1 |
/* |
2 |
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
* |
4 |
* The University of Notre Dame grants you ("Licensee") a |
5 |
* non-exclusive, royalty free, license to use, modify and |
6 |
* redistribute this software in source and binary code form, provided |
7 |
* that the following conditions are met: |
8 |
* |
9 |
* 1. Redistributions of source code must retain the above copyright |
10 |
* notice, this list of conditions and the following disclaimer. |
11 |
* |
12 |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
* notice, this list of conditions and the following disclaimer in the |
14 |
* documentation and/or other materials provided with the |
15 |
* distribution. |
16 |
* |
17 |
* This software is provided "AS IS," without a warranty of any |
18 |
* kind. All express or implied conditions, representations and |
19 |
* warranties, including any implied warranty of merchantability, |
20 |
* fitness for a particular purpose or non-infringement, are hereby |
21 |
* excluded. The University of Notre Dame and its licensors shall not |
22 |
* be liable for any damages suffered by licensee as a result of |
23 |
* using, modifying or distributing the software or its |
24 |
* derivatives. In no event will the University of Notre Dame or its |
25 |
* licensors be liable for any lost revenue, profit or data, or for |
26 |
* direct, indirect, special, consequential, incidental or punitive |
27 |
* damages, however caused and regardless of the theory of liability, |
28 |
* arising out of the use of or inability to use software, even if the |
29 |
* University of Notre Dame has been advised of the possibility of |
30 |
* such damages. |
31 |
* |
32 |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
* research, please cite the appropriate papers when you publish your |
34 |
* work. Good starting points are: |
35 |
* |
36 |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008). |
39 |
* [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
40 |
* [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
41 |
*/ |
42 |
|
43 |
/** |
44 |
* @file ForceField.cpp |
45 |
* @author tlin |
46 |
* @date 11/04/2004 |
47 |
* @version 1.0 |
48 |
*/ |
49 |
|
50 |
#include <algorithm> |
51 |
#include "brains/ForceField.hpp" |
52 |
#include "utils/simError.h" |
53 |
|
54 |
#include "io/OptionSectionParser.hpp" |
55 |
#include "io/BaseAtomTypesSectionParser.hpp" |
56 |
#include "io/DirectionalAtomTypesSectionParser.hpp" |
57 |
#include "io/AtomTypesSectionParser.hpp" |
58 |
#include "io/BendTypesSectionParser.hpp" |
59 |
#include "io/BondTypesSectionParser.hpp" |
60 |
#include "io/ChargeAtomTypesSectionParser.hpp" |
61 |
#include "io/EAMAtomTypesSectionParser.hpp" |
62 |
#include "io/FluctuatingChargeAtomTypesSectionParser.hpp" |
63 |
#include "io/GayBerneAtomTypesSectionParser.hpp" |
64 |
#include "io/InversionTypesSectionParser.hpp" |
65 |
#include "io/LennardJonesAtomTypesSectionParser.hpp" |
66 |
#include "io/MultipoleAtomTypesSectionParser.hpp" |
67 |
#include "io/NonBondedInteractionsSectionParser.hpp" |
68 |
#include "io/PolarizableAtomTypesSectionParser.hpp" |
69 |
#include "io/SCAtomTypesSectionParser.hpp" |
70 |
#include "io/ShapeAtomTypesSectionParser.hpp" |
71 |
#include "io/StickyAtomTypesSectionParser.hpp" |
72 |
#include "io/StickyPowerAtomTypesSectionParser.hpp" |
73 |
#include "io/TorsionTypesSectionParser.hpp" |
74 |
|
75 |
#include "types/LennardJonesAdapter.hpp" |
76 |
#include "types/EAMAdapter.hpp" |
77 |
#include "types/SuttonChenAdapter.hpp" |
78 |
#include "types/GayBerneAdapter.hpp" |
79 |
#include "types/StickyAdapter.hpp" |
80 |
|
81 |
namespace OpenMD { |
82 |
|
83 |
ForceField::ForceField(std::string ffName) { |
84 |
|
85 |
char* tempPath; |
86 |
tempPath = getenv("FORCE_PARAM_PATH"); |
87 |
|
88 |
if (tempPath == NULL) { |
89 |
//convert a macro from compiler to a string in c++ |
90 |
STR_DEFINE(ffPath_, FRC_PATH ); |
91 |
} else { |
92 |
ffPath_ = tempPath; |
93 |
} |
94 |
|
95 |
setForceFieldFileName(ffName + ".frc"); |
96 |
|
97 |
/** |
98 |
* The order of adding section parsers is important. |
99 |
* |
100 |
* OptionSectionParser must come first to set options for other |
101 |
* parsers |
102 |
* |
103 |
* DirectionalAtomTypesSectionParser should be added before |
104 |
* AtomTypesSectionParser, and these two section parsers will |
105 |
* actually create "real" AtomTypes (AtomTypesSectionParser will |
106 |
* create AtomType and DirectionalAtomTypesSectionParser will |
107 |
* create DirectionalAtomType, which is a subclass of AtomType and |
108 |
* should come first). |
109 |
* |
110 |
* Other AtomTypes Section Parsers will not create the "real" |
111 |
* AtomType, they only add and set some attributes of the AtomType |
112 |
* (via the Adapters). Thus ordering of these is not important. |
113 |
* AtomTypesSectionParser should be added before other atom type |
114 |
* |
115 |
* The order of BondTypesSectionParser, BendTypesSectionParser and |
116 |
* TorsionTypesSectionParser, etc. are not important. |
117 |
*/ |
118 |
|
119 |
spMan_.push_back(new OptionSectionParser(forceFieldOptions_)); |
120 |
spMan_.push_back(new BaseAtomTypesSectionParser()); |
121 |
spMan_.push_back(new DirectionalAtomTypesSectionParser(forceFieldOptions_)); |
122 |
spMan_.push_back(new AtomTypesSectionParser()); |
123 |
|
124 |
spMan_.push_back(new LennardJonesAtomTypesSectionParser(forceFieldOptions_)); |
125 |
spMan_.push_back(new ChargeAtomTypesSectionParser(forceFieldOptions_)); |
126 |
spMan_.push_back(new MultipoleAtomTypesSectionParser(forceFieldOptions_)); |
127 |
spMan_.push_back(new FluctuatingChargeAtomTypesSectionParser(forceFieldOptions_)); |
128 |
spMan_.push_back(new PolarizableAtomTypesSectionParser(forceFieldOptions_)); |
129 |
spMan_.push_back(new GayBerneAtomTypesSectionParser(forceFieldOptions_)); |
130 |
spMan_.push_back(new EAMAtomTypesSectionParser(forceFieldOptions_)); |
131 |
spMan_.push_back(new SCAtomTypesSectionParser(forceFieldOptions_)); |
132 |
spMan_.push_back(new ShapeAtomTypesSectionParser(forceFieldOptions_)); |
133 |
spMan_.push_back(new StickyAtomTypesSectionParser(forceFieldOptions_)); |
134 |
spMan_.push_back(new StickyPowerAtomTypesSectionParser(forceFieldOptions_)); |
135 |
|
136 |
spMan_.push_back(new BondTypesSectionParser(forceFieldOptions_)); |
137 |
spMan_.push_back(new BendTypesSectionParser(forceFieldOptions_)); |
138 |
spMan_.push_back(new TorsionTypesSectionParser(forceFieldOptions_)); |
139 |
spMan_.push_back(new InversionTypesSectionParser(forceFieldOptions_)); |
140 |
|
141 |
spMan_.push_back(new NonBondedInteractionsSectionParser(forceFieldOptions_)); |
142 |
} |
143 |
|
144 |
void ForceField::parse(const std::string& filename) { |
145 |
ifstrstream* ffStream; |
146 |
|
147 |
ffStream = openForceFieldFile(filename); |
148 |
|
149 |
spMan_.parse(*ffStream, *this); |
150 |
|
151 |
ForceField::AtomTypeContainer::MapTypeIterator i; |
152 |
AtomType* at; |
153 |
|
154 |
for (at = atomTypeCont_.beginType(i); at != NULL; |
155 |
at = atomTypeCont_.nextType(i)) { |
156 |
|
157 |
// useBase sets the responsibilities, and these have to be done |
158 |
// after the atomTypes and Base types have all been scanned: |
159 |
|
160 |
std::vector<AtomType*> ayb = at->allYourBase(); |
161 |
if (ayb.size() > 1) { |
162 |
for (int j = ayb.size()-1; j > 0; j--) { |
163 |
|
164 |
ayb[j-1]->useBase(ayb[j]); |
165 |
|
166 |
} |
167 |
} |
168 |
} |
169 |
|
170 |
delete ffStream; |
171 |
} |
172 |
|
173 |
/** |
174 |
* getAtomType by string |
175 |
* |
176 |
* finds the requested atom type in this force field using the string |
177 |
* name of the atom type. |
178 |
*/ |
179 |
AtomType* ForceField::getAtomType(const std::string &at) { |
180 |
std::vector<std::string> keys; |
181 |
keys.push_back(at); |
182 |
return atomTypeCont_.find(keys); |
183 |
} |
184 |
|
185 |
/** |
186 |
* getAtomType by ident |
187 |
* |
188 |
* finds the requested atom type in this force field using the |
189 |
* integer ident instead of the string name of the atom type. |
190 |
*/ |
191 |
AtomType* ForceField::getAtomType(int ident) { |
192 |
std::string at = atypeIdentToName.find(ident)->second; |
193 |
return getAtomType(at); |
194 |
} |
195 |
|
196 |
BondType* ForceField::getBondType(const std::string &at1, |
197 |
const std::string &at2) { |
198 |
std::vector<std::string> keys; |
199 |
keys.push_back(at1); |
200 |
keys.push_back(at2); |
201 |
|
202 |
//try exact match first |
203 |
BondType* bondType = bondTypeCont_.find(keys); |
204 |
if (bondType) { |
205 |
return bondType; |
206 |
} else { |
207 |
AtomType* atype1; |
208 |
AtomType* atype2; |
209 |
std::vector<std::string> at1key; |
210 |
at1key.push_back(at1); |
211 |
atype1 = atomTypeCont_.find(at1key); |
212 |
|
213 |
std::vector<std::string> at2key; |
214 |
at2key.push_back(at2); |
215 |
atype2 = atomTypeCont_.find(at2key); |
216 |
|
217 |
// query atom types for their chains of responsibility |
218 |
std::vector<AtomType*> at1Chain = atype1->allYourBase(); |
219 |
std::vector<AtomType*> at2Chain = atype2->allYourBase(); |
220 |
|
221 |
std::vector<AtomType*>::iterator i; |
222 |
std::vector<AtomType*>::iterator j; |
223 |
|
224 |
int ii = 0; |
225 |
int jj = 0; |
226 |
int bondTypeScore; |
227 |
|
228 |
std::vector<std::pair<int, std::vector<std::string> > > foundBonds; |
229 |
|
230 |
for (i = at1Chain.begin(); i != at1Chain.end(); ++i) { |
231 |
jj = 0; |
232 |
for (j = at2Chain.begin(); j != at2Chain.end(); ++j) { |
233 |
|
234 |
bondTypeScore = ii + jj; |
235 |
|
236 |
std::vector<std::string> myKeys; |
237 |
myKeys.push_back((*i)->getName()); |
238 |
myKeys.push_back((*j)->getName()); |
239 |
|
240 |
BondType* bondType = bondTypeCont_.find(myKeys); |
241 |
if (bondType) { |
242 |
foundBonds.push_back(std::make_pair(bondTypeScore, myKeys)); |
243 |
} |
244 |
jj++; |
245 |
} |
246 |
ii++; |
247 |
} |
248 |
|
249 |
|
250 |
if (!foundBonds.empty()) { |
251 |
// sort the foundBonds by the score: |
252 |
std::sort(foundBonds.begin(), foundBonds.end()); |
253 |
|
254 |
std::vector<std::string> theKeys = foundBonds[0].second; |
255 |
|
256 |
BondType* bestType = bondTypeCont_.find(theKeys); |
257 |
|
258 |
return bestType; |
259 |
} else { |
260 |
//if no exact match found, try wild card match |
261 |
return bondTypeCont_.find(keys, wildCardAtomTypeName_); |
262 |
} |
263 |
} |
264 |
} |
265 |
|
266 |
BendType* ForceField::getBendType(const std::string &at1, |
267 |
const std::string &at2, |
268 |
const std::string &at3) { |
269 |
std::vector<std::string> keys; |
270 |
keys.push_back(at1); |
271 |
keys.push_back(at2); |
272 |
keys.push_back(at3); |
273 |
|
274 |
//try exact match first |
275 |
BendType* bendType = bendTypeCont_.find(keys); |
276 |
if (bendType) { |
277 |
return bendType; |
278 |
} else { |
279 |
|
280 |
AtomType* atype1; |
281 |
AtomType* atype2; |
282 |
AtomType* atype3; |
283 |
std::vector<std::string> at1key; |
284 |
at1key.push_back(at1); |
285 |
atype1 = atomTypeCont_.find(at1key); |
286 |
|
287 |
std::vector<std::string> at2key; |
288 |
at2key.push_back(at2); |
289 |
atype2 = atomTypeCont_.find(at2key); |
290 |
|
291 |
std::vector<std::string> at3key; |
292 |
at3key.push_back(at3); |
293 |
atype3 = atomTypeCont_.find(at3key); |
294 |
|
295 |
// query atom types for their chains of responsibility |
296 |
std::vector<AtomType*> at1Chain = atype1->allYourBase(); |
297 |
std::vector<AtomType*> at2Chain = atype2->allYourBase(); |
298 |
std::vector<AtomType*> at3Chain = atype3->allYourBase(); |
299 |
|
300 |
std::vector<AtomType*>::iterator i; |
301 |
std::vector<AtomType*>::iterator j; |
302 |
std::vector<AtomType*>::iterator k; |
303 |
|
304 |
int ii = 0; |
305 |
int jj = 0; |
306 |
int kk = 0; |
307 |
int IKscore; |
308 |
|
309 |
std::vector<tuple3<int, int, std::vector<std::string> > > foundBends; |
310 |
|
311 |
for (j = at2Chain.begin(); j != at2Chain.end(); ++j) { |
312 |
ii = 0; |
313 |
for (i = at1Chain.begin(); i != at1Chain.end(); ++i) { |
314 |
kk = 0; |
315 |
for (k = at3Chain.begin(); k != at3Chain.end(); ++k) { |
316 |
|
317 |
IKscore = ii + kk; |
318 |
|
319 |
std::vector<std::string> myKeys; |
320 |
myKeys.push_back((*i)->getName()); |
321 |
myKeys.push_back((*j)->getName()); |
322 |
myKeys.push_back((*k)->getName()); |
323 |
|
324 |
BendType* bendType = bendTypeCont_.find(myKeys); |
325 |
if (bendType) { |
326 |
foundBends.push_back( make_tuple3(jj, IKscore, myKeys) ); |
327 |
} |
328 |
kk++; |
329 |
} |
330 |
ii++; |
331 |
} |
332 |
jj++; |
333 |
} |
334 |
|
335 |
if (!foundBends.empty()) { |
336 |
std::sort(foundBends.begin(), foundBends.end()); |
337 |
std::vector<std::string> theKeys = foundBends[0].third; |
338 |
|
339 |
BendType* bestType = bendTypeCont_.find(theKeys); |
340 |
return bestType; |
341 |
} else { |
342 |
//if no exact match found, try wild card match |
343 |
return bendTypeCont_.find(keys, wildCardAtomTypeName_); |
344 |
} |
345 |
} |
346 |
} |
347 |
|
348 |
TorsionType* ForceField::getTorsionType(const std::string &at1, |
349 |
const std::string &at2, |
350 |
const std::string &at3, |
351 |
const std::string &at4) { |
352 |
std::vector<std::string> keys; |
353 |
keys.push_back(at1); |
354 |
keys.push_back(at2); |
355 |
keys.push_back(at3); |
356 |
keys.push_back(at4); |
357 |
|
358 |
|
359 |
//try exact match first |
360 |
TorsionType* torsionType = torsionTypeCont_.find(keys); |
361 |
if (torsionType) { |
362 |
return torsionType; |
363 |
} else { |
364 |
|
365 |
AtomType* atype1; |
366 |
AtomType* atype2; |
367 |
AtomType* atype3; |
368 |
AtomType* atype4; |
369 |
std::vector<std::string> at1key; |
370 |
at1key.push_back(at1); |
371 |
atype1 = atomTypeCont_.find(at1key); |
372 |
|
373 |
std::vector<std::string> at2key; |
374 |
at2key.push_back(at2); |
375 |
atype2 = atomTypeCont_.find(at2key); |
376 |
|
377 |
std::vector<std::string> at3key; |
378 |
at3key.push_back(at3); |
379 |
atype3 = atomTypeCont_.find(at3key); |
380 |
|
381 |
std::vector<std::string> at4key; |
382 |
at4key.push_back(at4); |
383 |
atype4 = atomTypeCont_.find(at4key); |
384 |
|
385 |
// query atom types for their chains of responsibility |
386 |
std::vector<AtomType*> at1Chain = atype1->allYourBase(); |
387 |
std::vector<AtomType*> at2Chain = atype2->allYourBase(); |
388 |
std::vector<AtomType*> at3Chain = atype3->allYourBase(); |
389 |
std::vector<AtomType*> at4Chain = atype4->allYourBase(); |
390 |
|
391 |
std::vector<AtomType*>::iterator i; |
392 |
std::vector<AtomType*>::iterator j; |
393 |
std::vector<AtomType*>::iterator k; |
394 |
std::vector<AtomType*>::iterator l; |
395 |
|
396 |
int ii = 0; |
397 |
int jj = 0; |
398 |
int kk = 0; |
399 |
int ll = 0; |
400 |
int ILscore; |
401 |
int JKscore; |
402 |
|
403 |
std::vector<tuple3<int, int, std::vector<std::string> > > foundTorsions; |
404 |
|
405 |
for (j = at2Chain.begin(); j != at2Chain.end(); ++j) { |
406 |
kk = 0; |
407 |
for (k = at3Chain.begin(); k != at3Chain.end(); ++k) { |
408 |
ii = 0; |
409 |
for (i = at1Chain.begin(); i != at1Chain.end(); ++i) { |
410 |
ll = 0; |
411 |
for (l = at4Chain.begin(); l != at4Chain.end(); ++l) { |
412 |
|
413 |
ILscore = ii + ll; |
414 |
JKscore = jj + kk; |
415 |
|
416 |
std::vector<std::string> myKeys; |
417 |
myKeys.push_back((*i)->getName()); |
418 |
myKeys.push_back((*j)->getName()); |
419 |
myKeys.push_back((*k)->getName()); |
420 |
myKeys.push_back((*l)->getName()); |
421 |
|
422 |
TorsionType* torsionType = torsionTypeCont_.find(myKeys); |
423 |
if (torsionType) { |
424 |
foundTorsions.push_back( make_tuple3(JKscore, ILscore, myKeys) ); |
425 |
} |
426 |
ll++; |
427 |
} |
428 |
ii++; |
429 |
} |
430 |
kk++; |
431 |
} |
432 |
jj++; |
433 |
} |
434 |
|
435 |
if (!foundTorsions.empty()) { |
436 |
std::sort(foundTorsions.begin(), foundTorsions.end()); |
437 |
std::vector<std::string> theKeys = foundTorsions[0].third; |
438 |
|
439 |
TorsionType* bestType = torsionTypeCont_.find(theKeys); |
440 |
return bestType; |
441 |
} else { |
442 |
//if no exact match found, try wild card match |
443 |
return torsionTypeCont_.find(keys, wildCardAtomTypeName_); |
444 |
} |
445 |
} |
446 |
} |
447 |
|
448 |
InversionType* ForceField::getInversionType(const std::string &at1, |
449 |
const std::string &at2, |
450 |
const std::string &at3, |
451 |
const std::string &at4) { |
452 |
std::vector<std::string> keys; |
453 |
keys.push_back(at1); |
454 |
keys.push_back(at2); |
455 |
keys.push_back(at3); |
456 |
keys.push_back(at4); |
457 |
|
458 |
//try exact match first |
459 |
InversionType* inversionType = inversionTypeCont_.permutedFindSkippingFirstElement(keys); |
460 |
if (inversionType) { |
461 |
return inversionType; |
462 |
} else { |
463 |
|
464 |
AtomType* atype1; |
465 |
AtomType* atype2; |
466 |
AtomType* atype3; |
467 |
AtomType* atype4; |
468 |
std::vector<std::string> at1key; |
469 |
at1key.push_back(at1); |
470 |
atype1 = atomTypeCont_.find(at1key); |
471 |
|
472 |
std::vector<std::string> at2key; |
473 |
at2key.push_back(at2); |
474 |
atype2 = atomTypeCont_.find(at2key); |
475 |
|
476 |
std::vector<std::string> at3key; |
477 |
at3key.push_back(at3); |
478 |
atype3 = atomTypeCont_.find(at3key); |
479 |
|
480 |
std::vector<std::string> at4key; |
481 |
at4key.push_back(at4); |
482 |
atype4 = atomTypeCont_.find(at4key); |
483 |
|
484 |
// query atom types for their chains of responsibility |
485 |
std::vector<AtomType*> at1Chain = atype1->allYourBase(); |
486 |
std::vector<AtomType*> at2Chain = atype2->allYourBase(); |
487 |
std::vector<AtomType*> at3Chain = atype3->allYourBase(); |
488 |
std::vector<AtomType*> at4Chain = atype4->allYourBase(); |
489 |
|
490 |
std::vector<AtomType*>::iterator i; |
491 |
std::vector<AtomType*>::iterator j; |
492 |
std::vector<AtomType*>::iterator k; |
493 |
std::vector<AtomType*>::iterator l; |
494 |
|
495 |
int ii = 0; |
496 |
int jj = 0; |
497 |
int kk = 0; |
498 |
int ll = 0; |
499 |
int Iscore; |
500 |
int JKLscore; |
501 |
|
502 |
std::vector<tuple3<int, int, std::vector<std::string> > > foundInversions; |
503 |
|
504 |
for (j = at2Chain.begin(); j != at2Chain.end(); ++j) { |
505 |
kk = 0; |
506 |
for (k = at3Chain.begin(); k != at3Chain.end(); ++k) { |
507 |
ii = 0; |
508 |
for (i = at1Chain.begin(); i != at1Chain.end(); ++i) { |
509 |
ll = 0; |
510 |
for (l = at4Chain.begin(); l != at4Chain.end(); ++l) { |
511 |
|
512 |
Iscore = ii; |
513 |
JKLscore = jj + kk + ll; |
514 |
|
515 |
std::vector<std::string> myKeys; |
516 |
myKeys.push_back((*i)->getName()); |
517 |
myKeys.push_back((*j)->getName()); |
518 |
myKeys.push_back((*k)->getName()); |
519 |
myKeys.push_back((*l)->getName()); |
520 |
|
521 |
InversionType* inversionType = inversionTypeCont_.permutedFindSkippingFirstElement(myKeys); |
522 |
if (inversionType) { |
523 |
foundInversions.push_back( make_tuple3(Iscore, JKLscore, myKeys) ); |
524 |
} |
525 |
ll++; |
526 |
} |
527 |
ii++; |
528 |
} |
529 |
kk++; |
530 |
} |
531 |
jj++; |
532 |
} |
533 |
|
534 |
if (!foundInversions.empty()) { |
535 |
std::sort(foundInversions.begin(), foundInversions.end()); |
536 |
std::vector<std::string> theKeys = foundInversions[0].third; |
537 |
|
538 |
InversionType* bestType = inversionTypeCont_.permutedFindSkippingFirstElement(theKeys); |
539 |
return bestType; |
540 |
} else { |
541 |
//if no exact match found, try wild card match |
542 |
return inversionTypeCont_.find(keys, wildCardAtomTypeName_); |
543 |
} |
544 |
} |
545 |
} |
546 |
|
547 |
NonBondedInteractionType* ForceField::getNonBondedInteractionType(const std::string &at1, const std::string &at2) { |
548 |
|
549 |
std::vector<std::string> keys; |
550 |
keys.push_back(at1); |
551 |
keys.push_back(at2); |
552 |
|
553 |
//try exact match first |
554 |
NonBondedInteractionType* nbiType = nonBondedInteractionTypeCont_.find(keys); |
555 |
if (nbiType) { |
556 |
return nbiType; |
557 |
} else { |
558 |
AtomType* atype1; |
559 |
AtomType* atype2; |
560 |
std::vector<std::string> at1key; |
561 |
at1key.push_back(at1); |
562 |
atype1 = atomTypeCont_.find(at1key); |
563 |
|
564 |
std::vector<std::string> at2key; |
565 |
at2key.push_back(at2); |
566 |
atype2 = atomTypeCont_.find(at2key); |
567 |
|
568 |
// query atom types for their chains of responsibility |
569 |
std::vector<AtomType*> at1Chain = atype1->allYourBase(); |
570 |
std::vector<AtomType*> at2Chain = atype2->allYourBase(); |
571 |
|
572 |
std::vector<AtomType*>::iterator i; |
573 |
std::vector<AtomType*>::iterator j; |
574 |
|
575 |
int ii = 0; |
576 |
int jj = 0; |
577 |
int nbiTypeScore; |
578 |
|
579 |
std::vector<std::pair<int, std::vector<std::string> > > foundNBI; |
580 |
|
581 |
for (i = at1Chain.begin(); i != at1Chain.end(); ++i) { |
582 |
jj = 0; |
583 |
for (j = at2Chain.begin(); j != at2Chain.end(); ++j) { |
584 |
|
585 |
nbiTypeScore = ii + jj; |
586 |
|
587 |
std::vector<std::string> myKeys; |
588 |
myKeys.push_back((*i)->getName()); |
589 |
myKeys.push_back((*j)->getName()); |
590 |
|
591 |
NonBondedInteractionType* nbiType = nonBondedInteractionTypeCont_.find(myKeys); |
592 |
if (nbiType) { |
593 |
foundNBI.push_back(std::make_pair(nbiTypeScore, myKeys)); |
594 |
} |
595 |
jj++; |
596 |
} |
597 |
ii++; |
598 |
} |
599 |
|
600 |
|
601 |
if (!foundNBI.empty()) { |
602 |
// sort the foundNBI by the score: |
603 |
std::sort(foundNBI.begin(), foundNBI.end()); |
604 |
std::vector<std::string> theKeys = foundNBI[0].second; |
605 |
|
606 |
NonBondedInteractionType* bestType = nonBondedInteractionTypeCont_.find(theKeys); |
607 |
return bestType; |
608 |
} else { |
609 |
//if no exact match found, try wild card match |
610 |
return nonBondedInteractionTypeCont_.find(keys, wildCardAtomTypeName_); |
611 |
} |
612 |
} |
613 |
} |
614 |
|
615 |
BondType* ForceField::getExactBondType(const std::string &at1, |
616 |
const std::string &at2){ |
617 |
std::vector<std::string> keys; |
618 |
keys.push_back(at1); |
619 |
keys.push_back(at2); |
620 |
return bondTypeCont_.find(keys); |
621 |
} |
622 |
|
623 |
BendType* ForceField::getExactBendType(const std::string &at1, |
624 |
const std::string &at2, |
625 |
const std::string &at3){ |
626 |
std::vector<std::string> keys; |
627 |
keys.push_back(at1); |
628 |
keys.push_back(at2); |
629 |
keys.push_back(at3); |
630 |
return bendTypeCont_.find(keys); |
631 |
} |
632 |
|
633 |
TorsionType* ForceField::getExactTorsionType(const std::string &at1, |
634 |
const std::string &at2, |
635 |
const std::string &at3, |
636 |
const std::string &at4){ |
637 |
std::vector<std::string> keys; |
638 |
keys.push_back(at1); |
639 |
keys.push_back(at2); |
640 |
keys.push_back(at3); |
641 |
keys.push_back(at4); |
642 |
return torsionTypeCont_.find(keys); |
643 |
} |
644 |
|
645 |
InversionType* ForceField::getExactInversionType(const std::string &at1, |
646 |
const std::string &at2, |
647 |
const std::string &at3, |
648 |
const std::string &at4){ |
649 |
std::vector<std::string> keys; |
650 |
keys.push_back(at1); |
651 |
keys.push_back(at2); |
652 |
keys.push_back(at3); |
653 |
keys.push_back(at4); |
654 |
return inversionTypeCont_.find(keys); |
655 |
} |
656 |
|
657 |
NonBondedInteractionType* ForceField::getExactNonBondedInteractionType(const std::string &at1, const std::string &at2){ |
658 |
std::vector<std::string> keys; |
659 |
keys.push_back(at1); |
660 |
keys.push_back(at2); |
661 |
return nonBondedInteractionTypeCont_.find(keys); |
662 |
} |
663 |
|
664 |
|
665 |
bool ForceField::addAtomType(const std::string &at, AtomType* atomType) { |
666 |
std::vector<std::string> keys; |
667 |
keys.push_back(at); |
668 |
atypeIdentToName[atomType->getIdent()] = at; |
669 |
return atomTypeCont_.add(keys, atomType); |
670 |
} |
671 |
|
672 |
bool ForceField::replaceAtomType(const std::string &at, AtomType* atomType) { |
673 |
std::vector<std::string> keys; |
674 |
keys.push_back(at); |
675 |
atypeIdentToName[atomType->getIdent()] = at; |
676 |
return atomTypeCont_.replace(keys, atomType); |
677 |
} |
678 |
|
679 |
bool ForceField::addBondType(const std::string &at1, const std::string &at2, |
680 |
BondType* bondType) { |
681 |
std::vector<std::string> keys; |
682 |
keys.push_back(at1); |
683 |
keys.push_back(at2); |
684 |
return bondTypeCont_.add(keys, bondType); |
685 |
} |
686 |
|
687 |
bool ForceField::addBendType(const std::string &at1, const std::string &at2, |
688 |
const std::string &at3, BendType* bendType) { |
689 |
std::vector<std::string> keys; |
690 |
keys.push_back(at1); |
691 |
keys.push_back(at2); |
692 |
keys.push_back(at3); |
693 |
return bendTypeCont_.add(keys, bendType); |
694 |
} |
695 |
|
696 |
bool ForceField::addTorsionType(const std::string &at1, |
697 |
const std::string &at2, |
698 |
const std::string &at3, |
699 |
const std::string &at4, |
700 |
TorsionType* torsionType) { |
701 |
std::vector<std::string> keys; |
702 |
keys.push_back(at1); |
703 |
keys.push_back(at2); |
704 |
keys.push_back(at3); |
705 |
keys.push_back(at4); |
706 |
return torsionTypeCont_.add(keys, torsionType); |
707 |
} |
708 |
|
709 |
bool ForceField::addInversionType(const std::string &at1, |
710 |
const std::string &at2, |
711 |
const std::string &at3, |
712 |
const std::string &at4, |
713 |
InversionType* inversionType) { |
714 |
std::vector<std::string> keys; |
715 |
keys.push_back(at1); |
716 |
keys.push_back(at2); |
717 |
keys.push_back(at3); |
718 |
keys.push_back(at4); |
719 |
return inversionTypeCont_.add(keys, inversionType); |
720 |
} |
721 |
|
722 |
bool ForceField::addNonBondedInteractionType(const std::string &at1, |
723 |
const std::string &at2, |
724 |
NonBondedInteractionType* nbiType) { |
725 |
std::vector<std::string> keys; |
726 |
keys.push_back(at1); |
727 |
keys.push_back(at2); |
728 |
return nonBondedInteractionTypeCont_.add(keys, nbiType); |
729 |
} |
730 |
|
731 |
RealType ForceField::getRcutFromAtomType(AtomType* at) { |
732 |
RealType rcut(0.0); |
733 |
|
734 |
LennardJonesAdapter lja = LennardJonesAdapter(at); |
735 |
if (lja.isLennardJones()) { |
736 |
rcut = 2.5 * lja.getSigma(); |
737 |
} |
738 |
EAMAdapter ea = EAMAdapter(at); |
739 |
if (ea.isEAM()) { |
740 |
rcut = max(rcut, ea.getRcut()); |
741 |
} |
742 |
SuttonChenAdapter sca = SuttonChenAdapter(at); |
743 |
if (sca.isSuttonChen()) { |
744 |
rcut = max(rcut, 2.0 * sca.getAlpha()); |
745 |
} |
746 |
GayBerneAdapter gba = GayBerneAdapter(at); |
747 |
if (gba.isGayBerne()) { |
748 |
rcut = max(rcut, 2.5 * sqrt(2.0) * max(gba.getD(), gba.getL())); |
749 |
} |
750 |
StickyAdapter sa = StickyAdapter(at); |
751 |
if (sa.isSticky()) { |
752 |
rcut = max(rcut, max(sa.getRu(), sa.getRup())); |
753 |
} |
754 |
|
755 |
return rcut; |
756 |
} |
757 |
|
758 |
|
759 |
ifstrstream* ForceField::openForceFieldFile(const std::string& filename) { |
760 |
std::string forceFieldFilename(filename); |
761 |
ifstrstream* ffStream = new ifstrstream(); |
762 |
|
763 |
//try to open the force filed file in current directory first |
764 |
ffStream->open(forceFieldFilename.c_str()); |
765 |
if(!ffStream->is_open()){ |
766 |
|
767 |
forceFieldFilename = ffPath_ + "/" + forceFieldFilename; |
768 |
ffStream->open( forceFieldFilename.c_str() ); |
769 |
|
770 |
//if current directory does not contain the force field file, |
771 |
//try to open it in the path |
772 |
if(!ffStream->is_open()){ |
773 |
|
774 |
sprintf( painCave.errMsg, |
775 |
"Error opening the force field parameter file:\n" |
776 |
"\t%s\n" |
777 |
"\tHave you tried setting the FORCE_PARAM_PATH environment " |
778 |
"variable?\n", |
779 |
forceFieldFilename.c_str() ); |
780 |
painCave.severity = OPENMD_ERROR; |
781 |
painCave.isFatal = 1; |
782 |
simError(); |
783 |
} |
784 |
} |
785 |
return ffStream; |
786 |
} |
787 |
|
788 |
} //end namespace OpenMD |