1 |
gezelter |
507 |
/* |
2 |
gezelter |
246 |
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
|
|
* |
4 |
|
|
* The University of Notre Dame grants you ("Licensee") a |
5 |
|
|
* non-exclusive, royalty free, license to use, modify and |
6 |
|
|
* redistribute this software in source and binary code form, provided |
7 |
|
|
* that the following conditions are met: |
8 |
|
|
* |
9 |
gezelter |
1390 |
* 1. Redistributions of source code must retain the above copyright |
10 |
gezelter |
246 |
* notice, this list of conditions and the following disclaimer. |
11 |
|
|
* |
12 |
gezelter |
1390 |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
gezelter |
246 |
* notice, this list of conditions and the following disclaimer in the |
14 |
|
|
* documentation and/or other materials provided with the |
15 |
|
|
* distribution. |
16 |
|
|
* |
17 |
|
|
* This software is provided "AS IS," without a warranty of any |
18 |
|
|
* kind. All express or implied conditions, representations and |
19 |
|
|
* warranties, including any implied warranty of merchantability, |
20 |
|
|
* fitness for a particular purpose or non-infringement, are hereby |
21 |
|
|
* excluded. The University of Notre Dame and its licensors shall not |
22 |
|
|
* be liable for any damages suffered by licensee as a result of |
23 |
|
|
* using, modifying or distributing the software or its |
24 |
|
|
* derivatives. In no event will the University of Notre Dame or its |
25 |
|
|
* licensors be liable for any lost revenue, profit or data, or for |
26 |
|
|
* direct, indirect, special, consequential, incidental or punitive |
27 |
|
|
* damages, however caused and regardless of the theory of liability, |
28 |
|
|
* arising out of the use of or inability to use software, even if the |
29 |
|
|
* University of Notre Dame has been advised of the possibility of |
30 |
|
|
* such damages. |
31 |
gezelter |
1390 |
* |
32 |
|
|
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
|
|
* research, please cite the appropriate papers when you publish your |
34 |
|
|
* work. Good starting points are: |
35 |
|
|
* |
36 |
|
|
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
|
|
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
|
|
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 |
|
|
* [4] Vardeman & Gezelter, in progress (2009). |
40 |
gezelter |
246 |
*/ |
41 |
|
|
|
42 |
gezelter |
507 |
/** |
43 |
|
|
* @file ForceManager.cpp |
44 |
|
|
* @author tlin |
45 |
|
|
* @date 11/09/2004 |
46 |
|
|
* @time 10:39am |
47 |
|
|
* @version 1.0 |
48 |
|
|
*/ |
49 |
gezelter |
246 |
|
50 |
|
|
#include "brains/ForceManager.hpp" |
51 |
|
|
#include "primitives/Molecule.hpp" |
52 |
|
|
#include "UseTheForce/doForces_interface.h" |
53 |
gezelter |
1390 |
#define __OPENMD_C |
54 |
chuckv |
664 |
#include "UseTheForce/DarkSide/fInteractionMap.h" |
55 |
gezelter |
246 |
#include "utils/simError.h" |
56 |
xsun |
1215 |
#include "primitives/Bond.hpp" |
57 |
tim |
749 |
#include "primitives/Bend.hpp" |
58 |
cli2 |
1275 |
#include "primitives/Torsion.hpp" |
59 |
|
|
#include "primitives/Inversion.hpp" |
60 |
gezelter |
1467 |
|
61 |
gezelter |
1390 |
namespace OpenMD { |
62 |
gezelter |
1469 |
|
63 |
|
|
ForceManager::ForceManager(SimInfo * info) : info_(info), |
64 |
|
|
NBforcesInitialized_(false) { |
65 |
|
|
} |
66 |
|
|
|
67 |
gezelter |
1464 |
void ForceManager::calcForces() { |
68 |
gezelter |
1126 |
|
69 |
gezelter |
246 |
if (!info_->isFortranInitialized()) { |
70 |
gezelter |
507 |
info_->update(); |
71 |
gezelter |
246 |
} |
72 |
gezelter |
1126 |
|
73 |
gezelter |
246 |
preCalculation(); |
74 |
|
|
|
75 |
|
|
calcShortRangeInteraction(); |
76 |
|
|
|
77 |
gezelter |
1464 |
calcLongRangeInteraction(); |
78 |
gezelter |
246 |
|
79 |
gezelter |
1464 |
postCalculation(); |
80 |
tim |
749 |
|
81 |
gezelter |
507 |
} |
82 |
gezelter |
1126 |
|
83 |
gezelter |
507 |
void ForceManager::preCalculation() { |
84 |
gezelter |
246 |
SimInfo::MoleculeIterator mi; |
85 |
|
|
Molecule* mol; |
86 |
|
|
Molecule::AtomIterator ai; |
87 |
|
|
Atom* atom; |
88 |
|
|
Molecule::RigidBodyIterator rbIter; |
89 |
|
|
RigidBody* rb; |
90 |
|
|
|
91 |
|
|
// forces are zeroed here, before any are accumulated. |
92 |
|
|
// NOTE: do not rezero the forces in Fortran. |
93 |
chuckv |
1245 |
|
94 |
gezelter |
1126 |
for (mol = info_->beginMolecule(mi); mol != NULL; |
95 |
|
|
mol = info_->nextMolecule(mi)) { |
96 |
gezelter |
507 |
for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) { |
97 |
|
|
atom->zeroForcesAndTorques(); |
98 |
|
|
} |
99 |
chuckv |
1245 |
|
100 |
gezelter |
507 |
//change the positions of atoms which belong to the rigidbodies |
101 |
gezelter |
1126 |
for (rb = mol->beginRigidBody(rbIter); rb != NULL; |
102 |
|
|
rb = mol->nextRigidBody(rbIter)) { |
103 |
gezelter |
507 |
rb->zeroForcesAndTorques(); |
104 |
|
|
} |
105 |
chuckv |
1245 |
|
106 |
gezelter |
246 |
} |
107 |
|
|
|
108 |
gezelter |
1126 |
// Zero out the stress tensor |
109 |
|
|
tau *= 0.0; |
110 |
|
|
|
111 |
gezelter |
507 |
} |
112 |
gezelter |
1126 |
|
113 |
gezelter |
507 |
void ForceManager::calcShortRangeInteraction() { |
114 |
gezelter |
246 |
Molecule* mol; |
115 |
|
|
RigidBody* rb; |
116 |
|
|
Bond* bond; |
117 |
|
|
Bend* bend; |
118 |
|
|
Torsion* torsion; |
119 |
cli2 |
1275 |
Inversion* inversion; |
120 |
gezelter |
246 |
SimInfo::MoleculeIterator mi; |
121 |
|
|
Molecule::RigidBodyIterator rbIter; |
122 |
|
|
Molecule::BondIterator bondIter;; |
123 |
|
|
Molecule::BendIterator bendIter; |
124 |
|
|
Molecule::TorsionIterator torsionIter; |
125 |
cli2 |
1275 |
Molecule::InversionIterator inversionIter; |
126 |
tim |
963 |
RealType bondPotential = 0.0; |
127 |
|
|
RealType bendPotential = 0.0; |
128 |
|
|
RealType torsionPotential = 0.0; |
129 |
cli2 |
1275 |
RealType inversionPotential = 0.0; |
130 |
gezelter |
246 |
|
131 |
|
|
//calculate short range interactions |
132 |
gezelter |
1126 |
for (mol = info_->beginMolecule(mi); mol != NULL; |
133 |
|
|
mol = info_->nextMolecule(mi)) { |
134 |
gezelter |
246 |
|
135 |
gezelter |
507 |
//change the positions of atoms which belong to the rigidbodies |
136 |
gezelter |
1126 |
for (rb = mol->beginRigidBody(rbIter); rb != NULL; |
137 |
|
|
rb = mol->nextRigidBody(rbIter)) { |
138 |
|
|
rb->updateAtoms(); |
139 |
gezelter |
507 |
} |
140 |
gezelter |
246 |
|
141 |
gezelter |
1126 |
for (bond = mol->beginBond(bondIter); bond != NULL; |
142 |
|
|
bond = mol->nextBond(bondIter)) { |
143 |
tim |
749 |
bond->calcForce(); |
144 |
|
|
bondPotential += bond->getPotential(); |
145 |
gezelter |
507 |
} |
146 |
gezelter |
246 |
|
147 |
gezelter |
1126 |
for (bend = mol->beginBend(bendIter); bend != NULL; |
148 |
|
|
bend = mol->nextBend(bendIter)) { |
149 |
|
|
|
150 |
|
|
RealType angle; |
151 |
|
|
bend->calcForce(angle); |
152 |
|
|
RealType currBendPot = bend->getPotential(); |
153 |
gezelter |
1448 |
|
154 |
gezelter |
1126 |
bendPotential += bend->getPotential(); |
155 |
|
|
std::map<Bend*, BendDataSet>::iterator i = bendDataSets.find(bend); |
156 |
|
|
if (i == bendDataSets.end()) { |
157 |
|
|
BendDataSet dataSet; |
158 |
|
|
dataSet.prev.angle = dataSet.curr.angle = angle; |
159 |
|
|
dataSet.prev.potential = dataSet.curr.potential = currBendPot; |
160 |
|
|
dataSet.deltaV = 0.0; |
161 |
|
|
bendDataSets.insert(std::map<Bend*, BendDataSet>::value_type(bend, dataSet)); |
162 |
|
|
}else { |
163 |
|
|
i->second.prev.angle = i->second.curr.angle; |
164 |
|
|
i->second.prev.potential = i->second.curr.potential; |
165 |
|
|
i->second.curr.angle = angle; |
166 |
|
|
i->second.curr.potential = currBendPot; |
167 |
|
|
i->second.deltaV = fabs(i->second.curr.potential - |
168 |
|
|
i->second.prev.potential); |
169 |
|
|
} |
170 |
gezelter |
507 |
} |
171 |
gezelter |
1126 |
|
172 |
|
|
for (torsion = mol->beginTorsion(torsionIter); torsion != NULL; |
173 |
|
|
torsion = mol->nextTorsion(torsionIter)) { |
174 |
tim |
963 |
RealType angle; |
175 |
gezelter |
1126 |
torsion->calcForce(angle); |
176 |
tim |
963 |
RealType currTorsionPot = torsion->getPotential(); |
177 |
gezelter |
1126 |
torsionPotential += torsion->getPotential(); |
178 |
|
|
std::map<Torsion*, TorsionDataSet>::iterator i = torsionDataSets.find(torsion); |
179 |
|
|
if (i == torsionDataSets.end()) { |
180 |
|
|
TorsionDataSet dataSet; |
181 |
|
|
dataSet.prev.angle = dataSet.curr.angle = angle; |
182 |
|
|
dataSet.prev.potential = dataSet.curr.potential = currTorsionPot; |
183 |
|
|
dataSet.deltaV = 0.0; |
184 |
|
|
torsionDataSets.insert(std::map<Torsion*, TorsionDataSet>::value_type(torsion, dataSet)); |
185 |
|
|
}else { |
186 |
|
|
i->second.prev.angle = i->second.curr.angle; |
187 |
|
|
i->second.prev.potential = i->second.curr.potential; |
188 |
|
|
i->second.curr.angle = angle; |
189 |
|
|
i->second.curr.potential = currTorsionPot; |
190 |
|
|
i->second.deltaV = fabs(i->second.curr.potential - |
191 |
|
|
i->second.prev.potential); |
192 |
|
|
} |
193 |
|
|
} |
194 |
cli2 |
1275 |
|
195 |
|
|
for (inversion = mol->beginInversion(inversionIter); |
196 |
|
|
inversion != NULL; |
197 |
|
|
inversion = mol->nextInversion(inversionIter)) { |
198 |
|
|
RealType angle; |
199 |
|
|
inversion->calcForce(angle); |
200 |
|
|
RealType currInversionPot = inversion->getPotential(); |
201 |
|
|
inversionPotential += inversion->getPotential(); |
202 |
|
|
std::map<Inversion*, InversionDataSet>::iterator i = inversionDataSets.find(inversion); |
203 |
|
|
if (i == inversionDataSets.end()) { |
204 |
|
|
InversionDataSet dataSet; |
205 |
|
|
dataSet.prev.angle = dataSet.curr.angle = angle; |
206 |
|
|
dataSet.prev.potential = dataSet.curr.potential = currInversionPot; |
207 |
|
|
dataSet.deltaV = 0.0; |
208 |
|
|
inversionDataSets.insert(std::map<Inversion*, InversionDataSet>::value_type(inversion, dataSet)); |
209 |
|
|
}else { |
210 |
|
|
i->second.prev.angle = i->second.curr.angle; |
211 |
|
|
i->second.prev.potential = i->second.curr.potential; |
212 |
|
|
i->second.curr.angle = angle; |
213 |
|
|
i->second.curr.potential = currInversionPot; |
214 |
|
|
i->second.deltaV = fabs(i->second.curr.potential - |
215 |
|
|
i->second.prev.potential); |
216 |
|
|
} |
217 |
|
|
} |
218 |
gezelter |
246 |
} |
219 |
|
|
|
220 |
gezelter |
1126 |
RealType shortRangePotential = bondPotential + bendPotential + |
221 |
cli2 |
1275 |
torsionPotential + inversionPotential; |
222 |
gezelter |
246 |
Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); |
223 |
|
|
curSnapshot->statData[Stats::SHORT_RANGE_POTENTIAL] = shortRangePotential; |
224 |
tim |
665 |
curSnapshot->statData[Stats::BOND_POTENTIAL] = bondPotential; |
225 |
|
|
curSnapshot->statData[Stats::BEND_POTENTIAL] = bendPotential; |
226 |
|
|
curSnapshot->statData[Stats::DIHEDRAL_POTENTIAL] = torsionPotential; |
227 |
cli2 |
1275 |
curSnapshot->statData[Stats::INVERSION_POTENTIAL] = inversionPotential; |
228 |
tim |
665 |
|
229 |
gezelter |
507 |
} |
230 |
gezelter |
1126 |
|
231 |
gezelter |
1464 |
void ForceManager::calcLongRangeInteraction() { |
232 |
gezelter |
246 |
Snapshot* curSnapshot; |
233 |
|
|
DataStorage* config; |
234 |
tim |
963 |
RealType* frc; |
235 |
|
|
RealType* pos; |
236 |
|
|
RealType* trq; |
237 |
|
|
RealType* A; |
238 |
|
|
RealType* electroFrame; |
239 |
|
|
RealType* rc; |
240 |
chuckv |
1245 |
RealType* particlePot; |
241 |
gezelter |
246 |
|
242 |
|
|
//get current snapshot from SimInfo |
243 |
|
|
curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); |
244 |
gezelter |
1126 |
|
245 |
gezelter |
246 |
//get array pointers |
246 |
|
|
config = &(curSnapshot->atomData); |
247 |
|
|
frc = config->getArrayPointer(DataStorage::dslForce); |
248 |
|
|
pos = config->getArrayPointer(DataStorage::dslPosition); |
249 |
|
|
trq = config->getArrayPointer(DataStorage::dslTorque); |
250 |
|
|
A = config->getArrayPointer(DataStorage::dslAmat); |
251 |
|
|
electroFrame = config->getArrayPointer(DataStorage::dslElectroFrame); |
252 |
chuckv |
1245 |
particlePot = config->getArrayPointer(DataStorage::dslParticlePot); |
253 |
gezelter |
246 |
|
254 |
|
|
//calculate the center of mass of cutoff group |
255 |
|
|
SimInfo::MoleculeIterator mi; |
256 |
|
|
Molecule* mol; |
257 |
|
|
Molecule::CutoffGroupIterator ci; |
258 |
|
|
CutoffGroup* cg; |
259 |
|
|
Vector3d com; |
260 |
|
|
std::vector<Vector3d> rcGroup; |
261 |
gezelter |
1126 |
|
262 |
gezelter |
246 |
if(info_->getNCutoffGroups() > 0){ |
263 |
gezelter |
1126 |
|
264 |
|
|
for (mol = info_->beginMolecule(mi); mol != NULL; |
265 |
|
|
mol = info_->nextMolecule(mi)) { |
266 |
|
|
for(cg = mol->beginCutoffGroup(ci); cg != NULL; |
267 |
|
|
cg = mol->nextCutoffGroup(ci)) { |
268 |
gezelter |
507 |
cg->getCOM(com); |
269 |
|
|
rcGroup.push_back(com); |
270 |
gezelter |
246 |
} |
271 |
gezelter |
507 |
}// end for (mol) |
272 |
gezelter |
246 |
|
273 |
gezelter |
507 |
rc = rcGroup[0].getArrayPointer(); |
274 |
gezelter |
246 |
} else { |
275 |
gezelter |
1126 |
// center of mass of the group is the same as position of the atom |
276 |
|
|
// if cutoff group does not exist |
277 |
gezelter |
507 |
rc = pos; |
278 |
gezelter |
246 |
} |
279 |
gezelter |
1126 |
|
280 |
gezelter |
246 |
//initialize data before passing to fortran |
281 |
tim |
963 |
RealType longRangePotential[LR_POT_TYPES]; |
282 |
|
|
RealType lrPot = 0.0; |
283 |
gezelter |
246 |
int isError = 0; |
284 |
|
|
|
285 |
chuckv |
664 |
for (int i=0; i<LR_POT_TYPES;i++){ |
286 |
|
|
longRangePotential[i]=0.0; //Initialize array |
287 |
|
|
} |
288 |
gezelter |
1126 |
|
289 |
xsun |
1215 |
doForceLoop(pos, |
290 |
|
|
rc, |
291 |
|
|
A, |
292 |
|
|
electroFrame, |
293 |
|
|
frc, |
294 |
|
|
trq, |
295 |
|
|
tau.getArrayPointer(), |
296 |
|
|
longRangePotential, |
297 |
chuckv |
1245 |
particlePot, |
298 |
xsun |
1215 |
&isError ); |
299 |
|
|
|
300 |
gezelter |
246 |
if( isError ){ |
301 |
gezelter |
507 |
sprintf( painCave.errMsg, |
302 |
|
|
"Error returned from the fortran force calculation.\n" ); |
303 |
|
|
painCave.isFatal = 1; |
304 |
|
|
simError(); |
305 |
gezelter |
246 |
} |
306 |
chuckv |
664 |
for (int i=0; i<LR_POT_TYPES;i++){ |
307 |
|
|
lrPot += longRangePotential[i]; //Quick hack |
308 |
|
|
} |
309 |
gezelter |
1503 |
|
310 |
gezelter |
246 |
//store the tau and long range potential |
311 |
chuckv |
664 |
curSnapshot->statData[Stats::LONG_RANGE_POTENTIAL] = lrPot; |
312 |
chrisfen |
691 |
curSnapshot->statData[Stats::VANDERWAALS_POTENTIAL] = longRangePotential[VDW_POT]; |
313 |
tim |
681 |
curSnapshot->statData[Stats::ELECTROSTATIC_POTENTIAL] = longRangePotential[ELECTROSTATIC_POT]; |
314 |
gezelter |
507 |
} |
315 |
gezelter |
246 |
|
316 |
gezelter |
1126 |
|
317 |
gezelter |
1464 |
void ForceManager::postCalculation() { |
318 |
gezelter |
246 |
SimInfo::MoleculeIterator mi; |
319 |
|
|
Molecule* mol; |
320 |
|
|
Molecule::RigidBodyIterator rbIter; |
321 |
|
|
RigidBody* rb; |
322 |
gezelter |
1126 |
Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); |
323 |
gezelter |
246 |
|
324 |
|
|
// collect the atomic forces onto rigid bodies |
325 |
gezelter |
1126 |
|
326 |
|
|
for (mol = info_->beginMolecule(mi); mol != NULL; |
327 |
|
|
mol = info_->nextMolecule(mi)) { |
328 |
|
|
for (rb = mol->beginRigidBody(rbIter); rb != NULL; |
329 |
|
|
rb = mol->nextRigidBody(rbIter)) { |
330 |
gezelter |
1464 |
Mat3x3d rbTau = rb->calcForcesAndTorquesAndVirial(); |
331 |
|
|
tau += rbTau; |
332 |
gezelter |
507 |
} |
333 |
gezelter |
1126 |
} |
334 |
gezelter |
1464 |
|
335 |
gezelter |
1126 |
#ifdef IS_MPI |
336 |
gezelter |
1464 |
Mat3x3d tmpTau(tau); |
337 |
|
|
MPI_Allreduce(tmpTau.getArrayPointer(), tau.getArrayPointer(), |
338 |
|
|
9, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD); |
339 |
gezelter |
1126 |
#endif |
340 |
gezelter |
1464 |
curSnapshot->statData.setTau(tau); |
341 |
gezelter |
507 |
} |
342 |
gezelter |
246 |
|
343 |
gezelter |
1390 |
} //end namespace OpenMD |