1 |
/* |
2 |
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
* |
4 |
* The University of Notre Dame grants you ("Licensee") a |
5 |
* non-exclusive, royalty free, license to use, modify and |
6 |
* redistribute this software in source and binary code form, provided |
7 |
* that the following conditions are met: |
8 |
* |
9 |
* 1. Redistributions of source code must retain the above copyright |
10 |
* notice, this list of conditions and the following disclaimer. |
11 |
* |
12 |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
* notice, this list of conditions and the following disclaimer in the |
14 |
* documentation and/or other materials provided with the |
15 |
* distribution. |
16 |
* |
17 |
* This software is provided "AS IS," without a warranty of any |
18 |
* kind. All express or implied conditions, representations and |
19 |
* warranties, including any implied warranty of merchantability, |
20 |
* fitness for a particular purpose or non-infringement, are hereby |
21 |
* excluded. The University of Notre Dame and its licensors shall not |
22 |
* be liable for any damages suffered by licensee as a result of |
23 |
* using, modifying or distributing the software or its |
24 |
* derivatives. In no event will the University of Notre Dame or its |
25 |
* licensors be liable for any lost revenue, profit or data, or for |
26 |
* direct, indirect, special, consequential, incidental or punitive |
27 |
* damages, however caused and regardless of the theory of liability, |
28 |
* arising out of the use of or inability to use software, even if the |
29 |
* University of Notre Dame has been advised of the possibility of |
30 |
* such damages. |
31 |
* |
32 |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
* research, please cite the appropriate papers when you publish your |
34 |
* work. Good starting points are: |
35 |
* |
36 |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 |
* [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
40 |
* [4] , Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). * |
41 |
* |
42 |
* Created by Xiuquan Sun on 05/09/06. |
43 |
* @author Xiuquan Sun |
44 |
* @version $Id$ |
45 |
* |
46 |
*/ |
47 |
|
48 |
/* Calculates the undulation spectrum of the lipid membrance. */ |
49 |
|
50 |
#include <algorithm> |
51 |
#include <fstream> |
52 |
#include "applications/staticProps/Hxy.hpp" |
53 |
#include "utils/simError.h" |
54 |
#include "io/DumpReader.hpp" |
55 |
#include "primitives/Molecule.hpp" |
56 |
#include<stdio.h> |
57 |
#include<string.h> |
58 |
#include<stdlib.h> |
59 |
#include<math.h> |
60 |
|
61 |
namespace OpenMD { |
62 |
|
63 |
Hxy::Hxy(SimInfo* info, const std::string& filename, const std::string& sele, int nbins_x, int nbins_y, int nrbins) |
64 |
: StaticAnalyser(info, filename), selectionScript_(sele), evaluator_(info), seleMan_(info), nBinsX_(nbins_x), nBinsY_(nbins_y), nbins_(nrbins){ |
65 |
|
66 |
evaluator_.loadScriptString(sele); |
67 |
if (!evaluator_.isDynamic()) { |
68 |
seleMan_.setSelectionSet(evaluator_.evaluate()); |
69 |
} |
70 |
|
71 |
gridsample_.resize(nBinsX_*nBinsY_); |
72 |
gridZ_.resize(nBinsX_*nBinsY_); |
73 |
mag.resize(nBinsX_*nBinsY_); |
74 |
newmag.resize(nBinsX_*nBinsY_); |
75 |
|
76 |
sum_bin.resize(nbins_); |
77 |
avg_bin.resize(nbins_); |
78 |
errbin_sum.resize(nbins_); |
79 |
errbin.resize(nbins_); |
80 |
sum_bin_sq.resize(nbins_); |
81 |
avg_bin_sq.resize(nbins_); |
82 |
errbin_sum_sq.resize(nbins_); |
83 |
errbin_sq.resize(nbins_); |
84 |
|
85 |
bin.resize(nbins_); |
86 |
samples.resize(nbins_); |
87 |
|
88 |
setOutputName(getPrefix(filename) + ".Hxy"); |
89 |
} |
90 |
|
91 |
Hxy::~Hxy(){ |
92 |
gridsample_.clear(); |
93 |
gridZ_.clear(); |
94 |
sum_bin.clear(); |
95 |
avg_bin.clear(); |
96 |
errbin_sum.clear(); |
97 |
errbin.clear(); |
98 |
sum_bin_sq.clear(); |
99 |
avg_bin_sq.clear(); |
100 |
errbin_sum_sq.clear(); |
101 |
errbin_sq.clear(); |
102 |
|
103 |
for(unsigned int i=0; i < bin.size(); i++) |
104 |
bin[i].clear(); |
105 |
for(unsigned int i=0; i < samples.size(); i++) |
106 |
samples[i].clear(); |
107 |
|
108 |
mag.clear(); |
109 |
newmag.clear(); |
110 |
} |
111 |
|
112 |
void Hxy::process() { |
113 |
#if defined(HAVE_FFTW_H) || defined(HAVE_DFFTW_H) || defined(HAVE_FFTW3_H) |
114 |
DumpReader reader(info_, dumpFilename_); |
115 |
int nFrames = reader.getNFrames(); |
116 |
nProcessed_ = nFrames/step_; |
117 |
|
118 |
for(unsigned int k=0; k < bin.size(); k++) |
119 |
bin[k].resize(nFrames); |
120 |
for(unsigned int k=0; k < samples.size(); k++) |
121 |
samples[k].resize(nFrames); |
122 |
|
123 |
RealType lenX_, lenY_; |
124 |
RealType gridX_, gridY_; |
125 |
RealType halfBoxX_, halfBoxY_; |
126 |
|
127 |
int binNoX, binNoY; |
128 |
RealType interpsum, value; |
129 |
int ninterp, px, py, newp; |
130 |
int newx, newy, newindex, index; |
131 |
int new_i, new_j, new_index; |
132 |
|
133 |
RealType freq_x, freq_y, zero_freq_x, zero_freq_y, freq; |
134 |
RealType maxfreqx, maxfreqy, maxfreq; |
135 |
|
136 |
int whichbin; |
137 |
int nMolecules; |
138 |
|
139 |
std::fill(sum_bin.begin(), sum_bin.end(), 0.0); |
140 |
std::fill(avg_bin.begin(), avg_bin.end(), 0.0); |
141 |
std::fill(errbin_sum.begin(), errbin_sum.end(), 0.0); |
142 |
std::fill(errbin.begin(), errbin.end(), 0.0); |
143 |
std::fill(sum_bin_sq.begin(), sum_bin_sq.end(), 0.0); |
144 |
std::fill(avg_bin_sq.begin(), avg_bin_sq.end(), 0.0); |
145 |
std::fill(errbin_sum_sq.begin(), errbin_sum_sq.end(), 0.0); |
146 |
std::fill(errbin_sq.begin(), errbin_sq.end(), 0.0); |
147 |
|
148 |
for(unsigned int i=0; i < bin.size(); i++) |
149 |
std::fill(bin[i].begin(), bin[i].end(), 0.0); |
150 |
|
151 |
for(unsigned int i=0; i < samples.size(); i++) |
152 |
std::fill(samples[i].begin(), samples[i].end(), 0); |
153 |
|
154 |
for (int istep = 0; istep < nFrames; istep += step_) { |
155 |
|
156 |
reader.readFrame(istep); |
157 |
currentSnapshot_ = info_->getSnapshotManager()->getCurrentSnapshot(); |
158 |
nMolecules = info_->getNGlobalMolecules(); |
159 |
|
160 |
Mat3x3d hmat = currentSnapshot_->getHmat(); |
161 |
|
162 |
#ifdef HAVE_FFTW3_H |
163 |
fftw_plan p; |
164 |
#else |
165 |
fftwnd_plan p; |
166 |
#endif |
167 |
fftw_complex *in, *out; |
168 |
|
169 |
in = (fftw_complex*) fftw_malloc(sizeof(fftw_complex) * (nBinsX_*nBinsY_)); |
170 |
out = (fftw_complex*) fftw_malloc(sizeof(fftw_complex) *(nBinsX_*nBinsY_)); |
171 |
|
172 |
#ifdef HAVE_FFTW3_H |
173 |
p = fftw_plan_dft_2d(nBinsX_, nBinsY_, in, out, |
174 |
FFTW_FORWARD, FFTW_ESTIMATE); |
175 |
#else |
176 |
p = fftw2d_create_plan(nBinsX_, nBinsY_, FFTW_FORWARD, FFTW_ESTIMATE); |
177 |
#endif |
178 |
|
179 |
std::fill(gridsample_.begin(), gridsample_.end(), 0); |
180 |
std::fill(gridZ_.begin(), gridZ_.end(), 0.0); |
181 |
std::fill(mag.begin(), mag.end(), 0.0); |
182 |
std::fill(newmag.begin(), newmag.end(), 0.0); |
183 |
|
184 |
int i, j; |
185 |
|
186 |
StuntDouble* sd; |
187 |
|
188 |
lenX_ = hmat(0,0); |
189 |
lenY_ = hmat(1,1); |
190 |
|
191 |
gridX_ = lenX_ /(nBinsX_); |
192 |
gridY_ = lenY_ /(nBinsY_); |
193 |
|
194 |
halfBoxX_ = lenX_ / 2.0; |
195 |
halfBoxY_ = lenY_ / 2.0; |
196 |
|
197 |
if (evaluator_.isDynamic()) { |
198 |
seleMan_.setSelectionSet(evaluator_.evaluate()); |
199 |
} |
200 |
|
201 |
//wrap the stuntdoubles into a cell |
202 |
for (sd = seleMan_.beginSelected(i); sd != NULL; sd = seleMan_.nextSelected(i)) { |
203 |
Vector3d pos = sd->getPos(); |
204 |
if (usePeriodicBoundaryConditions_) |
205 |
currentSnapshot_->wrapVector(pos); |
206 |
sd->setPos(pos); |
207 |
} |
208 |
|
209 |
//determine which atom belongs to which grid |
210 |
for (sd = seleMan_.beginSelected(i); sd != NULL; sd = seleMan_.nextSelected(i)) { |
211 |
Vector3d pos = sd->getPos(); |
212 |
//int binNo = (pos.z() /deltaR_) - 1; |
213 |
int binNoX = (int) ((pos.x() + halfBoxX_) / gridX_); |
214 |
int binNoY = (int) ((pos.y() + halfBoxY_) / gridY_); |
215 |
//std::cout << "pos.z = " << pos.z() << " halfBoxZ_ = " << halfBoxZ_ << " deltaR_ = " << deltaR_ << " binNo = " << binNo << "\n"; |
216 |
gridZ_[binNoX*nBinsY_+binNoY] += pos.z(); |
217 |
gridsample_[binNoX*nBinsY_+binNoY]++; |
218 |
} |
219 |
|
220 |
// FFT stuff depends on nx and ny, so delay allocation until we have |
221 |
// that information |
222 |
|
223 |
for(i = 0; i < nBinsX_; i++){ |
224 |
for(j = 0; j < nBinsY_; j++){ |
225 |
newindex = i * nBinsY_ + j; |
226 |
if(gridsample_[newindex] > 0){ |
227 |
gridZ_[newindex] = gridZ_[newindex] / (RealType)gridsample_[newindex]; |
228 |
} |
229 |
} |
230 |
} |
231 |
|
232 |
for (i=0; i< nBinsX_; i++) { |
233 |
for(j=0; j< nBinsY_; j++) { |
234 |
newindex = i*nBinsY_ + j; |
235 |
if (gridsample_[newindex] == 0) { |
236 |
// interpolate from surrounding points: |
237 |
|
238 |
interpsum = 0.0; |
239 |
ninterp = 0; |
240 |
|
241 |
//point1 = bottom; |
242 |
|
243 |
px = i; |
244 |
py = j - 1; |
245 |
newp = px*nBinsY_ + py; |
246 |
if ((py >= 0) && (gridsample_[newp] > 0)) { |
247 |
interpsum += gridZ_[newp]; |
248 |
ninterp++; |
249 |
} |
250 |
|
251 |
//point2 = top; |
252 |
|
253 |
px = i; |
254 |
py = j + 1; |
255 |
newp = px*nBinsY_ + py; |
256 |
if ((py < nBinsY_) && (gridsample_[newp] > 0)) { |
257 |
interpsum += gridZ_[newp]; |
258 |
ninterp++; |
259 |
} |
260 |
|
261 |
//point3 = left; |
262 |
|
263 |
px = i - 1; |
264 |
py = j; |
265 |
newp = px*nBinsY_ + py; |
266 |
if ((px >= 0) && (gridsample_[newp] > 0)) { |
267 |
interpsum += gridZ_[newp]; |
268 |
ninterp++; |
269 |
} |
270 |
|
271 |
//point4 = right; |
272 |
|
273 |
px = i + 1; |
274 |
py = j; |
275 |
newp = px*nBinsY_ + py; |
276 |
if ( (px < nBinsX_ ) && ( gridsample_[newp] > 0 )) { |
277 |
interpsum += gridZ_[newp]; |
278 |
ninterp++; |
279 |
} |
280 |
|
281 |
value = interpsum / (RealType)ninterp; |
282 |
|
283 |
gridZ_[newindex] = value; |
284 |
} |
285 |
} |
286 |
} |
287 |
|
288 |
for (i=0; i < nBinsX_; i++) { |
289 |
for (j=0; j < nBinsY_; j++) { |
290 |
newindex = i*nBinsY_ + j; |
291 |
|
292 |
c_re(in[newindex]) = gridZ_[newindex]; |
293 |
c_im(in[newindex]) = 0.0; |
294 |
} |
295 |
} |
296 |
|
297 |
#ifdef HAVE_FFTW3_H |
298 |
fftw_execute(p); |
299 |
#else |
300 |
fftwnd_one(p, in, out); |
301 |
#endif |
302 |
|
303 |
for (i=0; i< nBinsX_; i++) { |
304 |
for(j=0; j< nBinsY_; j++) { |
305 |
newindex = i*nBinsY_ + j; |
306 |
mag[newindex] = pow(c_re(out[newindex]),2) + pow(c_im(out[newindex]),2); |
307 |
} |
308 |
} |
309 |
|
310 |
#ifdef HAVE_FFTW3_H |
311 |
fftw_destroy_plan(p); |
312 |
#else |
313 |
fftwnd_destroy_plan(p); |
314 |
#endif |
315 |
fftw_free(out); |
316 |
fftw_free(in); |
317 |
|
318 |
for (i=0; i< (nBinsX_/2); i++) { |
319 |
for(j=0; j< (nBinsY_/2); j++) { |
320 |
index = i*nBinsY_ + j; |
321 |
new_i = i + (nBinsX_/2); |
322 |
new_j = j + (nBinsY_/2); |
323 |
new_index = new_i*nBinsY_ + new_j; |
324 |
newmag[new_index] = mag[index]; |
325 |
} |
326 |
} |
327 |
|
328 |
for (i=(nBinsX_/2); i< nBinsX_; i++) { |
329 |
for(j=0; j< (nBinsY_/2); j++) { |
330 |
index = i*nBinsY_ + j; |
331 |
new_i = i - (nBinsX_/2); |
332 |
new_j = j + (nBinsY_/2); |
333 |
new_index = new_i*nBinsY_ + new_j; |
334 |
newmag[new_index] = mag[index]; |
335 |
} |
336 |
} |
337 |
|
338 |
for (i=0; i< (nBinsX_/2); i++) { |
339 |
for(j=(nBinsY_/2); j< nBinsY_; j++) { |
340 |
index = i*nBinsY_ + j; |
341 |
new_i = i + (nBinsX_/2); |
342 |
new_j = j - (nBinsY_/2); |
343 |
new_index = new_i*nBinsY_ + new_j; |
344 |
newmag[new_index] = mag[index]; |
345 |
} |
346 |
} |
347 |
|
348 |
for (i=(nBinsX_/2); i< nBinsX_; i++) { |
349 |
for(j=(nBinsY_/2); j< nBinsY_; j++) { |
350 |
index = i*nBinsY_ + j; |
351 |
new_i = i - (nBinsX_/2); |
352 |
new_j = j - (nBinsY_/2); |
353 |
new_index = new_i*nBinsY_ + new_j; |
354 |
newmag[new_index] = mag[index]; |
355 |
} |
356 |
} |
357 |
|
358 |
maxfreqx = 1.0 / gridX_; |
359 |
maxfreqy = 1.0 / gridY_; |
360 |
|
361 |
// printf("%lf\t%lf\t%lf\t%lf\n", dx, dy, maxfreqx, maxfreqy); |
362 |
|
363 |
maxfreq = sqrt(maxfreqx*maxfreqx + maxfreqy*maxfreqy); |
364 |
dfreq = maxfreq/(RealType)(nbins_-1); |
365 |
|
366 |
//printf("%lf\n", dfreq); |
367 |
|
368 |
zero_freq_x = nBinsX_/2; |
369 |
zero_freq_y = nBinsY_/2; |
370 |
|
371 |
for (i=0; i< nBinsX_; i++) { |
372 |
for(j=0; j< nBinsY_; j++) { |
373 |
|
374 |
freq_x = (RealType)(i - zero_freq_x)*maxfreqx*2 / nBinsX_; |
375 |
freq_y = (RealType)(j - zero_freq_y)*maxfreqy*2 / nBinsY_; |
376 |
|
377 |
freq = sqrt(freq_x*freq_x + freq_y*freq_y); |
378 |
|
379 |
whichbin = (int) (freq / dfreq); |
380 |
newindex = i*nBinsY_ + j; |
381 |
// printf("%d %d %lf %lf\n", whichbin, newindex, freq, dfreq); |
382 |
bin[whichbin][istep] += newmag[newindex]; |
383 |
samples[whichbin][istep]++; |
384 |
} |
385 |
} |
386 |
|
387 |
for ( i = 0; i < nbins_; i++) { |
388 |
if ( samples[i][istep] > 0) { |
389 |
bin[i][istep] = 4.0 * sqrt(bin[i][istep] / (RealType)samples[i][istep]) / (RealType)nBinsX_ / (RealType)nBinsY_; |
390 |
} |
391 |
} |
392 |
} |
393 |
|
394 |
for (int i = 0; i < nbins_; i++) { |
395 |
for (int j = 0; j < nFrames; j++) { |
396 |
sum_bin[i] += bin[i][j]; |
397 |
sum_bin_sq[i] += bin[i][j] * bin[i][j]; |
398 |
} |
399 |
avg_bin[i] = sum_bin[i] / (RealType)nFrames; |
400 |
avg_bin_sq[i] = sum_bin_sq[i] / (RealType)nFrames; |
401 |
for (int j = 0; j < nFrames; j++) { |
402 |
errbin_sum[i] += pow((bin[i][j] - avg_bin[i]), 2); |
403 |
errbin_sum_sq[i] += pow((bin[i][j] * bin[i][j] - avg_bin_sq[i]), 2); |
404 |
} |
405 |
errbin[i] = sqrt( errbin_sum[i] / (RealType)nFrames ); |
406 |
errbin_sq[i] = sqrt( errbin_sum_sq[i] / (RealType)nFrames ); |
407 |
} |
408 |
|
409 |
printSpectrum(); |
410 |
|
411 |
#else |
412 |
sprintf(painCave.errMsg, "Hxy: FFTW support was not compiled in!\n"); |
413 |
painCave.isFatal = 1; |
414 |
simError(); |
415 |
|
416 |
#endif |
417 |
} |
418 |
|
419 |
void Hxy::printSpectrum() { |
420 |
std::ofstream rdfStream(outputFilename_.c_str()); |
421 |
if (rdfStream.is_open()) { |
422 |
|
423 |
for (int i = 0; i < nbins_; ++i) { |
424 |
if ( avg_bin[i] > 0 ){ |
425 |
rdfStream << (RealType)i * dfreq << "\t" |
426 |
<<pow(avg_bin[i], 2)<<"\t" |
427 |
<<errbin_sq[i]<<"\t" |
428 |
<<avg_bin[i]<<"\t" |
429 |
<<errbin[i]<<"\n"; |
430 |
} |
431 |
} |
432 |
} else { |
433 |
|
434 |
sprintf(painCave.errMsg, "Hxy: unable to open %s\n", outputFilename_.c_str()); |
435 |
painCave.isFatal = 1; |
436 |
simError(); |
437 |
} |
438 |
|
439 |
rdfStream.close(); |
440 |
|
441 |
} |
442 |
|
443 |
} |