ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/brains/ForceManager.cpp
Revision: 1554
Committed: Sat Apr 30 02:54:02 2011 UTC (14 years ago) by gezelter
File size: 18763 byte(s)
Log Message:
For efficiency, pointers instead of objects will be passed during main
force loop. 


File Contents

# User Rev Content
1 gezelter 507 /*
2 gezelter 246 * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3     *
4     * The University of Notre Dame grants you ("Licensee") a
5     * non-exclusive, royalty free, license to use, modify and
6     * redistribute this software in source and binary code form, provided
7     * that the following conditions are met:
8     *
9 gezelter 1390 * 1. Redistributions of source code must retain the above copyright
10 gezelter 246 * notice, this list of conditions and the following disclaimer.
11     *
12 gezelter 1390 * 2. Redistributions in binary form must reproduce the above copyright
13 gezelter 246 * notice, this list of conditions and the following disclaimer in the
14     * documentation and/or other materials provided with the
15     * distribution.
16     *
17     * This software is provided "AS IS," without a warranty of any
18     * kind. All express or implied conditions, representations and
19     * warranties, including any implied warranty of merchantability,
20     * fitness for a particular purpose or non-infringement, are hereby
21     * excluded. The University of Notre Dame and its licensors shall not
22     * be liable for any damages suffered by licensee as a result of
23     * using, modifying or distributing the software or its
24     * derivatives. In no event will the University of Notre Dame or its
25     * licensors be liable for any lost revenue, profit or data, or for
26     * direct, indirect, special, consequential, incidental or punitive
27     * damages, however caused and regardless of the theory of liability,
28     * arising out of the use of or inability to use software, even if the
29     * University of Notre Dame has been advised of the possibility of
30     * such damages.
31 gezelter 1390 *
32     * SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your
33     * research, please cite the appropriate papers when you publish your
34     * work. Good starting points are:
35     *
36     * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).
37     * [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).
38     * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).
39     * [4] Vardeman & Gezelter, in progress (2009).
40 gezelter 246 */
41    
42 gezelter 507 /**
43     * @file ForceManager.cpp
44     * @author tlin
45     * @date 11/09/2004
46     * @time 10:39am
47     * @version 1.0
48     */
49 gezelter 246
50     #include "brains/ForceManager.hpp"
51     #include "primitives/Molecule.hpp"
52 gezelter 1390 #define __OPENMD_C
53 gezelter 246 #include "utils/simError.h"
54 xsun 1215 #include "primitives/Bond.hpp"
55 tim 749 #include "primitives/Bend.hpp"
56 cli2 1275 #include "primitives/Torsion.hpp"
57     #include "primitives/Inversion.hpp"
58 gezelter 1551 #include "nonbonded/NonBondedInteraction.hpp"
59 gezelter 1549 #include "parallel/ForceMatrixDecomposition.hpp"
60 gezelter 1467
61 gezelter 1545 using namespace std;
62 gezelter 1390 namespace OpenMD {
63 gezelter 1469
64 gezelter 1545 ForceManager::ForceManager(SimInfo * info) : info_(info) {
65    
66 gezelter 1544 #ifdef IS_MPI
67 gezelter 1549 fDecomp_ = new ForceMatrixDecomposition(info_);
68 gezelter 1544 #else
69 gezelter 1549 // fDecomp_ = new ForceSerialDecomposition(info);
70 gezelter 1544 #endif
71 gezelter 1469 }
72 gezelter 1545
73 gezelter 1464 void ForceManager::calcForces() {
74 gezelter 1126
75 gezelter 246 if (!info_->isFortranInitialized()) {
76 gezelter 507 info_->update();
77 gezelter 1546 interactionMan_->setSimInfo(info_);
78     interactionMan_->initialize();
79     swfun_ = interactionMan_->getSwitchingFunction();
80 gezelter 1549 fDecomp_->distributeInitialData();
81 gezelter 1535 info_->setupFortran();
82 gezelter 246 }
83 gezelter 1126
84 gezelter 1544 preCalculation();
85 gezelter 1546 shortRangeInteractions();
86     longRangeInteractions();
87 gezelter 1464 postCalculation();
88 tim 749
89 gezelter 507 }
90 gezelter 1126
91 gezelter 507 void ForceManager::preCalculation() {
92 gezelter 246 SimInfo::MoleculeIterator mi;
93     Molecule* mol;
94     Molecule::AtomIterator ai;
95     Atom* atom;
96     Molecule::RigidBodyIterator rbIter;
97     RigidBody* rb;
98 gezelter 1540 Molecule::CutoffGroupIterator ci;
99     CutoffGroup* cg;
100 gezelter 246
101     // forces are zeroed here, before any are accumulated.
102 chuckv 1245
103 gezelter 1126 for (mol = info_->beginMolecule(mi); mol != NULL;
104     mol = info_->nextMolecule(mi)) {
105 gezelter 507 for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
106     atom->zeroForcesAndTorques();
107     }
108 chuckv 1245
109 gezelter 507 //change the positions of atoms which belong to the rigidbodies
110 gezelter 1126 for (rb = mol->beginRigidBody(rbIter); rb != NULL;
111     rb = mol->nextRigidBody(rbIter)) {
112 gezelter 507 rb->zeroForcesAndTorques();
113     }
114 gezelter 1540
115     if(info_->getNGlobalCutoffGroups() != info_->getNGlobalAtoms()){
116     for(cg = mol->beginCutoffGroup(ci); cg != NULL;
117     cg = mol->nextCutoffGroup(ci)) {
118     //calculate the center of mass of cutoff group
119     cg->updateCOM();
120     }
121     }
122 gezelter 246 }
123 gezelter 1540
124 gezelter 1126 // Zero out the stress tensor
125     tau *= 0.0;
126    
127 gezelter 507 }
128 gezelter 1126
129 gezelter 1546 void ForceManager::shortRangeInteractions() {
130 gezelter 246 Molecule* mol;
131     RigidBody* rb;
132     Bond* bond;
133     Bend* bend;
134     Torsion* torsion;
135 cli2 1275 Inversion* inversion;
136 gezelter 246 SimInfo::MoleculeIterator mi;
137     Molecule::RigidBodyIterator rbIter;
138     Molecule::BondIterator bondIter;;
139     Molecule::BendIterator bendIter;
140     Molecule::TorsionIterator torsionIter;
141 cli2 1275 Molecule::InversionIterator inversionIter;
142 tim 963 RealType bondPotential = 0.0;
143     RealType bendPotential = 0.0;
144     RealType torsionPotential = 0.0;
145 cli2 1275 RealType inversionPotential = 0.0;
146 gezelter 246
147     //calculate short range interactions
148 gezelter 1126 for (mol = info_->beginMolecule(mi); mol != NULL;
149     mol = info_->nextMolecule(mi)) {
150 gezelter 246
151 gezelter 507 //change the positions of atoms which belong to the rigidbodies
152 gezelter 1126 for (rb = mol->beginRigidBody(rbIter); rb != NULL;
153     rb = mol->nextRigidBody(rbIter)) {
154     rb->updateAtoms();
155 gezelter 507 }
156 gezelter 246
157 gezelter 1126 for (bond = mol->beginBond(bondIter); bond != NULL;
158     bond = mol->nextBond(bondIter)) {
159 tim 749 bond->calcForce();
160     bondPotential += bond->getPotential();
161 gezelter 507 }
162 gezelter 246
163 gezelter 1126 for (bend = mol->beginBend(bendIter); bend != NULL;
164     bend = mol->nextBend(bendIter)) {
165    
166     RealType angle;
167     bend->calcForce(angle);
168     RealType currBendPot = bend->getPotential();
169 gezelter 1448
170 gezelter 1126 bendPotential += bend->getPotential();
171 gezelter 1545 map<Bend*, BendDataSet>::iterator i = bendDataSets.find(bend);
172 gezelter 1126 if (i == bendDataSets.end()) {
173     BendDataSet dataSet;
174     dataSet.prev.angle = dataSet.curr.angle = angle;
175     dataSet.prev.potential = dataSet.curr.potential = currBendPot;
176     dataSet.deltaV = 0.0;
177 gezelter 1545 bendDataSets.insert(map<Bend*, BendDataSet>::value_type(bend, dataSet));
178 gezelter 1126 }else {
179     i->second.prev.angle = i->second.curr.angle;
180     i->second.prev.potential = i->second.curr.potential;
181     i->second.curr.angle = angle;
182     i->second.curr.potential = currBendPot;
183     i->second.deltaV = fabs(i->second.curr.potential -
184     i->second.prev.potential);
185     }
186 gezelter 507 }
187 gezelter 1126
188     for (torsion = mol->beginTorsion(torsionIter); torsion != NULL;
189     torsion = mol->nextTorsion(torsionIter)) {
190 tim 963 RealType angle;
191 gezelter 1126 torsion->calcForce(angle);
192 tim 963 RealType currTorsionPot = torsion->getPotential();
193 gezelter 1126 torsionPotential += torsion->getPotential();
194 gezelter 1545 map<Torsion*, TorsionDataSet>::iterator i = torsionDataSets.find(torsion);
195 gezelter 1126 if (i == torsionDataSets.end()) {
196     TorsionDataSet dataSet;
197     dataSet.prev.angle = dataSet.curr.angle = angle;
198     dataSet.prev.potential = dataSet.curr.potential = currTorsionPot;
199     dataSet.deltaV = 0.0;
200 gezelter 1545 torsionDataSets.insert(map<Torsion*, TorsionDataSet>::value_type(torsion, dataSet));
201 gezelter 1126 }else {
202     i->second.prev.angle = i->second.curr.angle;
203     i->second.prev.potential = i->second.curr.potential;
204     i->second.curr.angle = angle;
205     i->second.curr.potential = currTorsionPot;
206     i->second.deltaV = fabs(i->second.curr.potential -
207     i->second.prev.potential);
208     }
209     }
210 gezelter 1545
211 cli2 1275 for (inversion = mol->beginInversion(inversionIter);
212     inversion != NULL;
213     inversion = mol->nextInversion(inversionIter)) {
214     RealType angle;
215     inversion->calcForce(angle);
216     RealType currInversionPot = inversion->getPotential();
217     inversionPotential += inversion->getPotential();
218 gezelter 1545 map<Inversion*, InversionDataSet>::iterator i = inversionDataSets.find(inversion);
219 cli2 1275 if (i == inversionDataSets.end()) {
220     InversionDataSet dataSet;
221     dataSet.prev.angle = dataSet.curr.angle = angle;
222     dataSet.prev.potential = dataSet.curr.potential = currInversionPot;
223     dataSet.deltaV = 0.0;
224 gezelter 1545 inversionDataSets.insert(map<Inversion*, InversionDataSet>::value_type(inversion, dataSet));
225 cli2 1275 }else {
226     i->second.prev.angle = i->second.curr.angle;
227     i->second.prev.potential = i->second.curr.potential;
228     i->second.curr.angle = angle;
229     i->second.curr.potential = currInversionPot;
230     i->second.deltaV = fabs(i->second.curr.potential -
231     i->second.prev.potential);
232     }
233     }
234 gezelter 246 }
235    
236 gezelter 1126 RealType shortRangePotential = bondPotential + bendPotential +
237 cli2 1275 torsionPotential + inversionPotential;
238 gezelter 246 Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
239     curSnapshot->statData[Stats::SHORT_RANGE_POTENTIAL] = shortRangePotential;
240 tim 665 curSnapshot->statData[Stats::BOND_POTENTIAL] = bondPotential;
241     curSnapshot->statData[Stats::BEND_POTENTIAL] = bendPotential;
242     curSnapshot->statData[Stats::DIHEDRAL_POTENTIAL] = torsionPotential;
243 gezelter 1545 curSnapshot->statData[Stats::INVERSION_POTENTIAL] = inversionPotential;
244 gezelter 507 }
245 gezelter 1126
246 gezelter 1546 void ForceManager::longRangeInteractions() {
247 gezelter 246
248 gezelter 1545 // some of this initial stuff will go away:
249     Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
250     DataStorage* config = &(curSnapshot->atomData);
251     DataStorage* cgConfig = &(curSnapshot->cgData);
252     RealType* frc = config->getArrayPointer(DataStorage::dslForce);
253     RealType* pos = config->getArrayPointer(DataStorage::dslPosition);
254     RealType* trq = config->getArrayPointer(DataStorage::dslTorque);
255     RealType* A = config->getArrayPointer(DataStorage::dslAmat);
256     RealType* electroFrame = config->getArrayPointer(DataStorage::dslElectroFrame);
257     RealType* particlePot = config->getArrayPointer(DataStorage::dslParticlePot);
258     RealType* rc;
259    
260 gezelter 1540 if(info_->getNGlobalCutoffGroups() != info_->getNGlobalAtoms()){
261     rc = cgConfig->getArrayPointer(DataStorage::dslPosition);
262 gezelter 246 } else {
263 gezelter 1126 // center of mass of the group is the same as position of the atom
264     // if cutoff group does not exist
265 gezelter 507 rc = pos;
266 gezelter 246 }
267 gezelter 1126
268 gezelter 246 //initialize data before passing to fortran
269 gezelter 1550 RealType longRangePotential[N_INTERACTION_FAMILIES];
270 tim 963 RealType lrPot = 0.0;
271 gezelter 246 int isError = 0;
272    
273 gezelter 1550 // dangerous to iterate over enums, but we'll live on the edge:
274     for (int i = NO_FAMILY; i != N_INTERACTION_FAMILIES; ++i){
275 chuckv 664 longRangePotential[i]=0.0; //Initialize array
276     }
277 gezelter 1545
278     // new stuff starts here:
279    
280 gezelter 1549 fDecomp_->distributeData();
281 gezelter 1545
282 gezelter 1546 int cg1, cg2, atom1, atom2;
283     Vector3d d_grp, dag;
284 gezelter 1545 RealType rgrpsq, rgrp;
285 gezelter 1549 RealType vij;
286 gezelter 1545 Vector3d fij, fg;
287     pair<int, int> gtypes;
288     RealType rCutSq;
289     bool in_switching_region;
290     RealType sw, dswdr, swderiv;
291 gezelter 1549 vector<int> atomListColumn, atomListRow, atomListLocal;
292 gezelter 1545 InteractionData idat;
293 gezelter 1546 SelfData sdat;
294     RealType mf;
295 gezelter 1544
296 gezelter 1545 int loopStart, loopEnd;
297 gezelter 1544
298 gezelter 1545 loopEnd = PAIR_LOOP;
299 gezelter 1546 if (info_->requiresPrepair() ) {
300 gezelter 1545 loopStart = PREPAIR_LOOP;
301     } else {
302     loopStart = PAIR_LOOP;
303     }
304    
305     for (int iLoop = loopStart; iLoop < loopEnd; iLoop++) {
306    
307     if (iLoop == loopStart) {
308 gezelter 1549 bool update_nlist = fDecomp_->checkNeighborList();
309 gezelter 1545 if (update_nlist)
310 gezelter 1549 neighborList = fDecomp_->buildNeighborList();
311 gezelter 1544 }
312 gezelter 1545
313     for (vector<pair<int, int> >::iterator it = neighborList.begin();
314     it != neighborList.end(); ++it) {
315    
316     cg1 = (*it).first;
317     cg2 = (*it).second;
318    
319 gezelter 1549 gtypes = fDecomp_->getGroupTypes(cg1, cg2);
320     d_grp = fDecomp_->getIntergroupVector(cg1, cg2);
321 gezelter 1545 curSnapshot->wrapVector(d_grp);
322     rgrpsq = d_grp.lengthSquare();
323 gezelter 1546 rCutSq = groupCutoffMap[gtypes].first;
324 gezelter 1545
325     if (rgrpsq < rCutSq) {
326 gezelter 1554 *(idat.rcut) = groupCutoffMap[gtypes].second;
327 gezelter 1545 if (iLoop == PAIR_LOOP) {
328 gezelter 1546 vij *= 0.0;
329 gezelter 1545 fij = V3Zero;
330     }
331    
332 gezelter 1554 in_switching_region = swfun_->getSwitch(rgrpsq, *(idat.sw), dswdr,
333     rgrp);
334 gezelter 1549 atomListRow = fDecomp_->getAtomsInGroupRow(cg1);
335     atomListColumn = fDecomp_->getAtomsInGroupColumn(cg2);
336 gezelter 1545
337 gezelter 1549 for (vector<int>::iterator ia = atomListRow.begin();
338     ia != atomListRow.end(); ++ia) {
339 gezelter 1545 atom1 = (*ia);
340    
341 gezelter 1549 for (vector<int>::iterator jb = atomListColumn.begin();
342     jb != atomListColumn.end(); ++jb) {
343 gezelter 1545 atom2 = (*jb);
344    
345 gezelter 1549 if (!fDecomp_->skipAtomPair(atom1, atom2)) {
346 gezelter 1545
347 gezelter 1549 idat = fDecomp_->fillInteractionData(atom1, atom2);
348 gezelter 1546
349 gezelter 1549 if (atomListRow.size() == 1 && atomListColumn.size() == 1) {
350 gezelter 1554 *(idat.d) = d_grp;
351     *(idat.r2) = rgrpsq;
352 gezelter 1545 } else {
353 gezelter 1554 *(idat.d) = fDecomp_->getInteratomicVector(atom1, atom2);
354     curSnapshot->wrapVector( *(idat.d) );
355     *(idat.r2) = idat.d->lengthSquare();
356 gezelter 1545 }
357    
358 gezelter 1554 *(idat.rij) = sqrt( *(idat.r2) );
359 gezelter 1546
360 gezelter 1545 if (iLoop == PREPAIR_LOOP) {
361     interactionMan_->doPrePair(idat);
362     } else {
363     interactionMan_->doPair(idat);
364 gezelter 1554 vij += *(idat.vpair);
365     fij += *(idat.f1);
366     tau -= outProduct( *(idat.d), *(idat.f1));
367 gezelter 1545 }
368     }
369     }
370     }
371    
372     if (iLoop == PAIR_LOOP) {
373     if (in_switching_region) {
374     swderiv = vij * dswdr / rgrp;
375     fg = swderiv * d_grp;
376    
377     fij += fg;
378    
379 gezelter 1549 if (atomListRow.size() == 1 && atomListColumn.size() == 1) {
380 gezelter 1554 tau -= outProduct( *(idat.d), fg);
381 gezelter 1545 }
382    
383 gezelter 1549 for (vector<int>::iterator ia = atomListRow.begin();
384     ia != atomListRow.end(); ++ia) {
385 gezelter 1545 atom1 = (*ia);
386 gezelter 1549 mf = fDecomp_->getMfactRow(atom1);
387 gezelter 1545 // fg is the force on atom ia due to cutoff group's
388     // presence in switching region
389     fg = swderiv * d_grp * mf;
390 gezelter 1549 fDecomp_->addForceToAtomRow(atom1, fg);
391 gezelter 1545
392 gezelter 1549 if (atomListRow.size() > 1) {
393 gezelter 1546 if (info_->usesAtomicVirial()) {
394 gezelter 1545 // find the distance between the atom
395     // and the center of the cutoff group:
396 gezelter 1549 dag = fDecomp_->getAtomToGroupVectorRow(atom1, cg1);
397 gezelter 1545 tau -= outProduct(dag, fg);
398     }
399     }
400     }
401 gezelter 1549 for (vector<int>::iterator jb = atomListColumn.begin();
402     jb != atomListColumn.end(); ++jb) {
403 gezelter 1545 atom2 = (*jb);
404 gezelter 1549 mf = fDecomp_->getMfactColumn(atom2);
405 gezelter 1545 // fg is the force on atom jb due to cutoff group's
406     // presence in switching region
407     fg = -swderiv * d_grp * mf;
408 gezelter 1549 fDecomp_->addForceToAtomColumn(atom2, fg);
409 gezelter 1545
410 gezelter 1549 if (atomListColumn.size() > 1) {
411 gezelter 1546 if (info_->usesAtomicVirial()) {
412 gezelter 1545 // find the distance between the atom
413     // and the center of the cutoff group:
414 gezelter 1549 dag = fDecomp_->getAtomToGroupVectorColumn(atom2, cg2);
415 gezelter 1545 tau -= outProduct(dag, fg);
416     }
417     }
418     }
419     }
420     //if (!SIM_uses_AtomicVirial) {
421     // tau -= outProduct(d_grp, fij);
422     //}
423     }
424     }
425     }
426    
427     if (iLoop == PREPAIR_LOOP) {
428 gezelter 1546 if (info_->requiresPrepair()) {
429 gezelter 1549 fDecomp_->collectIntermediateData();
430     atomListLocal = fDecomp_->getAtomList();
431     for (vector<int>::iterator ia = atomListLocal.begin();
432     ia != atomListLocal.end(); ++ia) {
433 gezelter 1545 atom1 = (*ia);
434 gezelter 1549 sdat = fDecomp_->fillSelfData(atom1);
435 gezelter 1545 interactionMan_->doPreForce(sdat);
436     }
437 gezelter 1549 fDecomp_->distributeIntermediateData();
438 gezelter 1545 }
439     }
440    
441 gezelter 1544 }
442 gezelter 1545
443 gezelter 1549 fDecomp_->collectData();
444 gezelter 1545
445 gezelter 1546 if (info_->requiresSkipCorrection() || info_->requiresSelfCorrection()) {
446 gezelter 1549 atomListLocal = fDecomp_->getAtomList();
447     for (vector<int>::iterator ia = atomListLocal.begin();
448     ia != atomListLocal.end(); ++ia) {
449 gezelter 1545 atom1 = (*ia);
450 gezelter 1544
451 gezelter 1546 if (info_->requiresSkipCorrection()) {
452 gezelter 1549 vector<int> skipList = fDecomp_->getSkipsForAtom(atom1);
453 gezelter 1545 for (vector<int>::iterator jb = skipList.begin();
454     jb != skipList.end(); ++jb) {
455     atom2 = (*jb);
456 gezelter 1549 idat = fDecomp_->fillSkipData(atom1, atom2);
457 gezelter 1545 interactionMan_->doSkipCorrection(idat);
458     }
459     }
460    
461 gezelter 1546 if (info_->requiresSelfCorrection()) {
462 gezelter 1549 sdat = fDecomp_->fillSelfData(atom1);
463 gezelter 1545 interactionMan_->doSelfCorrection(sdat);
464 gezelter 1549 }
465 gezelter 1545 }
466 gezelter 246 }
467 gezelter 1545
468 gezelter 1550 // dangerous to iterate over enums, but we'll live on the edge:
469     for (int i = NO_FAMILY; i != N_INTERACTION_FAMILIES; ++i){
470 chuckv 664 lrPot += longRangePotential[i]; //Quick hack
471     }
472 gezelter 1503
473 gezelter 246 //store the tau and long range potential
474 chuckv 664 curSnapshot->statData[Stats::LONG_RANGE_POTENTIAL] = lrPot;
475 gezelter 1550 curSnapshot->statData[Stats::VANDERWAALS_POTENTIAL] = longRangePotential[VANDERWAALS_FAMILY];
476     curSnapshot->statData[Stats::ELECTROSTATIC_POTENTIAL] = longRangePotential[ELECTROSTATIC_FAMILY];
477 gezelter 507 }
478 gezelter 246
479 gezelter 1126
480 gezelter 1464 void ForceManager::postCalculation() {
481 gezelter 246 SimInfo::MoleculeIterator mi;
482     Molecule* mol;
483     Molecule::RigidBodyIterator rbIter;
484     RigidBody* rb;
485 gezelter 1126 Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
486 gezelter 246
487     // collect the atomic forces onto rigid bodies
488 gezelter 1126
489     for (mol = info_->beginMolecule(mi); mol != NULL;
490     mol = info_->nextMolecule(mi)) {
491     for (rb = mol->beginRigidBody(rbIter); rb != NULL;
492     rb = mol->nextRigidBody(rbIter)) {
493 gezelter 1464 Mat3x3d rbTau = rb->calcForcesAndTorquesAndVirial();
494     tau += rbTau;
495 gezelter 507 }
496 gezelter 1126 }
497 gezelter 1464
498 gezelter 1126 #ifdef IS_MPI
499 gezelter 1464 Mat3x3d tmpTau(tau);
500     MPI_Allreduce(tmpTau.getArrayPointer(), tau.getArrayPointer(),
501     9, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
502 gezelter 1126 #endif
503 gezelter 1464 curSnapshot->statData.setTau(tau);
504 gezelter 507 }
505 gezelter 246
506 gezelter 1390 } //end namespace OpenMD

Properties

Name Value
svn:executable *
svn:keywords Author Id Revision Date