1 |
/* |
2 |
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
* |
4 |
* The University of Notre Dame grants you ("Licensee") a |
5 |
* non-exclusive, royalty free, license to use, modify and |
6 |
* redistribute this software in source and binary code form, provided |
7 |
* that the following conditions are met: |
8 |
* |
9 |
* 1. Redistributions of source code must retain the above copyright |
10 |
* notice, this list of conditions and the following disclaimer. |
11 |
* |
12 |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
* notice, this list of conditions and the following disclaimer in the |
14 |
* documentation and/or other materials provided with the |
15 |
* distribution. |
16 |
* |
17 |
* This software is provided "AS IS," without a warranty of any |
18 |
* kind. All express or implied conditions, representations and |
19 |
* warranties, including any implied warranty of merchantability, |
20 |
* fitness for a particular purpose or non-infringement, are hereby |
21 |
* excluded. The University of Notre Dame and its licensors shall not |
22 |
* be liable for any damages suffered by licensee as a result of |
23 |
* using, modifying or distributing the software or its |
24 |
* derivatives. In no event will the University of Notre Dame or its |
25 |
* licensors be liable for any lost revenue, profit or data, or for |
26 |
* direct, indirect, special, consequential, incidental or punitive |
27 |
* damages, however caused and regardless of the theory of liability, |
28 |
* arising out of the use of or inability to use software, even if the |
29 |
* University of Notre Dame has been advised of the possibility of |
30 |
* such damages. |
31 |
* |
32 |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
* research, please cite the appropriate papers when you publish your |
34 |
* work. Good starting points are: |
35 |
* |
36 |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008). |
39 |
* [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
40 |
* [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
41 |
*/ |
42 |
|
43 |
#include <cstdlib> |
44 |
#include <cstdio> |
45 |
#include <cstring> |
46 |
#include <cmath> |
47 |
#include <iostream> |
48 |
#include <string> |
49 |
#include <map> |
50 |
#include <fstream> |
51 |
#include <algorithm> |
52 |
|
53 |
#include "config.h" |
54 |
#include "shapedLatticeSpherical.hpp" |
55 |
#include "nanoparticleBuilderCmd.h" |
56 |
#include "lattice/LatticeFactory.hpp" |
57 |
#include "utils/MoLocator.hpp" |
58 |
#include "lattice/Lattice.hpp" |
59 |
#include "brains/Register.hpp" |
60 |
#include "brains/SimInfo.hpp" |
61 |
#include "brains/SimCreator.hpp" |
62 |
#include "io/DumpWriter.hpp" |
63 |
#include "math/Vector3.hpp" |
64 |
#include "math/SquareMatrix3.hpp" |
65 |
#include "utils/StringUtils.hpp" |
66 |
|
67 |
using namespace std; |
68 |
using namespace OpenMD; |
69 |
void createMdFile(const std::string&oldMdFileName, |
70 |
const std::string&newMdFileName, |
71 |
std::vector<int> numMol); |
72 |
|
73 |
int main(int argc, char *argv []) { |
74 |
|
75 |
registerLattice(); |
76 |
|
77 |
gengetopt_args_info args_info; |
78 |
std::string latticeType; |
79 |
std::string inputFileName; |
80 |
std::string outputFileName; |
81 |
|
82 |
MoLocator* locator; |
83 |
int nComponents; |
84 |
double latticeConstant; |
85 |
std::vector<double> lc; |
86 |
|
87 |
RealType particleRadius; |
88 |
|
89 |
Mat3x3d hmat; |
90 |
std::vector<Vector3d> latticePos; |
91 |
std::vector<Vector3d> latticeOrt; |
92 |
|
93 |
DumpWriter *writer; |
94 |
|
95 |
// Parse Command Line Arguments |
96 |
if (cmdline_parser(argc, argv, &args_info) != 0) |
97 |
exit(1); |
98 |
|
99 |
/* get lattice type */ |
100 |
latticeType = "FCC"; |
101 |
|
102 |
/* get input file name */ |
103 |
if (args_info.inputs_num) |
104 |
inputFileName = args_info.inputs[0]; |
105 |
else { |
106 |
sprintf(painCave.errMsg, "No input .md file name was specified " |
107 |
"on the command line"); |
108 |
painCave.isFatal = 1; |
109 |
cmdline_parser_print_help(); |
110 |
simError(); |
111 |
} |
112 |
|
113 |
/* parse md file and set up the system */ |
114 |
SimCreator oldCreator; |
115 |
SimInfo* oldInfo = oldCreator.createSim(inputFileName, false); |
116 |
|
117 |
latticeConstant = args_info.latticeConstant_arg; |
118 |
particleRadius = args_info.radius_arg; |
119 |
Globals* simParams = oldInfo->getSimParams(); |
120 |
|
121 |
/* Create nanoparticle */ |
122 |
shapedLatticeSpherical nanoParticle(latticeConstant, latticeType, |
123 |
particleRadius); |
124 |
|
125 |
/* Build a lattice and get lattice points for this lattice constant */ |
126 |
vector<Vector3d> sites = nanoParticle.getSites(); |
127 |
vector<Vector3d> orientations = nanoParticle.getOrientations(); |
128 |
|
129 |
|
130 |
std::vector<int> vacancyTargets; |
131 |
vector<bool> isVacancy; |
132 |
|
133 |
Vector3d myLoc; |
134 |
RealType myR; |
135 |
|
136 |
for (unsigned int i = 0; i < sites.size(); i++) |
137 |
isVacancy.push_back(false); |
138 |
|
139 |
if (args_info.vacancyPercent_given) { |
140 |
if (args_info.vacancyPercent_arg < 0.0 || args_info.vacancyPercent_arg > 100.0) { |
141 |
sprintf(painCave.errMsg, "vacancyPercent was set to a non-sensical value."); |
142 |
painCave.isFatal = 1; |
143 |
simError(); |
144 |
} else { |
145 |
RealType vF = args_info.vacancyPercent_arg / 100.0; |
146 |
RealType vIR; |
147 |
RealType vOR; |
148 |
if (args_info.vacancyInnerRadius_given) { |
149 |
vIR = args_info.vacancyInnerRadius_arg; |
150 |
} else { |
151 |
vIR = 0.0; |
152 |
} |
153 |
if (args_info.vacancyOuterRadius_given) { |
154 |
vOR = args_info.vacancyOuterRadius_arg; |
155 |
} else { |
156 |
vOR = particleRadius; |
157 |
} |
158 |
if (vIR >= 0.0 && vOR <= particleRadius && vOR >= vIR) { |
159 |
|
160 |
for (unsigned int i = 0; i < sites.size(); i++) { |
161 |
myLoc = sites[i]; |
162 |
myR = myLoc.length(); |
163 |
if (myR >= vIR && myR <= vOR) { |
164 |
vacancyTargets.push_back(i); |
165 |
} |
166 |
} |
167 |
std::random_shuffle(vacancyTargets.begin(), vacancyTargets.end()); |
168 |
|
169 |
int nTargets = vacancyTargets.size(); |
170 |
vacancyTargets.resize((int)(vF * nTargets)); |
171 |
|
172 |
|
173 |
sprintf(painCave.errMsg, "Removing %d atoms from randomly-selected\n" |
174 |
"\tsites between %lf and %lf.", (int) vacancyTargets.size(), |
175 |
vIR, vOR); |
176 |
painCave.isFatal = 0; |
177 |
simError(); |
178 |
|
179 |
isVacancy.clear(); |
180 |
for (unsigned int i = 0; i < sites.size(); i++) { |
181 |
bool vac = false; |
182 |
for (unsigned int j = 0; j < vacancyTargets.size(); j++) { |
183 |
if (i == vacancyTargets[j]) vac = true; |
184 |
} |
185 |
isVacancy.push_back(vac); |
186 |
} |
187 |
|
188 |
} else { |
189 |
sprintf(painCave.errMsg, "Something is strange about the vacancy\n" |
190 |
"\tinner or outer radii. Check their values."); |
191 |
painCave.isFatal = 1; |
192 |
simError(); |
193 |
} |
194 |
} |
195 |
} |
196 |
|
197 |
/* Get number of lattice sites */ |
198 |
int nSites = sites.size() - vacancyTargets.size(); |
199 |
|
200 |
std::vector<Component*> components = simParams->getComponents(); |
201 |
std::vector<RealType> molFractions; |
202 |
std::vector<RealType> shellRadii; |
203 |
std::vector<RealType> molecularMasses; |
204 |
std::vector<int> nMol; |
205 |
std::map<int, int> componentFromSite; |
206 |
nComponents = components.size(); |
207 |
|
208 |
if (args_info.molFraction_given && args_info.shellRadius_given) { |
209 |
sprintf(painCave.errMsg, "Specify either molFraction or shellRadius " |
210 |
"arguments, but not both!"); |
211 |
painCave.isFatal = 1; |
212 |
simError(); |
213 |
} |
214 |
|
215 |
if (nComponents == 1) { |
216 |
molFractions.push_back(1.0); |
217 |
shellRadii.push_back(particleRadius); |
218 |
} else if (args_info.molFraction_given) { |
219 |
if ((int)args_info.molFraction_given == nComponents) { |
220 |
for (int i = 0; i < nComponents; i++) { |
221 |
molFractions.push_back(args_info.molFraction_arg[i]); |
222 |
} |
223 |
} else if ((int)args_info.molFraction_given == nComponents-1) { |
224 |
RealType remainingFraction = 1.0; |
225 |
for (int i = 0; i < nComponents-1; i++) { |
226 |
molFractions.push_back(args_info.molFraction_arg[i]); |
227 |
remainingFraction -= molFractions[i]; |
228 |
} |
229 |
molFractions.push_back(remainingFraction); |
230 |
} else { |
231 |
sprintf(painCave.errMsg, "nanoparticleBuilder can't figure out molFractions " |
232 |
"for all of the components in the <MetaData> block."); |
233 |
painCave.isFatal = 1; |
234 |
simError(); |
235 |
} |
236 |
} else if ((int)args_info.shellRadius_given) { |
237 |
if ((int)args_info.shellRadius_given == nComponents) { |
238 |
for (int i = 0; i < nComponents; i++) { |
239 |
shellRadii.push_back(args_info.shellRadius_arg[i]); |
240 |
} |
241 |
} else if ((int)args_info.shellRadius_given == nComponents-1) { |
242 |
for (int i = 0; i < nComponents-1; i++) { |
243 |
shellRadii.push_back(args_info.shellRadius_arg[i]); |
244 |
} |
245 |
shellRadii.push_back(particleRadius); |
246 |
} else { |
247 |
sprintf(painCave.errMsg, "nanoparticleBuilder can't figure out the\n" |
248 |
"\tshell radii for all of the components in the <MetaData> block."); |
249 |
painCave.isFatal = 1; |
250 |
simError(); |
251 |
} |
252 |
} else { |
253 |
sprintf(painCave.errMsg, "You have a multi-component <MetaData> block,\n" |
254 |
"\tbut have not specified either molFraction or shellRadius arguments."); |
255 |
painCave.isFatal = 1; |
256 |
simError(); |
257 |
} |
258 |
|
259 |
if (args_info.molFraction_given) { |
260 |
RealType totalFraction = 0.0; |
261 |
|
262 |
/* Do some simple sanity checking*/ |
263 |
|
264 |
for (int i = 0; i < nComponents; i++) { |
265 |
if (molFractions.at(i) < 0.0) { |
266 |
sprintf(painCave.errMsg, "One of the requested molFractions was" |
267 |
" less than zero!"); |
268 |
painCave.isFatal = 1; |
269 |
simError(); |
270 |
} |
271 |
if (molFractions.at(i) > 1.0) { |
272 |
sprintf(painCave.errMsg, "One of the requested molFractions was" |
273 |
" greater than one!"); |
274 |
painCave.isFatal = 1; |
275 |
simError(); |
276 |
} |
277 |
totalFraction += molFractions.at(i); |
278 |
} |
279 |
if (abs(totalFraction - 1.0) > 1e-6) { |
280 |
sprintf(painCave.errMsg, "The sum of molFractions was not close enough to 1.0"); |
281 |
painCave.isFatal = 1; |
282 |
simError(); |
283 |
} |
284 |
|
285 |
int remaining = nSites; |
286 |
for (int i=0; i < nComponents-1; i++) { |
287 |
nMol.push_back(int((RealType)nSites * molFractions.at(i))); |
288 |
remaining -= nMol.at(i); |
289 |
} |
290 |
nMol.push_back(remaining); |
291 |
|
292 |
// recompute actual mol fractions and perform final sanity check: |
293 |
|
294 |
int totalMolecules = 0; |
295 |
for (int i=0; i < nComponents; i++) { |
296 |
molFractions[i] = (RealType)(nMol.at(i))/(RealType)nSites; |
297 |
totalMolecules += nMol.at(i); |
298 |
} |
299 |
|
300 |
if (totalMolecules != nSites) { |
301 |
sprintf(painCave.errMsg, "Computed total number of molecules is not equal " |
302 |
"to the number of lattice sites!"); |
303 |
painCave.isFatal = 1; |
304 |
simError(); |
305 |
} |
306 |
} else { |
307 |
|
308 |
for (unsigned int i = 0; i < shellRadii.size(); i++) { |
309 |
if (shellRadii.at(i) > particleRadius + 1e-6 ) { |
310 |
sprintf(painCave.errMsg, "One of the shellRadius values exceeds the particle Radius."); |
311 |
painCave.isFatal = 1; |
312 |
simError(); |
313 |
} |
314 |
if (shellRadii.at(i) <= 0.0 ) { |
315 |
sprintf(painCave.errMsg, "One of the shellRadius values is smaller than zero!"); |
316 |
painCave.isFatal = 1; |
317 |
simError(); |
318 |
} |
319 |
} |
320 |
} |
321 |
|
322 |
vector<int> ids; |
323 |
if ((int)args_info.molFraction_given){ |
324 |
sprintf(painCave.errMsg, "Creating a randomized spherical nanoparticle."); |
325 |
painCave.isFatal = 0; |
326 |
simError(); |
327 |
/* Random particle is the default case*/ |
328 |
|
329 |
for (unsigned int i = 0; i < sites.size(); i++) |
330 |
if (!isVacancy[i]) ids.push_back(i); |
331 |
|
332 |
std::random_shuffle(ids.begin(), ids.end()); |
333 |
|
334 |
} else{ |
335 |
sprintf(painCave.errMsg, "Creating a core-shell spherical nanoparticle."); |
336 |
painCave.isFatal = 0; |
337 |
simError(); |
338 |
|
339 |
RealType smallestSoFar; |
340 |
int myComponent = -1; |
341 |
nMol.clear(); |
342 |
nMol.resize(nComponents); |
343 |
|
344 |
for (unsigned int i = 0; i < sites.size(); i++) { |
345 |
myLoc = sites[i]; |
346 |
myR = myLoc.length(); |
347 |
smallestSoFar = particleRadius; |
348 |
if (!isVacancy[i]) { |
349 |
for (int j = 0; j < nComponents; j++) { |
350 |
if (myR <= shellRadii[j]) { |
351 |
if (shellRadii[j] <= smallestSoFar) { |
352 |
smallestSoFar = shellRadii[j]; |
353 |
myComponent = j; |
354 |
} |
355 |
} |
356 |
} |
357 |
componentFromSite[i] = myComponent; |
358 |
nMol[myComponent]++; |
359 |
} |
360 |
} |
361 |
} |
362 |
|
363 |
outputFileName = args_info.output_arg; |
364 |
|
365 |
//creat new .md file on fly which corrects the number of molecule |
366 |
createMdFile(inputFileName, outputFileName, nMol); |
367 |
|
368 |
if (oldInfo != NULL) |
369 |
delete oldInfo; |
370 |
|
371 |
SimCreator newCreator; |
372 |
SimInfo* NewInfo = newCreator.createSim(outputFileName, false); |
373 |
|
374 |
// Place molecules |
375 |
Molecule* mol; |
376 |
SimInfo::MoleculeIterator mi; |
377 |
mol = NewInfo->beginMolecule(mi); |
378 |
|
379 |
int l = 0; |
380 |
|
381 |
for (int i = 0; i < nComponents; i++){ |
382 |
locator = new MoLocator(NewInfo->getMoleculeStamp(i), |
383 |
NewInfo->getForceField()); |
384 |
|
385 |
if (!args_info.molFraction_given) { |
386 |
for (unsigned int n = 0; n < sites.size(); n++) { |
387 |
if (!isVacancy[n]) { |
388 |
if (componentFromSite[n] == i) { |
389 |
mol = NewInfo->getMoleculeByGlobalIndex(l); |
390 |
locator->placeMol(sites[n], orientations[n], mol); |
391 |
l++; |
392 |
} |
393 |
} |
394 |
} |
395 |
} else { |
396 |
for (int n = 0; n < nMol.at(i); n++) { |
397 |
mol = NewInfo->getMoleculeByGlobalIndex(l); |
398 |
locator->placeMol(sites[ids[l]], orientations[ids[l]], mol); |
399 |
l++; |
400 |
} |
401 |
} |
402 |
} |
403 |
|
404 |
//fill Hmat |
405 |
hmat(0, 0)= 10.0*particleRadius; |
406 |
hmat(0, 1) = 0.0; |
407 |
hmat(0, 2) = 0.0; |
408 |
|
409 |
hmat(1, 0) = 0.0; |
410 |
hmat(1, 1) = 10.0*particleRadius; |
411 |
hmat(1, 2) = 0.0; |
412 |
|
413 |
hmat(2, 0) = 0.0; |
414 |
hmat(2, 1) = 0.0; |
415 |
hmat(2, 2) = 10.0*particleRadius; |
416 |
|
417 |
//set Hmat |
418 |
NewInfo->getSnapshotManager()->getCurrentSnapshot()->setHmat(hmat); |
419 |
|
420 |
|
421 |
//create dumpwriter and write out the coordinates |
422 |
writer = new DumpWriter(NewInfo, outputFileName); |
423 |
|
424 |
if (writer == NULL) { |
425 |
sprintf(painCave.errMsg, "Error in creating dumpwriter object "); |
426 |
painCave.isFatal = 1; |
427 |
simError(); |
428 |
} |
429 |
|
430 |
writer->writeDump(); |
431 |
|
432 |
// deleting the writer will put the closing at the end of the dump file |
433 |
|
434 |
delete writer; |
435 |
|
436 |
// cleanup a by calling sim error..... |
437 |
sprintf(painCave.errMsg, "A new OpenMD file called \"%s\" has been " |
438 |
"generated.\n", outputFileName.c_str()); |
439 |
painCave.isFatal = 0; |
440 |
simError(); |
441 |
return 0; |
442 |
} |
443 |
|
444 |
void createMdFile(const std::string&oldMdFileName, |
445 |
const std::string&newMdFileName, |
446 |
std::vector<int> nMol) { |
447 |
ifstream oldMdFile; |
448 |
ofstream newMdFile; |
449 |
const int MAXLEN = 65535; |
450 |
char buffer[MAXLEN]; |
451 |
|
452 |
//create new .md file based on old .md file |
453 |
oldMdFile.open(oldMdFileName.c_str()); |
454 |
newMdFile.open(newMdFileName.c_str()); |
455 |
oldMdFile.getline(buffer, MAXLEN); |
456 |
|
457 |
unsigned int i = 0; |
458 |
while (!oldMdFile.eof()) { |
459 |
|
460 |
//correct molecule number |
461 |
if (strstr(buffer, "nMol") != NULL) { |
462 |
if(i<nMol.size()){ |
463 |
sprintf(buffer, "\tnMol = %i;", nMol.at(i)); |
464 |
newMdFile << buffer << std::endl; |
465 |
i++; |
466 |
} |
467 |
} else |
468 |
newMdFile << buffer << std::endl; |
469 |
|
470 |
oldMdFile.getline(buffer, MAXLEN); |
471 |
} |
472 |
|
473 |
oldMdFile.close(); |
474 |
newMdFile.close(); |
475 |
|
476 |
if (i != nMol.size()) { |
477 |
sprintf(painCave.errMsg, "Couldn't replace the correct number of nMol\n" |
478 |
"\tstatements in component blocks. Make sure that all\n" |
479 |
"\tcomponents in the template file have nMol=1"); |
480 |
painCave.isFatal = 1; |
481 |
simError(); |
482 |
} |
483 |
|
484 |
} |
485 |
|