1 |
/* |
2 |
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
* |
4 |
* The University of Notre Dame grants you ("Licensee") a |
5 |
* non-exclusive, royalty free, license to use, modify and |
6 |
* redistribute this software in source and binary code form, provided |
7 |
* that the following conditions are met: |
8 |
* |
9 |
* 1. Redistributions of source code must retain the above copyright |
10 |
* notice, this list of conditions and the following disclaimer. |
11 |
* |
12 |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
* notice, this list of conditions and the following disclaimer in the |
14 |
* documentation and/or other materials provided with the |
15 |
* distribution. |
16 |
* |
17 |
* This software is provided "AS IS," without a warranty of any |
18 |
* kind. All express or implied conditions, representations and |
19 |
* warranties, including any implied warranty of merchantability, |
20 |
* fitness for a particular purpose or non-infringement, are hereby |
21 |
* excluded. The University of Notre Dame and its licensors shall not |
22 |
* be liable for any damages suffered by licensee as a result of |
23 |
* using, modifying or distributing the software or its |
24 |
* derivatives. In no event will the University of Notre Dame or its |
25 |
* licensors be liable for any lost revenue, profit or data, or for |
26 |
* direct, indirect, special, consequential, incidental or punitive |
27 |
* damages, however caused and regardless of the theory of liability, |
28 |
* arising out of the use of or inability to use software, even if the |
29 |
* University of Notre Dame has been advised of the possibility of |
30 |
* such damages. |
31 |
* |
32 |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
* research, please cite the appropriate papers when you publish your |
34 |
* work. Good starting points are: |
35 |
* |
36 |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 |
* [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
40 |
* [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
41 |
*/ |
42 |
|
43 |
#include <algorithm> |
44 |
#include <fstream> |
45 |
#include "applications/staticProps/GofXyz.hpp" |
46 |
#include "utils/simError.h" |
47 |
#include "primitives/Molecule.hpp" |
48 |
#include "types/MultipoleAdapter.hpp" |
49 |
|
50 |
namespace OpenMD { |
51 |
|
52 |
GofXyz::GofXyz(SimInfo* info, const std::string& filename, const std::string& sele1, const std::string& sele2, const std::string& sele3, RealType len, int nrbins) |
53 |
: RadialDistrFunc(info, filename, sele1, sele2), evaluator3_(info), seleMan3_(info), len_(len), halfLen_(len/2), nRBins_(nrbins) { |
54 |
setOutputName(getPrefix(filename) + ".gxyz"); |
55 |
|
56 |
evaluator3_.loadScriptString(sele3); |
57 |
if (!evaluator3_.isDynamic()) { |
58 |
seleMan3_.setSelectionSet(evaluator3_.evaluate()); |
59 |
} |
60 |
|
61 |
deltaR_ = len_ / nRBins_; |
62 |
|
63 |
histogram_.resize(nRBins_); |
64 |
for (int i = 0 ; i < nRBins_; ++i) { |
65 |
histogram_[i].resize(nRBins_); |
66 |
for(int j = 0; j < nRBins_; ++j) { |
67 |
histogram_[i][j].resize(nRBins_); |
68 |
} |
69 |
} |
70 |
|
71 |
} |
72 |
|
73 |
|
74 |
void GofXyz::preProcess() { |
75 |
for (int i = 0 ; i < nRBins_; ++i) { |
76 |
histogram_[i].resize(nRBins_); |
77 |
for(int j = 0; j < nRBins_; ++j) { |
78 |
std::fill(histogram_[i][j].begin(), histogram_[i][j].end(), 0); |
79 |
} |
80 |
} |
81 |
} |
82 |
|
83 |
|
84 |
void GofXyz::initializeHistogram() { |
85 |
//calculate the center of mass of the molecule of selected stuntdouble in selection1 |
86 |
|
87 |
if (!evaluator3_.isDynamic()) { |
88 |
seleMan3_.setSelectionSet(evaluator3_.evaluate()); |
89 |
} |
90 |
|
91 |
assert(seleMan1_.getSelectionCount() == seleMan3_.getSelectionCount()); |
92 |
|
93 |
//dipole direction of selection3 and position of selection3 will be used to determine the y-z plane |
94 |
//v1 = s3 -s1, |
95 |
//z = origin.dipole |
96 |
//x = v1 X z |
97 |
//y = z X x |
98 |
rotMats_.clear(); |
99 |
|
100 |
int i; |
101 |
int j; |
102 |
StuntDouble* sd1; |
103 |
StuntDouble* sd3; |
104 |
|
105 |
for (sd1 = seleMan1_.beginSelected(i), sd3 = seleMan3_.beginSelected(j); |
106 |
sd1 != NULL || sd3 != NULL; |
107 |
sd1 = seleMan1_.nextSelected(i), sd3 = seleMan3_.nextSelected(j)) { |
108 |
|
109 |
Vector3d r3 = sd3->getPos(); |
110 |
Vector3d r1 = sd1->getPos(); |
111 |
Vector3d v1 = r3 - r1; |
112 |
if (usePeriodicBoundaryConditions_) |
113 |
info_->getSnapshotManager()->getCurrentSnapshot()->wrapVector(v1); |
114 |
|
115 |
AtomType* atype1 = static_cast<Atom*>(sd1)->getAtomType(); |
116 |
MultipoleAdapter ma1 = MultipoleAdapter(atype1); |
117 |
|
118 |
Vector3d zaxis; |
119 |
if (ma1.isDipole()) |
120 |
zaxis = sd1->getDipole(); |
121 |
else |
122 |
zaxis = sd1->getA().transpose() * V3Z; |
123 |
|
124 |
Vector3d xaxis = cross(v1, zaxis); |
125 |
Vector3d yaxis = cross(zaxis, xaxis); |
126 |
|
127 |
xaxis.normalize(); |
128 |
yaxis.normalize(); |
129 |
zaxis.normalize(); |
130 |
|
131 |
RotMat3x3d rotMat; |
132 |
rotMat.setRow(0, xaxis); |
133 |
rotMat.setRow(1, yaxis); |
134 |
rotMat.setRow(2, zaxis); |
135 |
|
136 |
rotMats_.insert(std::map<int, RotMat3x3d>::value_type(sd1->getGlobalIndex(), rotMat)); |
137 |
} |
138 |
|
139 |
} |
140 |
|
141 |
void GofXyz::collectHistogram(StuntDouble* sd1, StuntDouble* sd2) { |
142 |
|
143 |
Vector3d pos1 = sd1->getPos(); |
144 |
Vector3d pos2 = sd2->getPos(); |
145 |
Vector3d r12 = pos2 - pos1; |
146 |
if (usePeriodicBoundaryConditions_) |
147 |
currentSnapshot_->wrapVector(r12); |
148 |
|
149 |
std::map<int, RotMat3x3d>::iterator i = rotMats_.find(sd1->getGlobalIndex()); |
150 |
assert(i != rotMats_.end()); |
151 |
|
152 |
Vector3d newR12 = i->second * r12; |
153 |
// x, y and z's possible values range -halfLen_ to halfLen_ |
154 |
int xbin = int( (newR12.x() + halfLen_) / deltaR_); |
155 |
int ybin = int( (newR12.y() + halfLen_) / deltaR_); |
156 |
int zbin = int( (newR12.z() + halfLen_) / deltaR_); |
157 |
|
158 |
if (xbin < nRBins_ && xbin >=0 && |
159 |
ybin < nRBins_ && ybin >= 0 && |
160 |
zbin < nRBins_ && zbin >=0 ) { |
161 |
++histogram_[xbin][ybin][zbin]; |
162 |
} |
163 |
|
164 |
} |
165 |
|
166 |
void GofXyz::writeRdf() { |
167 |
std::ofstream rdfStream(outputFilename_.c_str(), std::ios::binary); |
168 |
if (rdfStream.is_open()) { |
169 |
//rdfStream << "#g(x, y, z)\n"; |
170 |
//rdfStream << "#selection1: (" << selectionScript1_ << ")\t"; |
171 |
//rdfStream << "selection2: (" << selectionScript2_ << ")\n"; |
172 |
//rdfStream << "#nRBins = " << nRBins_ << "\t maxLen = " << len_ << "deltaR = " << deltaR_ <<"\n"; |
173 |
for (unsigned int i = 0; i < histogram_.size(); ++i) { |
174 |
for(unsigned int j = 0; j < histogram_[i].size(); ++j) { |
175 |
for(unsigned int k = 0;k < histogram_[i][j].size(); ++k) { |
176 |
rdfStream.write(reinterpret_cast<char *>(&histogram_[i][j][k] ), |
177 |
sizeof(histogram_[i][j][k] )); |
178 |
} |
179 |
} |
180 |
} |
181 |
|
182 |
} else { |
183 |
|
184 |
sprintf(painCave.errMsg, "GofXyz: unable to open %s\n", outputFilename_.c_str()); |
185 |
painCave.isFatal = 1; |
186 |
simError(); |
187 |
} |
188 |
|
189 |
rdfStream.close(); |
190 |
} |
191 |
|
192 |
} |