ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/brains/ForceManager.cpp
Revision: 1483
Committed: Tue Jul 27 21:17:31 2010 UTC (14 years, 9 months ago) by gezelter
File size: 12960 byte(s)
Log Message:
Added GB module to the C++ side, got rid of it on the fortran side.

File Contents

# User Rev Content
1 gezelter 507 /*
2 gezelter 246 * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3     *
4     * The University of Notre Dame grants you ("Licensee") a
5     * non-exclusive, royalty free, license to use, modify and
6     * redistribute this software in source and binary code form, provided
7     * that the following conditions are met:
8     *
9 gezelter 1390 * 1. Redistributions of source code must retain the above copyright
10 gezelter 246 * notice, this list of conditions and the following disclaimer.
11     *
12 gezelter 1390 * 2. Redistributions in binary form must reproduce the above copyright
13 gezelter 246 * notice, this list of conditions and the following disclaimer in the
14     * documentation and/or other materials provided with the
15     * distribution.
16     *
17     * This software is provided "AS IS," without a warranty of any
18     * kind. All express or implied conditions, representations and
19     * warranties, including any implied warranty of merchantability,
20     * fitness for a particular purpose or non-infringement, are hereby
21     * excluded. The University of Notre Dame and its licensors shall not
22     * be liable for any damages suffered by licensee as a result of
23     * using, modifying or distributing the software or its
24     * derivatives. In no event will the University of Notre Dame or its
25     * licensors be liable for any lost revenue, profit or data, or for
26     * direct, indirect, special, consequential, incidental or punitive
27     * damages, however caused and regardless of the theory of liability,
28     * arising out of the use of or inability to use software, even if the
29     * University of Notre Dame has been advised of the possibility of
30     * such damages.
31 gezelter 1390 *
32     * SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your
33     * research, please cite the appropriate papers when you publish your
34     * work. Good starting points are:
35     *
36     * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).
37     * [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).
38     * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).
39     * [4] Vardeman & Gezelter, in progress (2009).
40 gezelter 246 */
41    
42 gezelter 507 /**
43     * @file ForceManager.cpp
44     * @author tlin
45     * @date 11/09/2004
46     * @time 10:39am
47     * @version 1.0
48     */
49 gezelter 246
50     #include "brains/ForceManager.hpp"
51     #include "primitives/Molecule.hpp"
52     #include "UseTheForce/doForces_interface.h"
53 gezelter 1390 #define __OPENMD_C
54 chuckv 664 #include "UseTheForce/DarkSide/fInteractionMap.h"
55 gezelter 246 #include "utils/simError.h"
56 xsun 1215 #include "primitives/Bond.hpp"
57 tim 749 #include "primitives/Bend.hpp"
58 cli2 1275 #include "primitives/Torsion.hpp"
59     #include "primitives/Inversion.hpp"
60 gezelter 1467
61 gezelter 1390 namespace OpenMD {
62 gezelter 1469
63     ForceManager::ForceManager(SimInfo * info) : info_(info),
64     NBforcesInitialized_(false) {
65 gezelter 1470 lj_ = LJ::Instance();
66     lj_->setForceField(info_->getForceField());
67 gezelter 1480
68 gezelter 1483 gb_ = GB::Instance();
69     gb_->setForceField(info_->getForceField());
70    
71 gezelter 1480 eam_ = EAM::Instance();
72     eam_->setForceField(info_->getForceField());
73 gezelter 1469 }
74    
75 gezelter 1464 void ForceManager::calcForces() {
76 gezelter 1126
77 gezelter 246 if (!info_->isFortranInitialized()) {
78 gezelter 507 info_->update();
79 gezelter 246 }
80 gezelter 1126
81 gezelter 246 preCalculation();
82    
83     calcShortRangeInteraction();
84    
85 gezelter 1464 calcLongRangeInteraction();
86 gezelter 246
87 gezelter 1464 postCalculation();
88 tim 749
89 gezelter 507 }
90 gezelter 1126
91 gezelter 507 void ForceManager::preCalculation() {
92 gezelter 246 SimInfo::MoleculeIterator mi;
93     Molecule* mol;
94     Molecule::AtomIterator ai;
95     Atom* atom;
96     Molecule::RigidBodyIterator rbIter;
97     RigidBody* rb;
98    
99     // forces are zeroed here, before any are accumulated.
100     // NOTE: do not rezero the forces in Fortran.
101 chuckv 1245
102 gezelter 1126 for (mol = info_->beginMolecule(mi); mol != NULL;
103     mol = info_->nextMolecule(mi)) {
104 gezelter 507 for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
105     atom->zeroForcesAndTorques();
106     }
107 chuckv 1245
108 gezelter 507 //change the positions of atoms which belong to the rigidbodies
109 gezelter 1126 for (rb = mol->beginRigidBody(rbIter); rb != NULL;
110     rb = mol->nextRigidBody(rbIter)) {
111 gezelter 507 rb->zeroForcesAndTorques();
112     }
113 chuckv 1245
114 gezelter 246 }
115    
116 gezelter 1126 // Zero out the stress tensor
117     tau *= 0.0;
118    
119 gezelter 507 }
120 gezelter 1126
121 gezelter 507 void ForceManager::calcShortRangeInteraction() {
122 gezelter 246 Molecule* mol;
123     RigidBody* rb;
124     Bond* bond;
125     Bend* bend;
126     Torsion* torsion;
127 cli2 1275 Inversion* inversion;
128 gezelter 246 SimInfo::MoleculeIterator mi;
129     Molecule::RigidBodyIterator rbIter;
130     Molecule::BondIterator bondIter;;
131     Molecule::BendIterator bendIter;
132     Molecule::TorsionIterator torsionIter;
133 cli2 1275 Molecule::InversionIterator inversionIter;
134 tim 963 RealType bondPotential = 0.0;
135     RealType bendPotential = 0.0;
136     RealType torsionPotential = 0.0;
137 cli2 1275 RealType inversionPotential = 0.0;
138 gezelter 246
139     //calculate short range interactions
140 gezelter 1126 for (mol = info_->beginMolecule(mi); mol != NULL;
141     mol = info_->nextMolecule(mi)) {
142 gezelter 246
143 gezelter 507 //change the positions of atoms which belong to the rigidbodies
144 gezelter 1126 for (rb = mol->beginRigidBody(rbIter); rb != NULL;
145     rb = mol->nextRigidBody(rbIter)) {
146     rb->updateAtoms();
147 gezelter 507 }
148 gezelter 246
149 gezelter 1126 for (bond = mol->beginBond(bondIter); bond != NULL;
150     bond = mol->nextBond(bondIter)) {
151 tim 749 bond->calcForce();
152     bondPotential += bond->getPotential();
153 gezelter 507 }
154 gezelter 246
155 gezelter 1126 for (bend = mol->beginBend(bendIter); bend != NULL;
156     bend = mol->nextBend(bendIter)) {
157    
158     RealType angle;
159     bend->calcForce(angle);
160     RealType currBendPot = bend->getPotential();
161 gezelter 1448
162 gezelter 1126 bendPotential += bend->getPotential();
163     std::map<Bend*, BendDataSet>::iterator i = bendDataSets.find(bend);
164     if (i == bendDataSets.end()) {
165     BendDataSet dataSet;
166     dataSet.prev.angle = dataSet.curr.angle = angle;
167     dataSet.prev.potential = dataSet.curr.potential = currBendPot;
168     dataSet.deltaV = 0.0;
169     bendDataSets.insert(std::map<Bend*, BendDataSet>::value_type(bend, dataSet));
170     }else {
171     i->second.prev.angle = i->second.curr.angle;
172     i->second.prev.potential = i->second.curr.potential;
173     i->second.curr.angle = angle;
174     i->second.curr.potential = currBendPot;
175     i->second.deltaV = fabs(i->second.curr.potential -
176     i->second.prev.potential);
177     }
178 gezelter 507 }
179 gezelter 1126
180     for (torsion = mol->beginTorsion(torsionIter); torsion != NULL;
181     torsion = mol->nextTorsion(torsionIter)) {
182 tim 963 RealType angle;
183 gezelter 1126 torsion->calcForce(angle);
184 tim 963 RealType currTorsionPot = torsion->getPotential();
185 gezelter 1126 torsionPotential += torsion->getPotential();
186     std::map<Torsion*, TorsionDataSet>::iterator i = torsionDataSets.find(torsion);
187     if (i == torsionDataSets.end()) {
188     TorsionDataSet dataSet;
189     dataSet.prev.angle = dataSet.curr.angle = angle;
190     dataSet.prev.potential = dataSet.curr.potential = currTorsionPot;
191     dataSet.deltaV = 0.0;
192     torsionDataSets.insert(std::map<Torsion*, TorsionDataSet>::value_type(torsion, dataSet));
193     }else {
194     i->second.prev.angle = i->second.curr.angle;
195     i->second.prev.potential = i->second.curr.potential;
196     i->second.curr.angle = angle;
197     i->second.curr.potential = currTorsionPot;
198     i->second.deltaV = fabs(i->second.curr.potential -
199     i->second.prev.potential);
200     }
201     }
202 cli2 1275
203     for (inversion = mol->beginInversion(inversionIter);
204     inversion != NULL;
205     inversion = mol->nextInversion(inversionIter)) {
206     RealType angle;
207     inversion->calcForce(angle);
208     RealType currInversionPot = inversion->getPotential();
209     inversionPotential += inversion->getPotential();
210     std::map<Inversion*, InversionDataSet>::iterator i = inversionDataSets.find(inversion);
211     if (i == inversionDataSets.end()) {
212     InversionDataSet dataSet;
213     dataSet.prev.angle = dataSet.curr.angle = angle;
214     dataSet.prev.potential = dataSet.curr.potential = currInversionPot;
215     dataSet.deltaV = 0.0;
216     inversionDataSets.insert(std::map<Inversion*, InversionDataSet>::value_type(inversion, dataSet));
217     }else {
218     i->second.prev.angle = i->second.curr.angle;
219     i->second.prev.potential = i->second.curr.potential;
220     i->second.curr.angle = angle;
221     i->second.curr.potential = currInversionPot;
222     i->second.deltaV = fabs(i->second.curr.potential -
223     i->second.prev.potential);
224     }
225     }
226 gezelter 246 }
227    
228 gezelter 1126 RealType shortRangePotential = bondPotential + bendPotential +
229 cli2 1275 torsionPotential + inversionPotential;
230 gezelter 246 Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
231     curSnapshot->statData[Stats::SHORT_RANGE_POTENTIAL] = shortRangePotential;
232 tim 665 curSnapshot->statData[Stats::BOND_POTENTIAL] = bondPotential;
233     curSnapshot->statData[Stats::BEND_POTENTIAL] = bendPotential;
234     curSnapshot->statData[Stats::DIHEDRAL_POTENTIAL] = torsionPotential;
235 cli2 1275 curSnapshot->statData[Stats::INVERSION_POTENTIAL] = inversionPotential;
236 tim 665
237 gezelter 507 }
238 gezelter 1126
239 gezelter 1464 void ForceManager::calcLongRangeInteraction() {
240 gezelter 246 Snapshot* curSnapshot;
241     DataStorage* config;
242 tim 963 RealType* frc;
243     RealType* pos;
244     RealType* trq;
245     RealType* A;
246     RealType* electroFrame;
247     RealType* rc;
248 chuckv 1245 RealType* particlePot;
249 gezelter 246
250     //get current snapshot from SimInfo
251     curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
252 gezelter 1126
253 gezelter 246 //get array pointers
254     config = &(curSnapshot->atomData);
255     frc = config->getArrayPointer(DataStorage::dslForce);
256     pos = config->getArrayPointer(DataStorage::dslPosition);
257     trq = config->getArrayPointer(DataStorage::dslTorque);
258     A = config->getArrayPointer(DataStorage::dslAmat);
259     electroFrame = config->getArrayPointer(DataStorage::dslElectroFrame);
260 chuckv 1245 particlePot = config->getArrayPointer(DataStorage::dslParticlePot);
261 gezelter 246
262     //calculate the center of mass of cutoff group
263     SimInfo::MoleculeIterator mi;
264     Molecule* mol;
265     Molecule::CutoffGroupIterator ci;
266     CutoffGroup* cg;
267     Vector3d com;
268     std::vector<Vector3d> rcGroup;
269 gezelter 1126
270 gezelter 246 if(info_->getNCutoffGroups() > 0){
271 gezelter 1126
272     for (mol = info_->beginMolecule(mi); mol != NULL;
273     mol = info_->nextMolecule(mi)) {
274     for(cg = mol->beginCutoffGroup(ci); cg != NULL;
275     cg = mol->nextCutoffGroup(ci)) {
276 gezelter 507 cg->getCOM(com);
277     rcGroup.push_back(com);
278 gezelter 246 }
279 gezelter 507 }// end for (mol)
280 gezelter 246
281 gezelter 507 rc = rcGroup[0].getArrayPointer();
282 gezelter 246 } else {
283 gezelter 1126 // center of mass of the group is the same as position of the atom
284     // if cutoff group does not exist
285 gezelter 507 rc = pos;
286 gezelter 246 }
287 gezelter 1126
288 gezelter 246 //initialize data before passing to fortran
289 tim 963 RealType longRangePotential[LR_POT_TYPES];
290     RealType lrPot = 0.0;
291 chrisfen 998 Vector3d totalDipole;
292 gezelter 246 int isError = 0;
293    
294 chuckv 664 for (int i=0; i<LR_POT_TYPES;i++){
295     longRangePotential[i]=0.0; //Initialize array
296     }
297 gezelter 1126
298 xsun 1215 doForceLoop(pos,
299     rc,
300     A,
301     electroFrame,
302     frc,
303     trq,
304     tau.getArrayPointer(),
305     longRangePotential,
306 chuckv 1245 particlePot,
307 xsun 1215 &isError );
308    
309 gezelter 246 if( isError ){
310 gezelter 507 sprintf( painCave.errMsg,
311     "Error returned from the fortran force calculation.\n" );
312     painCave.isFatal = 1;
313     simError();
314 gezelter 246 }
315 chuckv 664 for (int i=0; i<LR_POT_TYPES;i++){
316     lrPot += longRangePotential[i]; //Quick hack
317     }
318 gezelter 1126
319 chrisfen 998 // grab the simulation box dipole moment if specified
320     if (info_->getCalcBoxDipole()){
321     getAccumulatedBoxDipole(totalDipole.getArrayPointer());
322 gezelter 1126
323 chrisfen 998 curSnapshot->statData[Stats::BOX_DIPOLE_X] = totalDipole(0);
324     curSnapshot->statData[Stats::BOX_DIPOLE_Y] = totalDipole(1);
325     curSnapshot->statData[Stats::BOX_DIPOLE_Z] = totalDipole(2);
326     }
327 gezelter 1126
328 gezelter 246 //store the tau and long range potential
329 chuckv 664 curSnapshot->statData[Stats::LONG_RANGE_POTENTIAL] = lrPot;
330 chrisfen 691 curSnapshot->statData[Stats::VANDERWAALS_POTENTIAL] = longRangePotential[VDW_POT];
331 tim 681 curSnapshot->statData[Stats::ELECTROSTATIC_POTENTIAL] = longRangePotential[ELECTROSTATIC_POT];
332 gezelter 507 }
333 gezelter 246
334 gezelter 1126
335 gezelter 1464 void ForceManager::postCalculation() {
336 gezelter 246 SimInfo::MoleculeIterator mi;
337     Molecule* mol;
338     Molecule::RigidBodyIterator rbIter;
339     RigidBody* rb;
340 gezelter 1126 Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
341 gezelter 246
342     // collect the atomic forces onto rigid bodies
343 gezelter 1126
344     for (mol = info_->beginMolecule(mi); mol != NULL;
345     mol = info_->nextMolecule(mi)) {
346     for (rb = mol->beginRigidBody(rbIter); rb != NULL;
347     rb = mol->nextRigidBody(rbIter)) {
348 gezelter 1464 Mat3x3d rbTau = rb->calcForcesAndTorquesAndVirial();
349     tau += rbTau;
350 gezelter 507 }
351 gezelter 1126 }
352 gezelter 1464
353 gezelter 1126 #ifdef IS_MPI
354 gezelter 1464 Mat3x3d tmpTau(tau);
355     MPI_Allreduce(tmpTau.getArrayPointer(), tau.getArrayPointer(),
356     9, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
357 gezelter 1126 #endif
358 gezelter 1464 curSnapshot->statData.setTau(tau);
359 gezelter 507 }
360 gezelter 246
361 gezelter 1390 } //end namespace OpenMD

Properties

Name Value
svn:executable *
svn:keywords Author Id Revision Date