ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/applications/nanoparticleBuilder/nanorodBuilder.cpp
Revision: 1701
Committed: Thu Apr 5 19:37:58 2012 UTC (13 years ago) by kstocke1
File size: 16025 byte(s)
Log Message:
Added files for fcc and pentagonal nanorod builders. Updated runMe in samples/builders to include nanorod builders.

File Contents

# Content
1 /*
2 * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 *
4 * The University of Notre Dame grants you ("Licensee") a
5 * non-exclusive, royalty free, license to use, modify and
6 * redistribute this software in source and binary code form, provided
7 * that the following conditions are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 *
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the
15 * distribution.
16 *
17 * This software is provided "AS IS," without a warranty of any
18 * kind. All express or implied conditions, representations and
19 * warranties, including any implied warranty of merchantability,
20 * fitness for a particular purpose or non-infringement, are hereby
21 * excluded. The University of Notre Dame and its licensors shall not
22 * be liable for any damages suffered by licensee as a result of
23 * using, modifying or distributing the software or its
24 * derivatives. In no event will the University of Notre Dame or its
25 * licensors be liable for any lost revenue, profit or data, or for
26 * direct, indirect, special, consequential, incidental or punitive
27 * damages, however caused and regardless of the theory of liability,
28 * arising out of the use of or inability to use software, even if the
29 * University of Notre Dame has been advised of the possibility of
30 * such damages.
31 *
32 * SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your
33 * research, please cite the appropriate papers when you publish your
34 * work. Good starting points are:
35 *
36 * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).
37 * [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).
38 * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).
39 * [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010).
40 * [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41 * Created by Kelsey M. Stocker on 2/9/12.
42 * @author Kelsey M. Stocker
43 *
44 */
45
46 #include <cstdlib>
47 #include <cstdio>
48 #include <cstring>
49 #include <cmath>
50 #include <iostream>
51 #include <string>
52 #include <map>
53 #include <fstream>
54 #include <algorithm>
55
56 #include "config.h"
57 #include "shapedLatticeRod.hpp"
58 #include "nanorodBuilderCmd.h"
59 #include "lattice/LatticeFactory.hpp"
60 #include "utils/MoLocator.hpp"
61 #include "lattice/Lattice.hpp"
62 #include "brains/Register.hpp"
63 #include "brains/SimInfo.hpp"
64 #include "brains/SimCreator.hpp"
65 #include "io/DumpWriter.hpp"
66 #include "math/Vector3.hpp"
67 #include "math/SquareMatrix3.hpp"
68 #include "utils/StringUtils.hpp"
69
70 using namespace std;
71 using namespace OpenMD;
72 void createMdFile(const std::string&oldMdFileName,
73 const std::string&newMdFileName,
74 std::vector<int> numMol);
75
76 int main(int argc, char *argv []) {
77
78 //register force fields
79 registerForceFields();
80 registerLattice();
81
82 gengetopt_args_info args_info;
83 std::string latticeType;
84 std::string inputFileName;
85 std::string outputFileName;
86
87 MoLocator* locator;
88 int nComponents;
89 double latticeConstant;
90 std::vector<double> lc;
91
92 RealType rodRadius;
93 RealType rodLength;
94
95 Mat3x3d hmat;
96 std::vector<Vector3d> latticePos;
97 std::vector<Vector3d> latticeOrt;
98
99 DumpWriter *writer;
100
101 // Parse Command Line Arguments
102 if (cmdline_parser(argc, argv, &args_info) != 0)
103 exit(1);
104
105 /* get lattice type */
106 latticeType = "FCC";
107
108 /* get input file name */
109 if (args_info.inputs_num)
110 inputFileName = args_info.inputs[0];
111 else {
112 sprintf(painCave.errMsg, "No input .md file name was specified "
113 "on the command line");
114 painCave.isFatal = 1;
115 cmdline_parser_print_help();
116 simError();
117 }
118
119 /* parse md file and set up the system */
120 SimCreator oldCreator;
121 SimInfo* oldInfo = oldCreator.createSim(inputFileName, false);
122
123 latticeConstant = args_info.latticeConstant_arg;
124 rodRadius = args_info.radius_arg;
125 rodLength = args_info.length_arg;
126 Globals* simParams = oldInfo->getSimParams();
127
128 /* Create nanorod */
129 shapedLatticeRod nanoRod(latticeConstant, latticeType,
130 rodRadius, rodLength);
131
132 /* Build a lattice and get lattice points for this lattice constant */
133 vector<Vector3d> sites = nanoRod.getSites();
134 vector<Vector3d> orientations = nanoRod.getOrientations();
135 std::vector<int> vacancyTargets;
136 vector<bool> isVacancy;
137
138 Vector3d myLoc;
139 RealType myR;
140
141 for (int i = 0; i < sites.size(); i++)
142 isVacancy.push_back(false);
143
144 // cerr << "checking vacancyPercent" << "\n";
145 if (args_info.vacancyPercent_given) {
146 // cerr << "vacancyPercent given" << "\n";
147 if (args_info.vacancyPercent_arg < 0.0 || args_info.vacancyPercent_arg > 100.0) {
148 sprintf(painCave.errMsg, "vacancyPercent was set to a non-sensical value.");
149 painCave.isFatal = 1;
150 simError();
151 } else {
152 RealType vF = args_info.vacancyPercent_arg / 100.0;
153 // cerr << "vacancyPercent = " << vF << "\n";
154 RealType vIR;
155 RealType vOR;
156 if (args_info.vacancyInnerRadius_given) {
157 vIR = args_info.vacancyInnerRadius_arg;
158 } else {
159 vIR = 0.0;
160 }
161 if (args_info.vacancyOuterRadius_given) {
162 vOR = args_info.vacancyOuterRadius_arg;
163 } else {
164 vOR = rodRadius;
165 }
166 if (vIR >= 0.0 && vOR <= rodRadius && vOR >= vIR) {
167
168 for (int i = 0; i < sites.size(); i++) {
169 myLoc = sites[i];
170 myR = myLoc.length();
171 if (myR >= vIR && myR <= vOR) {
172 vacancyTargets.push_back(i);
173 }
174 }
175 std::random_shuffle(vacancyTargets.begin(), vacancyTargets.end());
176
177 int nTargets = vacancyTargets.size();
178 vacancyTargets.resize((int)(vF * nTargets));
179
180
181 sprintf(painCave.errMsg, "Removing %d atoms from randomly-selected\n"
182 "\tsites between %lf and %lf.", (int) vacancyTargets.size(),
183 vIR, vOR);
184 painCave.isFatal = 0;
185 simError();
186
187 isVacancy.clear();
188 for (int i = 0; i < sites.size(); i++) {
189 bool vac = false;
190 for (int j = 0; j < vacancyTargets.size(); j++) {
191 if (i == vacancyTargets[j]) vac = true;
192 }
193 isVacancy.push_back(vac);
194 }
195
196 } else {
197 sprintf(painCave.errMsg, "Something is strange about the vacancy\n"
198 "\tinner or outer radii. Check their values.");
199 painCave.isFatal = 1;
200 simError();
201 }
202 }
203 }
204
205 /* Get number of lattice sites */
206 int nSites = sites.size() - vacancyTargets.size();
207
208 // cerr << "sites.size() = " << sites.size() << "\n";
209 // cerr << "nSites = " << nSites << "\n";
210 // cerr << "vacancyTargets = " << vacancyTargets.size() << "\n";
211
212 std::vector<Component*> components = simParams->getComponents();
213 std::vector<RealType> molFractions;
214 std::vector<RealType> shellRadii;
215 std::vector<RealType> molecularMasses;
216 std::vector<int> nMol;
217 std::map<int, int> componentFromSite;
218 nComponents = components.size();
219 // cerr << "nComponents = " << nComponents << "\n";
220
221 if (args_info.molFraction_given && args_info.shellRadius_given) {
222 sprintf(painCave.errMsg, "Specify either molFraction or shellRadius "
223 "arguments, but not both!");
224 painCave.isFatal = 1;
225 simError();
226 }
227
228 if (nComponents == 1) {
229 molFractions.push_back(1.0);
230 shellRadii.push_back(rodRadius);
231 } else if (args_info.molFraction_given) {
232 if ((int)args_info.molFraction_given == nComponents) {
233 for (int i = 0; i < nComponents; i++) {
234 molFractions.push_back(args_info.molFraction_arg[i]);
235 }
236 } else if ((int)args_info.molFraction_given == nComponents-1) {
237 RealType remainingFraction = 1.0;
238 for (int i = 0; i < nComponents-1; i++) {
239 molFractions.push_back(args_info.molFraction_arg[i]);
240 remainingFraction -= molFractions[i];
241 }
242 molFractions.push_back(remainingFraction);
243 } else {
244 sprintf(painCave.errMsg, "nanorodBuilder can't figure out molFractions "
245 "for all of the components in the <MetaData> block.");
246 painCave.isFatal = 1;
247 simError();
248 }
249 } else if ((int)args_info.shellRadius_given) {
250 if ((int)args_info.shellRadius_given == nComponents) {
251 for (int i = 0; i < nComponents; i++) {
252 shellRadii.push_back(args_info.shellRadius_arg[i]);
253 }
254 } else if ((int)args_info.shellRadius_given == nComponents-1) {
255 for (int i = 0; i < nComponents-1; i++) {
256 shellRadii.push_back(args_info.shellRadius_arg[i]);
257 }
258 shellRadii.push_back(rodRadius);
259 } else {
260 sprintf(painCave.errMsg, "nanorodBuilder can't figure out the\n"
261 "\tshell radii for all of the components in the <MetaData> block.");
262 painCave.isFatal = 1;
263 simError();
264 }
265 } else {
266 sprintf(painCave.errMsg, "You have a multi-component <MetaData> block,\n"
267 "\tbut have not specified either molFraction or shellRadius arguments.");
268 painCave.isFatal = 1;
269 simError();
270 }
271
272 if (args_info.molFraction_given) {
273 RealType totalFraction = 0.0;
274
275 /* Do some simple sanity checking*/
276
277 for (int i = 0; i < nComponents; i++) {
278 if (molFractions.at(i) < 0.0) {
279 sprintf(painCave.errMsg, "One of the requested molFractions was"
280 " less than zero!");
281 painCave.isFatal = 1;
282 simError();
283 }
284 if (molFractions.at(i) > 1.0) {
285 sprintf(painCave.errMsg, "One of the requested molFractions was"
286 " greater than one!");
287 painCave.isFatal = 1;
288 simError();
289 }
290 totalFraction += molFractions.at(i);
291 }
292 if (abs(totalFraction - 1.0) > 1e-6) {
293 sprintf(painCave.errMsg, "The sum of molFractions was not close enough to 1.0");
294 painCave.isFatal = 1;
295 simError();
296 }
297
298 int remaining = nSites;
299 for (int i=0; i < nComponents-1; i++) {
300 nMol.push_back(int((RealType)nSites * molFractions.at(i)));
301 remaining -= nMol.at(i);
302 }
303 nMol.push_back(remaining);
304
305 // recompute actual mol fractions and perform final sanity check:
306
307 int totalMolecules = 0;
308 for (int i=0; i < nComponents; i++) {
309 molFractions[i] = (RealType)(nMol.at(i))/(RealType)nSites;
310 totalMolecules += nMol.at(i);
311 }
312 if (totalMolecules != nSites) {
313 sprintf(painCave.errMsg, "Computed total number of molecules is not equal "
314 "to the number of lattice sites!");
315 painCave.isFatal = 1;
316 simError();
317 }
318 } else {
319
320 for (int i = 0; i < shellRadii.size(); i++) {
321 if (shellRadii.at(i) > rodRadius + 1e-6 ) {
322 sprintf(painCave.errMsg, "One of the shellRadius values exceeds the rod Radius.");
323 painCave.isFatal = 1;
324 simError();
325 }
326 if (shellRadii.at(i) <= 0.0 ) {
327 sprintf(painCave.errMsg, "One of the shellRadius values is smaller than zero!");
328 painCave.isFatal = 1;
329 simError();
330 }
331 }
332 }
333
334 vector<int> ids;
335 if ((int)args_info.molFraction_given){
336 // cerr << "molFraction given 2" << "\n";
337 sprintf(painCave.errMsg, "Creating a randomized spherically-capped nanorod.");
338 painCave.isFatal = 0;
339 simError();
340 /* Random rod is the default case*/
341
342 for (int i = 0; i < sites.size(); i++)
343 if (!isVacancy[i]) ids.push_back(i);
344
345 std::random_shuffle(ids.begin(), ids.end());
346
347 } else{
348 sprintf(painCave.errMsg, "Creating an fcc nanorod.");
349 painCave.isFatal = 0;
350 simError();
351
352 RealType smallestSoFar;
353 int myComponent = -1;
354 nMol.clear();
355 nMol.resize(nComponents);
356
357 // cerr << "shellRadii[0] " << shellRadii[0] << "\n";
358 // cerr << "rodRadius " << rodRadius << "\n";
359
360 for (int i = 0; i < sites.size(); i++) {
361 myLoc = sites[i];
362 myR = myLoc.length();
363 smallestSoFar = rodRadius;
364 //cerr << "vac = " << isVacancy[i]<< "\n";
365
366 if (!isVacancy[i]) {
367
368
369 // for (int j = 0; j < nComponents; j++) {
370 // if (myR <= shellRadii[j]) {
371 // if (shellRadii[j] <= smallestSoFar) {
372 // smallestSoFar = shellRadii[j];
373 // myComponent = j;
374 // }
375 // }
376 // }
377 myComponent = 0;
378 componentFromSite[i] = myComponent;
379 nMol[myComponent]++;
380 // cerr << "nMol for myComp(" << myComponent<<") = " << nMol[myComponent] << "\n";
381 }
382 }
383 }
384 // cerr << "nMol = " << nMol.at(0) << "\n";
385
386 outputFileName = args_info.output_arg;
387
388 //creat new .md file on fly which corrects the number of molecule
389
390 createMdFile(inputFileName, outputFileName, nMol);
391
392 if (oldInfo != NULL)
393 delete oldInfo;
394
395 SimCreator newCreator;
396 SimInfo* NewInfo = newCreator.createSim(outputFileName, false);
397
398 // Place molecules
399 Molecule* mol;
400 SimInfo::MoleculeIterator mi;
401 mol = NewInfo->beginMolecule(mi);
402
403 int l = 0;
404 int whichSite = 0;
405
406 for (int i = 0; i < nComponents; i++){
407 locator = new MoLocator(NewInfo->getMoleculeStamp(i),
408 NewInfo->getForceField());
409
410 // cerr << "nMol = " << nMol.at(i) << "\n";
411 if (!args_info.molFraction_given) {
412 for (int n = 0; n < sites.size(); n++) {
413 if (!isVacancy[n]) {
414 if (componentFromSite[n] == i) {
415 mol = NewInfo->getMoleculeByGlobalIndex(l);
416 locator->placeMol(sites[n], orientations[n], mol);
417 l++;
418 }
419 }
420 }
421 } else {
422 for (int n = 0; n < nMol.at(i); n++) {
423 mol = NewInfo->getMoleculeByGlobalIndex(l);
424 locator->placeMol(sites[ids[l]], orientations[ids[l]], mol);
425 l++;
426 }
427 }
428 }
429
430 //fill Hmat
431 hmat(0, 0)= 10.0*rodRadius;
432 hmat(0, 1) = 0.0;
433 hmat(0, 2) = 0.0;
434
435 hmat(1, 0) = 0.0;
436 hmat(1, 1) = 10.0*rodRadius;
437 hmat(1, 2) = 0.0;
438
439 hmat(2, 0) = 0.0;
440 hmat(2, 1) = 0.0;
441 hmat(2, 2) = 5.0*rodLength + 2.0*rodRadius;
442
443 //set Hmat
444 NewInfo->getSnapshotManager()->getCurrentSnapshot()->setHmat(hmat);
445
446
447 //create dumpwriter and write out the coordinates
448 writer = new DumpWriter(NewInfo, outputFileName);
449
450 if (writer == NULL) {
451 sprintf(painCave.errMsg, "Error in creating dumpwriter object ");
452 painCave.isFatal = 1;
453 simError();
454 }
455
456 writer->writeDump();
457
458 // deleting the writer will put the closing at the end of the dump file
459
460 delete writer;
461
462 // cleanup a by calling sim error.....
463 sprintf(painCave.errMsg, "A new OpenMD file called \"%s\" has been "
464 "generated.\n", outputFileName.c_str());
465 painCave.isFatal = 0;
466 simError();
467 return 0;
468 }
469
470 void createMdFile(const std::string&oldMdFileName,
471 const std::string&newMdFileName,
472 std::vector<int> nMol) {
473 ifstream oldMdFile;
474 ofstream newMdFile;
475 const int MAXLEN = 65535;
476 char buffer[MAXLEN];
477
478 //create new .md file based on old .md file
479 oldMdFile.open(oldMdFileName.c_str());
480 newMdFile.open(newMdFileName.c_str());
481 oldMdFile.getline(buffer, MAXLEN);
482
483 int i = 0;
484 while (!oldMdFile.eof()) {
485
486 //correct molecule number
487 if (strstr(buffer, "nMol") != NULL) {
488 if(i<nMol.size()){
489 sprintf(buffer, "\tnMol = %i;", nMol.at(i));
490 newMdFile << buffer << std::endl;
491 i++;
492 }
493 } else
494 newMdFile << buffer << std::endl;
495
496 oldMdFile.getline(buffer, MAXLEN);
497 }
498
499 oldMdFile.close();
500 newMdFile.close();
501
502 if (i != nMol.size()) {
503 sprintf(painCave.errMsg, "Couldn't replace the correct number of nMol\n"
504 "\tstatements in component blocks. Make sure that all\n"
505 "\tcomponents in the template file have nMol=1");
506 painCave.isFatal = 1;
507 simError();
508 }
509
510 }
511