1 |
gezelter |
1629 |
/* Copyright (c) 2006, 2009, 2010 The University of Notre Dame. All Rights Reserved. |
2 |
|
|
* |
3 |
|
|
* The University of Notre Dame grants you ("Licensee") a |
4 |
|
|
* non-exclusive, royalty free, license to use, modify and |
5 |
|
|
* redistribute this software in source and binary code form, provided |
6 |
|
|
* that the following conditions are met: |
7 |
|
|
* |
8 |
|
|
* 1. Redistributions of source code must retain the above copyright |
9 |
|
|
* notice, this list of conditions and the following disclaimer. |
10 |
|
|
* |
11 |
|
|
* 2. Redistributions in binary form must reproduce the above copyright |
12 |
|
|
* notice, this list of conditions and the following disclaimer in the |
13 |
|
|
* documentation and/or other materials provided with the |
14 |
|
|
* distribution. |
15 |
|
|
* |
16 |
|
|
* This software is provided "AS IS," without a warranty of any |
17 |
|
|
* kind. All express or implied conditions, representations and |
18 |
|
|
* warranties, including any implied warranty of merchantability, |
19 |
|
|
* fitness for a particular purpose or non-infringement, are hereby |
20 |
|
|
* excluded. The University of Notre Dame and its licensors shall not |
21 |
|
|
* be liable for any damages suffered by licensee as a result of |
22 |
|
|
* using, modifying or distributing the software or its |
23 |
|
|
* derivatives. In no event will the University of Notre Dame or its |
24 |
|
|
* licensors be liable for any lost revenue, profit or data, or for |
25 |
|
|
* direct, indirect, special, consequential, incidental or punitive |
26 |
|
|
* damages, however caused and regardless of the theory of liability, |
27 |
|
|
* arising out of the use of or inability to use software, even if the |
28 |
|
|
* University of Notre Dame has been advised of the possibility of |
29 |
|
|
* such damages. |
30 |
|
|
* |
31 |
|
|
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
32 |
|
|
* research, please cite the appropriate papers when you publish your |
33 |
|
|
* work. Good starting points are: |
34 |
|
|
* |
35 |
|
|
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
36 |
|
|
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
37 |
|
|
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
38 |
|
|
* [4] Vardeman & Gezelter, in progress (2009). |
39 |
|
|
*/ |
40 |
|
|
|
41 |
|
|
#include "applications/staticProps/NanoLength.hpp" |
42 |
|
|
#include "utils/simError.h" |
43 |
|
|
#include "io/DumpReader.hpp" |
44 |
|
|
#include "primitives/Molecule.hpp" |
45 |
|
|
#include "utils/NumericConstant.hpp" |
46 |
|
|
|
47 |
|
|
using namespace OpenMD; |
48 |
|
|
|
49 |
|
|
bool pairComparator( const evIndex& l, const evIndex& r) { |
50 |
|
|
return l.first < r.first; |
51 |
|
|
} |
52 |
|
|
|
53 |
|
|
NanoLength::NanoLength(SimInfo* info, |
54 |
|
|
const std::string& filename, |
55 |
|
|
const std::string& sele) |
56 |
|
|
: StaticAnalyser(info, filename), selectionScript_(sele), evaluator_(info), seleMan_(info) { |
57 |
|
|
setOutputName(getPrefix(filename) + ".length"); |
58 |
|
|
|
59 |
|
|
osq.open(getOutputFileName().c_str()); |
60 |
|
|
|
61 |
|
|
evaluator_.loadScriptString(sele); |
62 |
|
|
if (!evaluator_.isDynamic()) { |
63 |
|
|
seleMan_.setSelectionSet(evaluator_.evaluate()); |
64 |
|
|
} |
65 |
|
|
frameCounter_ = 0; |
66 |
|
|
} |
67 |
|
|
|
68 |
|
|
void NanoLength::process() { |
69 |
|
|
Molecule* mol; |
70 |
|
|
Atom* atom; |
71 |
|
|
RigidBody* rb; |
72 |
|
|
int myIndex; |
73 |
|
|
SimInfo::MoleculeIterator mi; |
74 |
|
|
Molecule::RigidBodyIterator rbIter; |
75 |
|
|
Molecule::AtomIterator ai; |
76 |
|
|
StuntDouble* sd; |
77 |
|
|
Vector3d vec; |
78 |
|
|
int i,j; |
79 |
|
|
|
80 |
|
|
DumpReader reader(info_, dumpFilename_); |
81 |
|
|
int nFrames = reader.getNFrames(); |
82 |
|
|
frameCounter_ = 0; |
83 |
|
|
|
84 |
|
|
theAtoms_.reserve(info_->getNGlobalAtoms()); |
85 |
|
|
|
86 |
|
|
for (int istep = 0; istep < nFrames; istep += step_) { |
87 |
|
|
reader.readFrame(istep); |
88 |
|
|
frameCounter_++; |
89 |
|
|
currentSnapshot_ = info_->getSnapshotManager()->getCurrentSnapshot(); |
90 |
|
|
RealType time = currentSnapshot_->getTime(); |
91 |
|
|
|
92 |
|
|
// Clear pos vector between each frame. |
93 |
|
|
theAtoms_.clear(); |
94 |
|
|
|
95 |
|
|
if (evaluator_.isDynamic()) { |
96 |
|
|
seleMan_.setSelectionSet(evaluator_.evaluate()); |
97 |
|
|
} |
98 |
|
|
|
99 |
|
|
// update the positions of atoms which belong to the rigidbodies |
100 |
|
|
|
101 |
|
|
for (mol = info_->beginMolecule(mi); mol != NULL; |
102 |
|
|
mol = info_->nextMolecule(mi)) { |
103 |
|
|
for (rb = mol->beginRigidBody(rbIter); rb != NULL; |
104 |
|
|
rb = mol->nextRigidBody(rbIter)) { |
105 |
|
|
rb->updateAtoms(); |
106 |
|
|
} |
107 |
|
|
} |
108 |
|
|
|
109 |
|
|
// outer loop is over the selected StuntDoubles: |
110 |
|
|
|
111 |
|
|
for (sd = seleMan_.beginSelected(i); sd != NULL; |
112 |
|
|
sd = seleMan_.nextSelected(i)) { |
113 |
|
|
theAtoms_.push_back(sd); |
114 |
|
|
} |
115 |
|
|
|
116 |
|
|
RealType rodLength = getLength(theAtoms_); |
117 |
|
|
|
118 |
|
|
osq.precision(7); |
119 |
|
|
if (osq.is_open()){ |
120 |
|
|
osq << time << "\t" << rodLength << std::endl; |
121 |
|
|
} |
122 |
|
|
} |
123 |
|
|
} |
124 |
|
|
|
125 |
|
|
RealType NanoLength::getLength(std::vector<StuntDouble*> atoms) { |
126 |
|
|
Vector3d COM(0.0); |
127 |
|
|
RealType mass = 0.0; |
128 |
|
|
RealType mtmp; |
129 |
|
|
for (std::vector<StuntDouble*>::iterator i = atoms.begin(); |
130 |
|
|
i != atoms.end(); ++i) { |
131 |
|
|
mtmp = (*i)->getMass(); |
132 |
|
|
mass += mtmp; |
133 |
|
|
COM += (*i)->getPos() * mtmp; |
134 |
|
|
} |
135 |
|
|
COM /= mass; |
136 |
|
|
|
137 |
|
|
// Moment of Inertia calculation |
138 |
|
|
Mat3x3d Itmp(0.0); |
139 |
|
|
for (std::vector<StuntDouble*>::iterator i = atoms.begin(); |
140 |
|
|
i != atoms.end(); ++i) { |
141 |
|
|
|
142 |
|
|
Mat3x3d IAtom(0.0); |
143 |
|
|
mtmp = (*i)->getMass(); |
144 |
|
|
Vector3d delta = (*i)->getPos() - COM; |
145 |
|
|
IAtom -= outProduct(delta, delta) * mtmp; |
146 |
|
|
RealType r2 = delta.lengthSquare(); |
147 |
|
|
IAtom(0, 0) += mtmp * r2; |
148 |
|
|
IAtom(1, 1) += mtmp * r2; |
149 |
|
|
IAtom(2, 2) += mtmp * r2; |
150 |
|
|
Itmp += IAtom; |
151 |
|
|
} |
152 |
|
|
|
153 |
|
|
//diagonalize |
154 |
|
|
Vector3d evals; |
155 |
|
|
Mat3x3d evects; |
156 |
|
|
Mat3x3d::diagonalize(Itmp, evals, evects); |
157 |
|
|
|
158 |
|
|
// we need to re-order the axes so that the smallest moment of |
159 |
|
|
// inertia (which corresponds to the long axis of the rod) is |
160 |
|
|
// along the z-axis. We'll just reverse the order of the three |
161 |
|
|
// axes. Python has an argsort function, but we had to invent our |
162 |
|
|
// own: |
163 |
|
|
|
164 |
|
|
std::vector<evIndex> evals_prime; |
165 |
|
|
for (int i = 0; i < 3; i++) |
166 |
|
|
evals_prime.push_back(std::make_pair(evals[i], i)); |
167 |
|
|
std::sort(evals_prime.begin(), evals_prime.end(), pairComparator); |
168 |
|
|
|
169 |
|
|
RotMat3x3d A; |
170 |
|
|
Mat3x3d I; |
171 |
|
|
|
172 |
|
|
for (int i = 0; i < 3; i++) { |
173 |
|
|
int index = evals_prime[2-i].second; |
174 |
|
|
A.setColumn(i, evects.getColumn(index)); |
175 |
|
|
I(i,i) = evals[index]; |
176 |
|
|
} |
177 |
|
|
|
178 |
|
|
// now project the delta from the center of mass onto the long |
179 |
|
|
// axis of the object |
180 |
|
|
|
181 |
|
|
Vector3d longAxis = A.getColumn(2); |
182 |
|
|
RealType axisLength = longAxis.length(); |
183 |
|
|
RealType projmin = 0.0; |
184 |
|
|
RealType projmax = 0.0; |
185 |
|
|
|
186 |
|
|
for (std::vector<StuntDouble*>::iterator i = atoms.begin(); |
187 |
|
|
i != atoms.end(); ++i) { |
188 |
|
|
Vector3d delta = (*i)->getPos() - COM; |
189 |
|
|
RealType projection = dot(delta, longAxis) / axisLength; |
190 |
|
|
if (projection > projmax) projmax = projection; |
191 |
|
|
if (projection < projmin) projmin = projection; |
192 |
|
|
} |
193 |
|
|
|
194 |
|
|
return projmax - projmin; |
195 |
|
|
} |
196 |
|
|
|
197 |
|
|
|