1 |
#!@PYTHON_EXECUTABLE@ |
2 |
"""principalAxisCalculator |
3 |
|
4 |
Opens an XYZ file and computes the moments of inertia and principal axes |
5 |
for the structure in the XYZ file. Optionally rotate the structure so that |
6 |
the long axis (that with the smallest eigenvalue) is pointing along the |
7 |
z-axis. |
8 |
|
9 |
Usage: principalAxisCalculator |
10 |
|
11 |
Options: |
12 |
-h, --help show this help |
13 |
-x, --xyz=... use specified XYZ (.xyz) file for the structure |
14 |
-o, --out=... rotate the structure so that the smallest eigenvalue |
15 |
of the rotation matrix points along the z-axis. |
16 |
|
17 |
Example: |
18 |
principalAxisCalculator -x junk.xyz -o rot.xyz |
19 |
|
20 |
""" |
21 |
|
22 |
__author__ = "Dan Gezelter (gezelter@nd.edu)" |
23 |
__version__ = "$Revision$" |
24 |
__date__ = "$Date$" |
25 |
__copyright__ = "Copyright (c) 2006 by the University of Notre Dame" |
26 |
__license__ = "OpenMD" |
27 |
|
28 |
import sys |
29 |
import getopt |
30 |
import string |
31 |
import math |
32 |
import random |
33 |
from sets import * |
34 |
import numpy |
35 |
|
36 |
|
37 |
_haveXYZFileName = 0 |
38 |
_haveOutFileName = 0 |
39 |
|
40 |
positions = [] |
41 |
indices = [] |
42 |
atypes = [] |
43 |
Hmass = 1.0079 |
44 |
Cmass = 12.011 |
45 |
Omass = 15.999 |
46 |
Nmass = 14.007 |
47 |
Smass = 32.066 |
48 |
Aumass = 196.466569 |
49 |
Au1mass = 196.466569 |
50 |
Au2mass = 0.5 |
51 |
|
52 |
def usage(): |
53 |
print __doc__ |
54 |
|
55 |
def add(x,y): |
56 |
return x+y |
57 |
|
58 |
def sum(seq): |
59 |
return reduce(add, seq) |
60 |
|
61 |
def readFile(XYZFileName): |
62 |
print "reading XYZ file" |
63 |
|
64 |
XYZFile = open(XYZFileName, 'r') |
65 |
# Find number of atoms first |
66 |
line = XYZFile.readline() |
67 |
L = line.split() |
68 |
nAtoms = int(L[0]) |
69 |
# skip comment line |
70 |
line = XYZFile.readline() |
71 |
for i in range(nAtoms): |
72 |
line = XYZFile.readline() |
73 |
L = line.split() |
74 |
myIndex = i |
75 |
indices.append(myIndex) |
76 |
atomType = L[0] |
77 |
atypes.append(atomType) |
78 |
x = float(L[1]) |
79 |
y = float(L[2]) |
80 |
z = float(L[3]) |
81 |
positions.append([x, y, z]) |
82 |
XYZFile.close() |
83 |
|
84 |
|
85 |
def findCOM(): |
86 |
#find center of mass |
87 |
Xcom = 0.0 |
88 |
Ycom = 0.0 |
89 |
Zcom = 0.0 |
90 |
totalMass = 0.0 |
91 |
|
92 |
for i in range(0,len(indices)): |
93 |
if (atypes[i] == "H"): |
94 |
myMass = Hmass |
95 |
elif (atypes[i] == "C"): |
96 |
myMass = Cmass |
97 |
elif (atypes[i] == "O"): |
98 |
myMass = Omass |
99 |
elif (atypes[i] == "N"): |
100 |
myMass = Nmass |
101 |
elif (atypes[i] == "S"): |
102 |
myMass = Smass |
103 |
elif (atypes[i] == "Au1"): |
104 |
myMass = Au1mass |
105 |
elif (atypes[i] == "Au2"): |
106 |
myMass = Au2mass |
107 |
elif (atypes[i] == "Au"): |
108 |
myMass = Aumass |
109 |
else: |
110 |
print "unknown atom type! %s" % (atypes[i]) |
111 |
|
112 |
Xcom = Xcom + myMass * positions[i][0] |
113 |
Ycom = Ycom + myMass * positions[i][1] |
114 |
Zcom = Zcom + myMass * positions[i][2] |
115 |
totalMass = totalMass + myMass |
116 |
|
117 |
Xcom = Xcom / totalMass |
118 |
Ycom = Ycom / totalMass |
119 |
Zcom = Zcom / totalMass |
120 |
|
121 |
COM = [Xcom, Ycom, Zcom] |
122 |
|
123 |
return COM |
124 |
|
125 |
def findMoments(): |
126 |
|
127 |
COM = findCOM() |
128 |
|
129 |
#find inertia tensor matrix elements |
130 |
|
131 |
I = numpy.zeros((3,3), numpy.float) |
132 |
|
133 |
for i in range(0,len(indices)): |
134 |
if (atypes[i] == "H"): |
135 |
myMass = Hmass |
136 |
elif (atypes[i] == "C"): |
137 |
myMass = Cmass |
138 |
elif (atypes[i] == "O"): |
139 |
myMass = Omass |
140 |
elif (atypes[i] == "N"): |
141 |
myMass = Nmass |
142 |
elif (atypes[i] == "S"): |
143 |
myMass = Smass |
144 |
elif (atypes[i] == "Au1"): |
145 |
myMass = Au1mass |
146 |
elif (atypes[i] == "Au2"): |
147 |
myMass = Au2mass |
148 |
elif (atypes[i] == "Au"): |
149 |
myMass = Aumass |
150 |
else: |
151 |
print "unknown atom type!" |
152 |
|
153 |
dx = positions[i][0] - COM[0] |
154 |
dy = positions[i][1] - COM[1] |
155 |
dz = positions[i][2] - COM[2] |
156 |
|
157 |
I[0,0] = I[0,0] + myMass * ( dy * dy + dz * dz ) |
158 |
I[1,1] = I[1,1] + myMass * ( dx * dx + dz * dz ) |
159 |
I[2,2] = I[2,2] + myMass * ( dx * dx + dy * dy ) |
160 |
|
161 |
I[0,1] = I[0,1] - myMass * ( dx * dy ) |
162 |
I[0,2] = I[0,2] - myMass * ( dx * dz ) |
163 |
|
164 |
I[1,2] = I[1,2] - myMass * ( dy * dz ) |
165 |
|
166 |
I[1,0] = I[0,1] |
167 |
I[2,0] = I[0,2] |
168 |
I[2,1] = I[1,2] |
169 |
|
170 |
print "Inertia Tensor:" |
171 |
print I |
172 |
print |
173 |
|
174 |
(evals, evects) = numpy.linalg.eig(I) |
175 |
print "evals:" |
176 |
print evals |
177 |
print |
178 |
print "evects:" |
179 |
print evects |
180 |
print |
181 |
|
182 |
return (COM, evals, evects) |
183 |
|
184 |
def writeFile(OutFileName): |
185 |
|
186 |
(COM, evals, evects) = findMoments() |
187 |
|
188 |
# we need to re-order the axes so that the smallest moment of inertia |
189 |
# (which corresponds to the long axis of the molecule) is along the z-axis |
190 |
# we'll just reverse the order of the three axes: |
191 |
|
192 |
axOrder = numpy.argsort(evals) |
193 |
RotMat = numpy.zeros((3,3), numpy.float) |
194 |
RotMat[0] = evects[axOrder[2]] |
195 |
RotMat[1] = evects[axOrder[1]] |
196 |
RotMat[2] = evects[axOrder[0]] |
197 |
|
198 |
q = [0.0, 0.0, 0.0, 0.0] |
199 |
myEuler = [0.0, 0.0, 0.0] |
200 |
|
201 |
# RotMat to Quat code is out of OpenMD's SquareMatrix3.hpp code: |
202 |
|
203 |
t = RotMat[0][0] + RotMat[1][1] + RotMat[2][2] + 1.0 |
204 |
|
205 |
if( t > 1e-6 ): |
206 |
s = 0.5 / math.sqrt( t ) |
207 |
q[0] = 0.25 / s |
208 |
q[1] = (RotMat[1][2] - RotMat[2][1]) * s |
209 |
q[2] = (RotMat[2][0] - RotMat[0][2]) * s |
210 |
q[3] = (RotMat[0][1] - RotMat[1][0]) * s |
211 |
else: |
212 |
ad1 = RotMat[0][0] |
213 |
ad2 = RotMat[1][1] |
214 |
ad3 = RotMat[2][2] |
215 |
|
216 |
if( ad1 >= ad2 and ad1 >= ad3 ): |
217 |
s = 0.5 / math.sqrt( 1.0 + RotMat[0][0] - RotMat[1][1] - RotMat[2][2] ) |
218 |
q[0] = (RotMat[1][2] - RotMat[2][1]) * s |
219 |
q[1] = 0.25 / s |
220 |
q[2] = (RotMat[0][1] + RotMat[1][0]) * s |
221 |
q[3] = (RotMat[0][2] + RotMat[2][0]) * s |
222 |
elif ( ad2 >= ad1 and ad2 >= ad3 ): |
223 |
s = 0.5 / math.sqrt( 1.0 + RotMat[1][1] - RotMat[0][0] - RotMat[2][2] ) |
224 |
q[0] = (RotMat[2][0] - RotMat[0][2] ) * s |
225 |
q[1] = (RotMat[0][1] + RotMat[1][0]) * s |
226 |
q[2] = 0.25 / s |
227 |
q[3] = (RotMat[1][2] + RotMat[2][1]) * s |
228 |
else: |
229 |
s = 0.5 / math.sqrt( 1.0 + RotMat[2][2] - RotMat[0][0] - RotMat[1][1] ) |
230 |
q[0] = (RotMat[0][1] - RotMat[1][0]) * s |
231 |
q[1] = (RotMat[0][2] + RotMat[2][0]) * s |
232 |
q[2] = (RotMat[1][2] + RotMat[2][1]) * s |
233 |
|
234 |
print "Quaternions:" |
235 |
print q |
236 |
|
237 |
theta = math.acos(RotMat[2][2]) |
238 |
ctheta = RotMat[2][2] |
239 |
stheta = math.sqrt(1.0 - ctheta * ctheta) |
240 |
|
241 |
if (math.fabs(stheta) < 1e-6): |
242 |
psi = 0.0 |
243 |
phi = math.atan2(-RotMat[1][0], RotMat[0][0]) |
244 |
else: |
245 |
phi = math.atan2(RotMat[2][0], -RotMat[2][1]) |
246 |
psi = math.atan2(RotMat[0][2], RotMat[1][2]) |
247 |
|
248 |
if (phi < 0): |
249 |
phi = phi + 2.0 * math.pi; |
250 |
|
251 |
if (psi < 0): |
252 |
psi = psi + 2.0 * math.pi; |
253 |
|
254 |
myEuler[0] = phi * 180.0 / math.pi; |
255 |
myEuler[1] = theta * 180.0 / math.pi; |
256 |
myEuler[2] = psi * 180.0 / math.pi; |
257 |
|
258 |
print "Euler Angles:" |
259 |
print myEuler |
260 |
|
261 |
nAtoms = len(indices) |
262 |
|
263 |
print "writing output XYZ file" |
264 |
|
265 |
OutFile = open(OutFileName, 'w') |
266 |
|
267 |
OutFile.write('%10d\n' % (nAtoms)) |
268 |
OutFile.write('\n') |
269 |
|
270 |
for i in range(nAtoms): |
271 |
|
272 |
dx = positions[i][0] - COM[0] |
273 |
dy = positions[i][1] - COM[1] |
274 |
dz = positions[i][2] - COM[2] |
275 |
|
276 |
r = numpy.array([dx,dy,dz]) |
277 |
rnew = numpy.dot(RotMat, r) |
278 |
|
279 |
OutFile.write('%s\t%f\t%f\t%f\t%d\n' % (atypes[i], rnew[0], rnew[1], rnew[2], i)) |
280 |
OutFile.close() |
281 |
|
282 |
def main(argv): |
283 |
try: |
284 |
opts, args = getopt.getopt(argv, "hx:o:", ["help", "xyz=", "out="]) |
285 |
except getopt.GetoptError: |
286 |
usage() |
287 |
sys.exit(2) |
288 |
for opt, arg in opts: |
289 |
if opt in ("-h", "--help"): |
290 |
usage() |
291 |
sys.exit() |
292 |
elif opt in ("-x", "--xyz"): |
293 |
XYZFileName = arg |
294 |
global _haveXYZFileName |
295 |
_haveXYZFileName = 1 |
296 |
elif opt in ("-o", "--out"): |
297 |
OutFileName = arg |
298 |
global _haveOutFileName |
299 |
_haveOutFileName = 1 |
300 |
|
301 |
|
302 |
if (_haveXYZFileName != 1): |
303 |
usage() |
304 |
print "No xyz file was specified" |
305 |
sys.exit() |
306 |
|
307 |
readFile(XYZFileName) |
308 |
|
309 |
if (_haveOutFileName == 1): |
310 |
writeFile(OutFileName) |
311 |
else: |
312 |
findMoments() |
313 |
|
314 |
if __name__ == "__main__": |
315 |
if len(sys.argv) == 1: |
316 |
usage() |
317 |
sys.exit() |
318 |
main(sys.argv[1:]) |