
749 |
|
89 |
gezelter |
507 |
} |
90 |
gezelter |
1126 |
|
91 |
gezelter |
507 |
void ForceManager::preCalculation() { |
92 |
gezelter |
246 |
SimInfo::MoleculeIterator mi; |
93 |
|
|
Molecule* mol; |
94 |
|
|
Molecule::AtomIterator ai; |
95 |
|
|
Atom* atom; |
96 |
|
|
Molecule::RigidBodyIterator rbIter; |
97 |
|
|
RigidBody* rb; |
98 |
gezelter |
1540 |
Molecule::CutoffGroupIterator ci; |
99 |
|
|
CutoffGroup* cg; |
100 |
gezelter |
246 |
|
101 |
|
|
// forces are zeroed here, before any are accumulated. |
102 |
chuckv |
1245 |
|
103 |
gezelter |
1126 |
for (mol = info_->beginMolecule(mi); mol != NULL; |
104 |
|
|
mol = info_->nextMolecule(mi)) { |
105 |
gezelter |
507 |
for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) { |
106 |
|
|
atom->zeroForcesAndTorques(); |
107 |
|
|
} |
108 |
chuckv |
1245 |
|
109 |
gezelter |
507 |
//change the positions of atoms which belong to the rigidbodies |
110 |
gezelter |
1126 |
for (rb = mol->beginRigidBody(rbIter); rb != NULL; |
111 |
|
|
rb = mol->nextRigidBody(rbIter)) { |
112 |
gezelter |
507 |
rb->zeroForcesAndTorques(); |
113 |
|
|
} |
114 |
gezelter |
1540 |
|
115 |
|
|
if(info_->getNGlobalCutoffGroups() != info_->getNGlobalAtoms()){ |
116 |
|
|
for(cg = mol->beginCutoffGroup(ci); cg != NULL; |
117 |
|
|
cg = mol->nextCutoffGroup(ci)) { |
118 |
|
|
//calculate the center of mass of cutoff group |
119 |
|
|
cg->updateCOM(); |
120 |
|
|
} |
121 |
|
|
} |
122 |
gezelter |
246 |
} |
123 |
gezelter |
1540 |
|
124 |
gezelter |
1126 |
// Zero out the stress tensor |
125 |
|
|
tau *= 0.0; |
126 |
|
|
|
127 |
gezelter |
507 |
} |
128 |
gezelter |
1126 |
|
129 |
gezelter |
1546 |
void ForceManager::shortRangeInteractions() { |
130 |
gezelter |
246 |
Molecule* mol; |
131 |
|
|
RigidBody* rb; |
132 |
|
|
Bond* bond; |
133 |
|
|
Bend* bend; |
134 |
|
|
Torsion* torsion; |
135 |
cli2 |
1275 |
Inversion* inversion; |
136 |
gezelter |
246 |
SimInfo::MoleculeIterator mi; |
137 |
|
|
Molecule::RigidBodyIterator rbIter; |
138 |
|
|
Molecule::BondIterator bondIter;; |
139 |
|
|
Molecule::BendIterator bendIter; |
140 |
|
|
Molecule::TorsionIterator torsionIter; |
141 |
cli2 |
1275 |
Molecule::InversionIterator inversionIter; |
142 |
tim |
963 |
RealType bondPotential = 0.0; |
143 |
|
|
RealType bendPotential = 0.0; |
144 |
|
|
RealType torsionPotential = 0.0; |
145 |
cli2 |
1275 |
RealType inversionPotential = 0.0; |
146 |
gezelter |
246 |
|
147 |
|
|
//calculate short range interactions |
148 |
gezelter |
1126 |
for (mol = info_->beginMolecule(mi); mol != NULL; |
149 |
|
|
mol = info_->nextMolecule(mi)) { |
150 |
gezelter |
246 |
|
151 |
gezelter |
507 |
//change the positions of atoms which belong to the rigidbodies |
152 |
gezelter |
1126 |
for (rb = mol->beginRigidBody(rbIter); rb != NULL; |
153 |
|
|
rb = mol->nextRigidBody(rbIter)) { |
154 |
|
|
rb->updateAtoms(); |
155 |
gezelter |
507 |
} |
156 |
gezelter |
246 |
|
157 |
gezelter |
1126 |
for (bond = mol->beginBond(bondIter); bond != NULL; |
158 |
|
|
bond = mol->nextBond(bondIter)) { |
159 |
tim |
749 |
bond->calcForce(); |
160 |
|
|
bondPotential += bond->getPotential(); |
161 |
gezelter |
507 |
} |
162 |
gezelter |
246 |
|
163 |
gezelter |
1126 |
for (bend = mol->beginBend(bendIter); bend != NULL; |
164 |
|
|
bend = mol->nextBend(bendIter)) { |
165 |
|
|
|
166 |
|
|
RealType angle; |
167 |
|
|
bend->calcForce(angle); |
168 |
|
|
RealType currBendPot = bend->getPotential(); |
169 |
gezelter |
1448 |
|
170 |
gezelter |
1126 |
bendPotential += bend->getPotential(); |
171 |
gezelter |
1545 |
map<Bend*, BendDataSet>::iterator i = bendDataSets.find(bend); |
172 |
gezelter |
1126 |
if (i == bendDataSets.end()) { |
173 |
|
|
BendDataSet dataSet; |
174 |
|
|
dataSet.prev.angle = dataSet.curr.angle = angle; |
175 |
|
|
dataSet.prev.potential = dataSet.curr.potential = currBendPot; |
176 |
|
|
dataSet.deltaV = 0.0; |
177 |
gezelter |
1545 |
bendDataSets.insert(map<Bend*, BendDataSet>::value_type(bend, dataSet)); |
178 |
gezelter |
1126 |
}else { |
179 |
|
|
i->second.prev.angle = i->second.curr.angle; |
180 |
|
|
i->second.prev.potential = i->second.curr.potential; |
181 |
|
|
i->second.curr.angle = angle; |
182 |
|
|
i->second.curr.potential = currBendPot; |
183 |
|
|
i->second.deltaV = fabs(i->second.curr.potential - |
184 |
|
|
i->second.prev.potential); |
185 |
|
|
} |
186 |
gezelter |
507 |
} |
187 |
gezelter |
1126 |
|
188 |
|
|
for (torsion = mol->beginTorsion(torsionIter); torsion != NULL; |
189 |
|
|
torsion = mol->nextTorsion(torsionIter)) { |
190 |
tim |
963 |
RealType angle; |
191 |
gezelter |
1126 |
torsion->calcForce(angle); |
192 |
tim |
963 |
RealType currTorsionPot = torsion->getPotential(); |
193 |
gezelter |
1126 |
torsionPotential += torsion->getPotential(); |
194 |
gezelter |
1545 |
map<Torsion*, TorsionDataSet>::iterator i = torsionDataSets.find(torsion); |
195 |
gezelter |
1126 |
if (i == torsionDataSets.end()) { |
196 |
|
|
TorsionDataSet dataSet; |
197 |
|
|
dataSet.prev.angle = dataSet.curr.angle = angle; |
198 |
|
|
dataSet.prev.potential = dataSet.curr.potential = currTorsionPot; |
199 |
|
|
dataSet.deltaV = 0.0; |
200 |
gezelter |
1545 |
torsionDataSets.insert(map<Torsion*, TorsionDataSet>::value_type(torsion, dataSet)); |
201 |
gezelter |
1126 |
}else { |
202 |
|
|
i->second.prev.angle = i->second.curr.angle; |
203 |
|
|
i->second.prev.potential = i->second.curr.potential; |
204 |
|
|
i->second.curr.angle = angle; |
205 |
|
|
i->second.curr.potential = currTorsionPot; |
206 |
|
|
i->second.deltaV = fabs(i->second.curr.potential - |
207 |
|
|
i->second.prev.potential); |
208 |
|
|
} |
209 |
|
|
} |
210 |
gezelter |
1545 |
|
211 |
cli2 |
1275 |
for (inversion = mol->beginInversion(inversionIter); |
212 |
|
|
inversion != NULL; |
213 |
|
|
inversion = mol->nextInversion(inversionIter)) { |
214 |
|
|
RealType angle; |
215 |
|
|
inversion->calcForce(angle); |
216 |
|
|
RealType currInversionPot = inversion->getPotential(); |
217 |
|
|
inversionPotential += inversion->getPotential(); |
218 |
gezelter |
1545 |
map<Inversion*, InversionDataSet>::iterator i = inversionDataSets.find(inversion); |
219 |
cli2 |
1275 |
if (i == inversionDataSets.end()) { |
220 |
|
|
InversionDataSet dataSet; |
221 |
|
|
dataSet.prev.angle = dataSet.curr.angle = angle; |
222 |
|
|
dataSet.prev.potential = dataSet.curr.potential = currInversionPot; |
223 |
|
|
dataSet.deltaV = 0.0; |
224 |
gezelter |
1545 |
inversionDataSets.insert(map<Inversion*, InversionDataSet>::value_type(inversion, dataSet)); |
225 |
cli2 |
1275 |
}else { |
226 |
|
|
i->second.prev.angle = i->second.curr.angle; |
227 |
|
|
i->second.prev.potential = i->second.curr.potential; |
228 |
|
|
i->second.curr.angle = angle; |
229 |
|
|
i->second.curr.potential = currInversionPot; |
230 |
|
|
i->second.deltaV = fabs(i->second.curr.potential - |
231 |
|
|
i->second.prev.potential); |
232 |
|
|
} |
233 |
|
|
} |
234 |
gezelter |
246 |
} |
235 |
|
|
|
236 |
gezelter |
1126 |
RealType shortRangePotential = bondPotential + bendPotential + |
237 |
cli2 |
1275 |
torsionPotential + inversionPotential; |
238 |
gezelter |
246 |
Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); |
239 |
|
|
curSnapshot->statData[Stats::SHORT_RANGE_POTENTIAL] = shortRangePotential; |
240 |
tim |
665 |
curSnapshot->statData[Stats::BOND_POTENTIAL] = bondPotential; |
241 |
|
|
curSnapshot->statData[Stats::BEND_POTENTIAL] = bendPotential; |
242 |
|
|
curSnapshot->statData[Stats::DIHEDRAL_POTENTIAL] = torsionPotential; |
243 |
gezelter |
1545 |
curSnapshot->statData[Stats::INVERSION_POTENTIAL] = inversionPotential; |
244 |
gezelter |
507 |
} |
245 |
gezelter |
1126 |
|
246 |
gezelter |
1546 |
void ForceManager::longRangeInteractions() { |
247 |
gezelter |
246 |
|
248 |
gezelter |
1545 |
// some of this initial stuff will go away: |
249 |
|
|
Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); |
250 |
|
|
DataStorage* config = &(curSnapshot->atomData); |
251 |
|
|
DataStorage* cgConfig = &(curSnapshot->cgData); |
252 |
|
|
RealType* frc = config->getArrayPointer(DataStorage::dslForce); |
253 |
|
|
RealType* pos = config->getArrayPointer(DataStorage::dslPosition); |
254 |
|
|
RealType* trq = config->getArrayPointer(DataStorage::dslTorque); |
255 |
|
|
RealType* A = config->getArrayPointer(DataStorage::dslAmat); |
256 |
|
|
RealType* electroFrame = config->getArrayPointer(DataStorage::dslElectroFrame); |
257 |
|
|
RealType* particlePot = config->getArrayPointer(DataStorage::dslParticlePot); |
258 |
|
|
RealType* rc; |
259 |
|
|
|
260 |
gezelter |
1540 |
if(info_->getNGlobalCutoffGroups() != info_->getNGlobalAtoms()){ |
261 |
|
|
rc = cgConfig->getArrayPointer(DataStorage::dslPosition); |
262 |
gezelter |
246 |
} else { |
263 |
gezelter |
1126 |
// center of mass of the group is the same as position of the atom |
264 |
|
|
// if cutoff group does not exist |
265 |
gezelter |
507 |
rc = pos; |
266 |
gezelter |
246 |
} |
267 |
gezelter |
1126 |
|
268 |
gezelter |
246 |
//initialize data before passing to fortran |
269 |
gezelter |
1550 |
RealType longRangePotential[N_INTERACTION_FAMILIES]; |
270 |
tim |
963 |
RealType lrPot = 0.0; |
271 |
gezelter |
246 |
int isError = 0; |
272 |
|
|
|
273 |
gezelter |
1550 |
// dangerous to iterate over enums, but we'll live on the edge: |
274 |
|
|
for (int i = NO_FAMILY; i != N_INTERACTION_FAMILIES; ++i){ |
275 |
chuckv |
664 |
longRangePotential[i]=0.0; //Initialize array |
276 |
|
|
} |
277 |
gezelter |
1545 |
|
278 |
|
|
// new stuff starts here: |
279 |
|
|
|
280 |
gezelter |
1549 |
fDecomp_->distributeData(); |
281 |
gezelter |
1545 |
|
282 |
gezelter |
1546 |
int cg1, cg2, atom1, atom2; |
283 |
|
|
Vector3d d_grp, dag; |
284 |
gezelter |
1545 |
RealType rgrpsq, rgrp; |
285 |
gezelter |
1549 |
RealType vij; |
286 |
gezelter |
1545 |
Vector3d fij, fg; |
287 |
|
|
pair<int, int> gtypes; |
288 |
|
|
RealType rCutSq; |
289 |
|
|
bool in_switching_region; |
290 |
|
|
RealType sw, dswdr, swderiv; |
291 |
gezelter |
1549 |
vector<int> atomListColumn, atomListRow, atomListLocal; |
292 |
gezelter |
1545 |
InteractionData idat; |
293 |
gezelter |
1546 |
SelfData sdat; |
294 |
|
|
RealType mf; |
295 |
gezelter |
1544 |
|
296 |
gezelter |
1545 |
int loopStart, loopEnd; |
297 |
gezelter |
1544 |
|
298 |
gezelter |
1545 |
loopEnd = PAIR_LOOP; |
299 |
gezelter |
1546 |
if (info_->requiresPrepair() ) { |
300 |
gezelter |
1545 |
loopStart = PREPAIR_LOOP; |
301 |
|
|
} else { |
302 |
|
|
loopStart = PAIR_LOOP; |
303 |
|
|
} |
304 |
|
|
|
305 |
|
|
for (int iLoop = loopStart; iLoop < loopEnd; iLoop++) { |
306 |
|
|
|
307 |
|
|
if (iLoop == loopStart) { |
308 |
gezelter |
1549 |
bool update_nlist = fDecomp_->checkNeighborList(); |
309 |
gezelter |
1545 |
if (update_nlist) |
310 |
gezelter |
1549 |
neighborList = fDecomp_->buildNeighborList(); |
311 |
gezelter |
1544 |
} |
312 |
gezelter |
1545 |
|
313 |
|
|
for (vector<pair<int, int> >::iterator it = neighborList.begin(); |
314 |
|
|
it != neighborList.end(); ++it) { |
315 |
|
|
|
316 |
|
|
cg1 = (*it).first; |
317 |
|
|
cg2 = (*it).second; |
318 |
|
|
|
319 |
gezelter |
1549 |
gtypes = fDecomp_->getGroupTypes(cg1, cg2); |
320 |
|
|
d_grp = fDecomp_->getIntergroupVector(cg1, cg2); |
321 |
gezelter |
1545 |
curSnapshot->wrapVector(d_grp); |
322 |
|
|
rgrpsq = d_grp.lengthSquare(); |
323 |
gezelter |
1546 |
rCutSq = groupCutoffMap[gtypes].first; |
324 |
gezelter |
1545 |
|
325 |
|
|
if (rgrpsq < rCutSq) { |
326 |
gezelter |
1554 |
*(idat.rcut) = groupCutoffMap[gtypes].second; |
327 |
gezelter |
1545 |
if (iLoop == PAIR_LOOP) { |
328 |
gezelter |
1546 |
vij *= 0.0; |
329 |
gezelter |
1545 |
fij = V3Zero; |
330 |
|
|
} |
331 |
|
|
|
332 |
gezelter |
1554 |
in_switching_region = swfun_->getSwitch(rgrpsq, *(idat.sw), dswdr, |
333 |
|
|
rgrp); |
334 |
gezelter |
1549 |
atomListRow = fDecomp_->getAtomsInGroupRow(cg1); |
335 |
|
|
atomListColumn = fDecomp_->getAtomsInGroupColumn(cg2); |
336 |
gezelter |
1545 |
|
337 |
gezelter |
1549 |
for (vector<int>::iterator ia = atomListRow.begin(); |
338 |
|
|
ia != atomListRow.end(); ++ia) { |
339 |
gezelter |
1545 |
atom1 = (*ia); |
340 |
|
|
|
341 |
gezelter |
1549 |
for (vector<int>::iterator jb = atomListColumn.begin(); |
342 |
|
|
jb != atomListColumn.end(); ++jb) { |
343 |
gezelter |
1545 |
atom2 = (*jb); |
344 |
|
|
|
345 |
gezelter |
1549 |
if (!fDecomp_->skipAtomPair(atom1, atom2)) { |
346 |
gezelter |
1545 |
|
347 |
gezelter |
1549 |
idat = fDecomp_->fillInteractionData(atom1, atom2); |
348 |
gezelter |
1546 |
|
349 |
gezelter |
1549 |
if (atomListRow.size() == 1 && atomListColumn.size() == 1) { |
350 |
gezelter |
1554 |
*(idat.d) = d_grp; |
351 |
|
|
*(idat.r2) = rgrpsq; |
352 |
gezelter |
1545 |
} else { |
353 |
gezelter |
1554 |
*(idat.d) = fDecomp_->getInteratomicVector(atom1, atom2); |
354 |
|
|
curSnapshot->wrapVector( *(idat.d) ); |
355 |
|
|
*(idat.r2) = idat.d->lengthSquare(); |
356 |
gezelter |
1545 |
} |
357 |
|
|
|
358 |
gezelter |
1554 |
*(idat.rij) = sqrt( *(idat.r2) ); |
359 |
gezelter |
1546 |
|
360 |
gezelter |
1545 |
if (iLoop == PREPAIR_LOOP) { |
361 |
|
|
interactionMan_->doPrePair(idat); |
362 |
|
|
} else { |
363 |
|
|
interactionMan_->doPair(idat); |
364 |
gezelter |
1554 |
vij += *(idat.vpair); |
365 |
|
|
fij += *(idat.f1); |
366 |
|
|
tau -= outProduct( *(idat.d), *(idat.f1)); |
367 |
gezelter |
1545 |
} |
368 |
|
|
} |
369 |
|
|
} |
370 |
|
|
} |
371 |
|
|
|
372 |
|
|
if (iLoop == PAIR_LOOP) { |
373 |
|
|
if (in_switching_region) { |
374 |
|
|
swderiv = vij * dswdr / rgrp; |
375 |
|
|
fg = swderiv * d_grp; |
376 |
|
|
|
377 |
|
|
fij += fg; |
378 |
|
|
|
379 |
gezelter |
1549 |
if (atomListRow.size() == 1 && atomListColumn.size() == 1) { |
380 |
gezelter |
1554 |
tau -= outProduct( *(idat.d), fg); |
381 |
gezelter |
1545 |
} |
382 |
|
|
|
383 |
gezelter |
1549 |
for (vector<int>::iterator ia = atomListRow.begin(); |
384 |
|
|
ia != atomListRow.end(); ++ia) { |
385 |
gezelter |
1545 |
atom1 = (*ia); |
386 |
gezelter |
1569 |
mf = fDecomp_->getMassFactorRow(atom1); |
387 |
gezelter |
1545 |
// fg is the force on atom ia due to cutoff group's |
388 |
|
|
// presence in switching region |
389 |
|
|
fg = swderiv * d_grp * mf; |
390 |
gezelter |
1549 |
fDecomp_->addForceToAtomRow(atom1, fg); |
391 |
gezelter |
1545 |
|
392 |
gezelter |
1549 |
if (atomListRow.size() > 1) { |
393 |
gezelter |
1546 |
if (info_->usesAtomicVirial()) { |
394 |
gezelter |
1545 |
// find the distance between the atom |
395 |
|
|
// and the center of the cutoff group: |
396 |
gezelter |
1549 |
dag = fDecomp_->getAtomToGroupVectorRow(atom1, cg1); |
397 |
gezelter |
1545 |
tau -= outProduct(dag, fg); |
398 |
|
|
} |
399 |
|
|
} |
400 |
|
|
} |
401 |
gezelter |
1549 |
for (vector<int>::iterator jb = atomListColumn.begin(); |
402 |
|
|
jb != atomListColumn.end(); ++jb) { |
403 |
gezelter |
1545 |
atom2 = (*jb); |
404 |
gezelter |
1569 |
mf = fDecomp_->getMassFactorColumn(atom2); |
405 |
gezelter |
1545 |
// fg is the force on atom jb due to cutoff group's |
406 |
|
|
// presence in switching region |
407 |
|
|
fg = -swderiv * d_grp * mf; |
408 |
gezelter |
1549 |
fDecomp_->addForceToAtomColumn(atom2, fg); |
409 |
gezelter |
1545 |
|
410 |
gezelter |
1549 |
if (atomListColumn.size() > 1) { |
411 |
gezelter |
1546 |
if (info_->usesAtomicVirial()) { |
412 |
gezelter |
1545 |
// find the distance between the atom |
413 |
|
|
// and the center of the cutoff group: |
414 |
gezelter |
1549 |
dag = fDecomp_->getAtomToGroupVectorColumn(atom2, cg2); |
415 |
gezelter |
1545 |
tau -= outProduct(dag, fg); |
416 |
|
|
} |
417 |
|
|
} |
418 |
|
|
} |
419 |
|
|
} |
420 |
|
|
//if (!SIM_uses_AtomicVirial) { |
421 |
|
|
// tau -= outProduct(d_grp, fij); |
422 |
|
|
//} |
423 |
|
|
} |
424 |
|
|
} |
425 |
|
|
} |
426 |
|
|
|
427 |
|
|
if (iLoop == PREPAIR_LOOP) { |
428 |
gezelter |
1546 |
if (info_->requiresPrepair()) { |
429 |
gezelter |
1549 |
fDecomp_->collectIntermediateData(); |
430 |
|
|
atomListLocal = fDecomp_->getAtomList(); |
431 |
|
|
for (vector<int>::iterator ia = atomListLocal.begin(); |
432 |
|
|
ia != atomListLocal.end(); ++ia) { |
433 |
gezelter |
1545 |
atom1 = (*ia); |
434 |
gezelter |
1549 |
sdat = fDecomp_->fillSelfData(atom1); |
435 |
gezelter |
1545 |
interactionMan_->doPreForce(sdat); |
436 |
|
|
} |
437 |
gezelter |
1549 |
fDecomp_->distributeIntermediateData(); |
438 |
gezelter |
1545 |
} |
439 |
|
|
} |
440 |
|
|
|
441 |
gezelter |
1544 |
} |
442 |
gezelter |
1545 |
|
443 |
gezelter |
1549 |
fDecomp_->collectData(); |
444 |
gezelter |
1545 |
|
445 |
gezelter |
1546 |
if (info_->requiresSkipCorrection() || info_->requiresSelfCorrection()) { |
446 |
gezelter |
1549 |
atomListLocal = fDecomp_->getAtomList(); |
447 |
|
|
for (vector<int>::iterator ia = atomListLocal.begin(); |
448 |
|
|
ia != atomListLocal.end(); ++ia) { |
449 |
gezelter |
1545 |
atom1 = (*ia); |
450 |
gezelter |
1544 |
|
451 |
gezelter |
1546 |
if (info_->requiresSkipCorrection()) { |
452 |
gezelter |
1549 |
vector<int> skipList = fDecomp_->getSkipsForAtom(atom1); |
453 |
gezelter |
1545 |
for (vector<int>::iterator jb = skipList.begin(); |
454 |
|
|
jb != skipList.end(); ++jb) { |
455 |
|
|
atom2 = (*jb); |
456 |
gezelter |
1549 |
idat = fDecomp_->fillSkipData(atom1, atom2); |
457 |
gezelter |
1545 |
interactionMan_->doSkipCorrection(idat); |
458 |
|
|
} |
459 |
|
|
} |
460 |
|
|
|
461 |
gezelter |
1546 |
if (info_->requiresSelfCorrection()) { |
462 |
gezelter |
1549 |
sdat = fDecomp_->fillSelfData(atom1); |
463 |
gezelter |
1545 |
interactionMan_->doSelfCorrection(sdat); |
464 |
gezelter |
1549 |
} |
465 |
gezelter |
1545 |
} |
466 |
gezelter |
246 |
} |
467 |
gezelter |
1545 |
|
468 |
gezelter |
1550 |
// dangerous to iterate over enums, but we'll live on the edge: |
469 |
|
|
for (int i = NO_FAMILY; i != N_INTERACTION_FAMILIES; ++i){ |
470 |
chuckv |
664 |
lrPot += longRangePotential[i]; //Quick hack |
471 |
|
|
} |
472 |
gezelter |
1503 |
|
473 |
gezelter |
246 |
//store the tau and long range potential |
474 |
chuckv |
664 |
curSnapshot->statData[Stats::LONG_RANGE_POTENTIAL] = lrPot; |
475 |
gezelter |
1550 |
curSnapshot->statData[Stats::VANDERWAALS_POTENTIAL] = longRangePotential[VANDERWAALS_FAMILY]; |
476 |
|
|
curSnapshot->statData[Stats::ELECTROSTATIC_POTENTIAL] = longRangePotential[ELECTROSTATIC_FAMILY]; |
477 |
gezelter |
507 |
} |
478 |
gezelter |
246 |
|
479 |
gezelter |
1126 |
|
480 |
gezelter |
1464 |
void ForceManager::postCalculation() { |
481 |
gezelter |
246 |
SimInfo::MoleculeIterator mi; |
482 |
|
|
Molecule* mol; |
483 |
|
|
Molecule::RigidBodyIterator rbIter; |
484 |
|
|
RigidBody* rb; |
485 |
gezelter |
1126 |
Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); |
486 |
gezelter |
246 |
|
487 |
|
|
// collect the atomic forces onto rigid bodies |
488 |
gezelter |
1126 |
|
489 |
|
|
for (mol = info_->beginMolecule(mi); mol != NULL; |
490 |
|
|
mol = info_->nextMolecule(mi)) { |
491 |
|
|
for (rb = mol->beginRigidBody(rbIter); rb != NULL; |
492 |
|
|
rb = mol->nextRigidBody(rbIter)) { |
493 |
gezelter |
1464 |
Mat3x3d rbTau = rb->calcForcesAndTorquesAndVirial(); |
494 |
|
|
tau += rbTau; |
495 |
gezelter |
507 |
} |
496 |
gezelter |
1126 |
} |
497 |
gezelter |
1464 |
|
498 |
gezelter |
1126 |
#ifdef IS_MPI |
499 |
gezelter |
1464 |
Mat3x3d tmpTau(tau); |
500 |
|
|
MPI_Allreduce(tmpTau.getArrayPointer(), tau.getArrayPointer(), |
501 |
|
|
9, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD); |
502 |
gezelter |
1126 |
#endif |
503 |
gezelter |
1464 |
curSnapshot->statData.setTau(tau); |
504 |
gezelter |
507 |
} |
505 |
gezelter |
246 |
|
506 |
gezelter |
1390 |
} //end namespace OpenMD |