1 |
tim |
310 |
/* |
2 |
|
|
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
|
|
* |
4 |
|
|
* The University of Notre Dame grants you ("Licensee") a |
5 |
|
|
* non-exclusive, royalty free, license to use, modify and |
6 |
|
|
* redistribute this software in source and binary code form, provided |
7 |
|
|
* that the following conditions are met: |
8 |
|
|
* |
9 |
gezelter |
1390 |
* 1. Redistributions of source code must retain the above copyright |
10 |
tim |
310 |
* notice, this list of conditions and the following disclaimer. |
11 |
|
|
* |
12 |
gezelter |
1390 |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
tim |
310 |
* notice, this list of conditions and the following disclaimer in the |
14 |
|
|
* documentation and/or other materials provided with the |
15 |
|
|
* distribution. |
16 |
|
|
* |
17 |
|
|
* This software is provided "AS IS," without a warranty of any |
18 |
|
|
* kind. All express or implied conditions, representations and |
19 |
|
|
* warranties, including any implied warranty of merchantability, |
20 |
|
|
* fitness for a particular purpose or non-infringement, are hereby |
21 |
|
|
* excluded. The University of Notre Dame and its licensors shall not |
22 |
|
|
* be liable for any damages suffered by licensee as a result of |
23 |
|
|
* using, modifying or distributing the software or its |
24 |
|
|
* derivatives. In no event will the University of Notre Dame or its |
25 |
|
|
* licensors be liable for any lost revenue, profit or data, or for |
26 |
|
|
* direct, indirect, special, consequential, incidental or punitive |
27 |
|
|
* damages, however caused and regardless of the theory of liability, |
28 |
|
|
* arising out of the use of or inability to use software, even if the |
29 |
|
|
* University of Notre Dame has been advised of the possibility of |
30 |
|
|
* such damages. |
31 |
gezelter |
1390 |
* |
32 |
|
|
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
|
|
* research, please cite the appropriate papers when you publish your |
34 |
|
|
* work. Good starting points are: |
35 |
|
|
* |
36 |
|
|
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
|
|
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
|
|
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 |
|
|
* [4] Vardeman & Gezelter, in progress (2009). |
40 |
tim |
310 |
*/ |
41 |
|
|
|
42 |
|
|
#include <algorithm> |
43 |
|
|
#include <fstream> |
44 |
tim |
311 |
#include "applications/staticProps/GofAngle2.hpp" |
45 |
tim |
310 |
#include "utils/simError.h" |
46 |
|
|
|
47 |
gezelter |
1390 |
namespace OpenMD { |
48 |
tim |
310 |
|
49 |
gezelter |
507 |
GofAngle2::GofAngle2(SimInfo* info, const std::string& filename, const std::string& sele1, |
50 |
|
|
const std::string& sele2, int nangleBins) |
51 |
tim |
354 |
: RadialDistrFunc(info, filename, sele1, sele2), nAngleBins_(nangleBins) { |
52 |
tim |
310 |
|
53 |
gezelter |
507 |
setOutputName(getPrefix(filename) + ".gto"); |
54 |
tim |
354 |
|
55 |
gezelter |
507 |
deltaCosAngle_ = 2.0 / nAngleBins_; |
56 |
tim |
354 |
|
57 |
gezelter |
507 |
histogram_.resize(nAngleBins_); |
58 |
|
|
avgGofr_.resize(nAngleBins_); |
59 |
|
|
for (int i = 0 ; i < nAngleBins_; ++i) { |
60 |
tim |
354 |
histogram_[i].resize(nAngleBins_); |
61 |
|
|
avgGofr_[i].resize(nAngleBins_); |
62 |
gezelter |
507 |
} |
63 |
tim |
354 |
|
64 |
gezelter |
507 |
} |
65 |
tim |
310 |
|
66 |
|
|
|
67 |
gezelter |
507 |
void GofAngle2::preProcess() { |
68 |
tim |
310 |
|
69 |
|
|
for (int i = 0; i < avgGofr_.size(); ++i) { |
70 |
gezelter |
507 |
std::fill(avgGofr_[i].begin(), avgGofr_[i].end(), 0); |
71 |
tim |
310 |
} |
72 |
gezelter |
507 |
} |
73 |
tim |
310 |
|
74 |
gezelter |
507 |
void GofAngle2::initalizeHistogram() { |
75 |
tim |
310 |
npairs_ = 0; |
76 |
|
|
for (int i = 0; i < histogram_.size(); ++i) |
77 |
gezelter |
507 |
std::fill(histogram_[i].begin(), histogram_[i].end(), 0); |
78 |
|
|
} |
79 |
tim |
310 |
|
80 |
|
|
|
81 |
gezelter |
507 |
void GofAngle2::processHistogram() { |
82 |
tim |
310 |
|
83 |
|
|
//std::for_each(avgGofr_.begin(), avgGofr_.end(), std::plus<std::vector<int>>) |
84 |
|
|
|
85 |
gezelter |
507 |
} |
86 |
tim |
310 |
|
87 |
gezelter |
507 |
void GofAngle2::collectHistogram(StuntDouble* sd1, StuntDouble* sd2) { |
88 |
tim |
310 |
|
89 |
|
|
if (sd1 == sd2) { |
90 |
gezelter |
507 |
return; |
91 |
tim |
310 |
} |
92 |
|
|
|
93 |
|
|
Vector3d pos1 = sd1->getPos(); |
94 |
|
|
Vector3d pos2 = sd2->getPos(); |
95 |
|
|
Vector3d r12 = pos1 - pos2; |
96 |
gezelter |
1078 |
if (usePeriodicBoundaryConditions_) |
97 |
|
|
currentSnapshot_->wrapVector(r12); |
98 |
tim |
310 |
Vector3d dipole1 = sd1->getElectroFrame().getColumn(2); |
99 |
|
|
Vector3d dipole2 = sd2->getElectroFrame().getColumn(2); |
100 |
|
|
|
101 |
|
|
r12.normalize(); |
102 |
|
|
dipole1.normalize(); |
103 |
|
|
dipole2.normalize(); |
104 |
|
|
|
105 |
|
|
|
106 |
tim |
963 |
RealType cosAngle1 = dot(r12, dipole1); |
107 |
|
|
RealType cosAngle2 = dot(dipole1, dipole2); |
108 |
tim |
310 |
|
109 |
tim |
963 |
RealType halfBin = (nAngleBins_ - 1) * 0.5; |
110 |
tim |
310 |
int angleBin1 = halfBin * (cosAngle1 + 1.0); |
111 |
gezelter |
1041 |
int angleBin2 = halfBin * (cosAngle2 + 1.0); |
112 |
tim |
310 |
|
113 |
gezelter |
1041 |
++histogram_[angleBin1][angleBin2]; |
114 |
tim |
310 |
++npairs_; |
115 |
gezelter |
507 |
} |
116 |
tim |
310 |
|
117 |
gezelter |
507 |
void GofAngle2::writeRdf() { |
118 |
tim |
310 |
std::ofstream rdfStream(outputFilename_.c_str()); |
119 |
|
|
if (rdfStream.is_open()) { |
120 |
gezelter |
507 |
rdfStream << "#radial distribution function\n"; |
121 |
|
|
rdfStream << "#selection1: (" << selectionScript1_ << ")\t"; |
122 |
|
|
rdfStream << "selection2: (" << selectionScript2_ << ")\n"; |
123 |
|
|
rdfStream << "#nAngleBins =" << nAngleBins_ << "deltaCosAngle = " << deltaCosAngle_ << "\n"; |
124 |
|
|
for (int i = 0; i < avgGofr_.size(); ++i) { |
125 |
tim |
963 |
RealType cosAngle1 = -1.0 + (i + 0.5)*deltaCosAngle_; |
126 |
tim |
310 |
|
127 |
gezelter |
507 |
for(int j = 0; j < avgGofr_[i].size(); ++j) { |
128 |
tim |
963 |
RealType cosAngle2 = -1.0 + (j + 0.5)*deltaCosAngle_; |
129 |
gezelter |
507 |
rdfStream <<avgGofr_[i][j]/nProcessed_ << "\t"; |
130 |
|
|
} |
131 |
tim |
360 |
|
132 |
gezelter |
507 |
rdfStream << "\n"; |
133 |
|
|
} |
134 |
tim |
310 |
|
135 |
|
|
} else { |
136 |
|
|
|
137 |
gezelter |
507 |
sprintf(painCave.errMsg, "GofAngle2: unable to open %s\n", outputFilename_.c_str()); |
138 |
|
|
painCave.isFatal = 1; |
139 |
|
|
simError(); |
140 |
tim |
310 |
} |
141 |
|
|
|
142 |
|
|
rdfStream.close(); |
143 |
gezelter |
507 |
} |
144 |
tim |
310 |
|
145 |
|
|
} |