1 |
/* |
2 |
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
* |
4 |
* The University of Notre Dame grants you ("Licensee") a |
5 |
* non-exclusive, royalty free, license to use, modify and |
6 |
* redistribute this software in source and binary code form, provided |
7 |
* that the following conditions are met: |
8 |
* |
9 |
* 1. Redistributions of source code must retain the above copyright |
10 |
* notice, this list of conditions and the following disclaimer. |
11 |
* |
12 |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
* notice, this list of conditions and the following disclaimer in the |
14 |
* documentation and/or other materials provided with the |
15 |
* distribution. |
16 |
* |
17 |
* This software is provided "AS IS," without a warranty of any |
18 |
* kind. All express or implied conditions, representations and |
19 |
* warranties, including any implied warranty of merchantability, |
20 |
* fitness for a particular purpose or non-infringement, are hereby |
21 |
* excluded. The University of Notre Dame and its licensors shall not |
22 |
* be liable for any damages suffered by licensee as a result of |
23 |
* using, modifying or distributing the software or its |
24 |
* derivatives. In no event will the University of Notre Dame or its |
25 |
* licensors be liable for any lost revenue, profit or data, or for |
26 |
* direct, indirect, special, consequential, incidental or punitive |
27 |
* damages, however caused and regardless of the theory of liability, |
28 |
* arising out of the use of or inability to use software, even if the |
29 |
* University of Notre Dame has been advised of the possibility of |
30 |
* such damages. |
31 |
* |
32 |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
* research, please cite the appropriate papers when you publish your |
34 |
* work. Good starting points are: |
35 |
* |
36 |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 |
* [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
40 |
* [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
41 |
*/ |
42 |
|
43 |
#include <algorithm> |
44 |
#include <fstream> |
45 |
#include "applications/staticProps/GofXyz.hpp" |
46 |
#include "utils/simError.h" |
47 |
#include "primitives/Molecule.hpp" |
48 |
namespace OpenMD { |
49 |
|
50 |
GofXyz::GofXyz(SimInfo* info, const std::string& filename, const std::string& sele1, const std::string& sele2, const std::string& sele3, RealType len, int nrbins) |
51 |
: RadialDistrFunc(info, filename, sele1, sele2), evaluator3_(info), seleMan3_(info), len_(len), halfLen_(len/2), nRBins_(nrbins) { |
52 |
setOutputName(getPrefix(filename) + ".gxyz"); |
53 |
|
54 |
evaluator3_.loadScriptString(sele3); |
55 |
if (!evaluator3_.isDynamic()) { |
56 |
seleMan3_.setSelectionSet(evaluator3_.evaluate()); |
57 |
} |
58 |
|
59 |
deltaR_ = len_ / nRBins_; |
60 |
|
61 |
histogram_.resize(nRBins_); |
62 |
for (int i = 0 ; i < nRBins_; ++i) { |
63 |
histogram_[i].resize(nRBins_); |
64 |
for(int j = 0; j < nRBins_; ++j) { |
65 |
histogram_[i][j].resize(nRBins_); |
66 |
} |
67 |
} |
68 |
|
69 |
} |
70 |
|
71 |
|
72 |
void GofXyz::preProcess() { |
73 |
for (int i = 0 ; i < nRBins_; ++i) { |
74 |
histogram_[i].resize(nRBins_); |
75 |
for(int j = 0; j < nRBins_; ++j) { |
76 |
std::fill(histogram_[i][j].begin(), histogram_[i][j].end(), 0); |
77 |
} |
78 |
} |
79 |
} |
80 |
|
81 |
|
82 |
void GofXyz::initalizeHistogram() { |
83 |
//calculate the center of mass of the molecule of selected stuntdouble in selection1 |
84 |
|
85 |
if (!evaluator3_.isDynamic()) { |
86 |
seleMan3_.setSelectionSet(evaluator3_.evaluate()); |
87 |
} |
88 |
|
89 |
assert(seleMan1_.getSelectionCount() == seleMan3_.getSelectionCount()); |
90 |
|
91 |
//dipole direction of selection3 and position of selection3 will be used to determine the y-z plane |
92 |
//v1 = s3 -s1, |
93 |
//z = origin.dipole |
94 |
//x = v1 X z |
95 |
//y = z X x |
96 |
rotMats_.clear(); |
97 |
|
98 |
int i; |
99 |
int j; |
100 |
StuntDouble* sd1; |
101 |
StuntDouble* sd3; |
102 |
|
103 |
for (sd1 = seleMan1_.beginSelected(i), sd3 = seleMan3_.beginSelected(j); |
104 |
sd1 != NULL, sd3 != NULL; |
105 |
sd1 = seleMan1_.nextSelected(i), sd3 = seleMan3_.nextSelected(j)) { |
106 |
|
107 |
Vector3d r3 =sd3->getPos(); |
108 |
Vector3d r1 = sd1->getPos(); |
109 |
Vector3d v1 = r3 - r1; |
110 |
if (usePeriodicBoundaryConditions_) |
111 |
info_->getSnapshotManager()->getCurrentSnapshot()->wrapVector(v1); |
112 |
Vector3d zaxis = sd1->getElectroFrame().getColumn(2); |
113 |
Vector3d xaxis = cross(v1, zaxis); |
114 |
Vector3d yaxis = cross(zaxis, xaxis); |
115 |
|
116 |
xaxis.normalize(); |
117 |
yaxis.normalize(); |
118 |
zaxis.normalize(); |
119 |
|
120 |
RotMat3x3d rotMat; |
121 |
rotMat.setRow(0, xaxis); |
122 |
rotMat.setRow(1, yaxis); |
123 |
rotMat.setRow(2, zaxis); |
124 |
|
125 |
rotMats_.insert(std::map<int, RotMat3x3d>::value_type(sd1->getGlobalIndex(), rotMat)); |
126 |
} |
127 |
|
128 |
} |
129 |
|
130 |
void GofXyz::collectHistogram(StuntDouble* sd1, StuntDouble* sd2) { |
131 |
|
132 |
Vector3d pos1 = sd1->getPos(); |
133 |
Vector3d pos2 = sd2->getPos(); |
134 |
Vector3d r12 = pos2 - pos1; |
135 |
if (usePeriodicBoundaryConditions_) |
136 |
currentSnapshot_->wrapVector(r12); |
137 |
|
138 |
std::map<int, RotMat3x3d>::iterator i = rotMats_.find(sd1->getGlobalIndex()); |
139 |
assert(i != rotMats_.end()); |
140 |
|
141 |
Vector3d newR12 = i->second * r12; |
142 |
// x, y and z's possible values range -halfLen_ to halfLen_ |
143 |
int xbin = (newR12.x()+ halfLen_) / deltaR_; |
144 |
int ybin = (newR12.y() + halfLen_) / deltaR_; |
145 |
int zbin = (newR12.z() + halfLen_) / deltaR_; |
146 |
|
147 |
if (xbin < nRBins_ && xbin >=0 && |
148 |
ybin < nRBins_ && ybin >= 0 && |
149 |
zbin < nRBins_ && zbin >=0 ) { |
150 |
++histogram_[xbin][ybin][zbin]; |
151 |
} |
152 |
|
153 |
} |
154 |
|
155 |
void GofXyz::writeRdf() { |
156 |
std::ofstream rdfStream(outputFilename_.c_str(), std::ios::binary); |
157 |
if (rdfStream.is_open()) { |
158 |
//rdfStream << "#g(x, y, z)\n"; |
159 |
//rdfStream << "#selection1: (" << selectionScript1_ << ")\t"; |
160 |
//rdfStream << "selection2: (" << selectionScript2_ << ")\n"; |
161 |
//rdfStream << "#nRBins = " << nRBins_ << "\t maxLen = " << len_ << "deltaR = " << deltaR_ <<"\n"; |
162 |
for (int i = 0; i < histogram_.size(); ++i) { |
163 |
|
164 |
for(int j = 0; j < histogram_[i].size(); ++j) { |
165 |
|
166 |
for(int k = 0;k < histogram_[i][j].size(); ++k) { |
167 |
rdfStream.write(reinterpret_cast<char *>(&histogram_[i][j][k] ), sizeof(histogram_[i][j][k] )); |
168 |
} |
169 |
} |
170 |
} |
171 |
|
172 |
} else { |
173 |
|
174 |
sprintf(painCave.errMsg, "GofXyz: unable to open %s\n", outputFilename_.c_str()); |
175 |
painCave.isFatal = 1; |
176 |
simError(); |
177 |
} |
178 |
|
179 |
rdfStream.close(); |
180 |
} |
181 |
|
182 |
} |