1 |
/* |
2 |
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
* |
4 |
* The University of Notre Dame grants you ("Licensee") a |
5 |
* non-exclusive, royalty free, license to use, modify and |
6 |
* redistribute this software in source and binary code form, provided |
7 |
* that the following conditions are met: |
8 |
* |
9 |
* 1. Redistributions of source code must retain the above copyright |
10 |
* notice, this list of conditions and the following disclaimer. |
11 |
* |
12 |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
* notice, this list of conditions and the following disclaimer in the |
14 |
* documentation and/or other materials provided with the |
15 |
* distribution. |
16 |
* |
17 |
* This software is provided "AS IS," without a warranty of any |
18 |
* kind. All express or implied conditions, representations and |
19 |
* warranties, including any implied warranty of merchantability, |
20 |
* fitness for a particular purpose or non-infringement, are hereby |
21 |
* excluded. The University of Notre Dame and its licensors shall not |
22 |
* be liable for any damages suffered by licensee as a result of |
23 |
* using, modifying or distributing the software or its |
24 |
* derivatives. In no event will the University of Notre Dame or its |
25 |
* licensors be liable for any lost revenue, profit or data, or for |
26 |
* direct, indirect, special, consequential, incidental or punitive |
27 |
* damages, however caused and regardless of the theory of liability, |
28 |
* arising out of the use of or inability to use software, even if the |
29 |
* University of Notre Dame has been advised of the possibility of |
30 |
* such damages. |
31 |
* |
32 |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
* research, please cite the appropriate papers when you publish your |
34 |
* work. Good starting points are: |
35 |
* |
36 |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 |
* [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
40 |
* [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
41 |
*/ |
42 |
|
43 |
#include "applications/hydrodynamics/ApproximationModel.hpp" |
44 |
#include "math/LU.hpp" |
45 |
#include "math/DynamicRectMatrix.hpp" |
46 |
#include "math/SquareMatrix3.hpp" |
47 |
#include "utils/PhysicalConstants.hpp" |
48 |
#include "hydrodynamics/Sphere.hpp" |
49 |
#include "hydrodynamics/Ellipsoid.hpp" |
50 |
#include "applications/hydrodynamics/CompositeShape.hpp" |
51 |
#include "math/LU.hpp" |
52 |
#include "utils/simError.h" |
53 |
namespace OpenMD { |
54 |
/** |
55 |
* Reference: |
56 |
* Beatriz Carrasco and Jose Gracia de la Torre, Hydrodynamic Properties of Rigid Particles: |
57 |
* Comparison of Different Modeling and Computational Procedures. |
58 |
* Biophysical Journal, 75(6), 3044, 1999 |
59 |
*/ |
60 |
|
61 |
ApproximationModel::ApproximationModel(StuntDouble* sd, SimInfo* info): HydrodynamicsModel(sd, info){ |
62 |
} |
63 |
|
64 |
void ApproximationModel::init() { |
65 |
if (!createBeads(beads_)) { |
66 |
sprintf(painCave.errMsg, "ApproximationModel::init() : Can not create beads\n"); |
67 |
painCave.isFatal = 1; |
68 |
simError(); |
69 |
} |
70 |
|
71 |
} |
72 |
|
73 |
bool ApproximationModel::calcHydroProps(Shape* shape, RealType viscosity, RealType temperature) { |
74 |
|
75 |
HydroProp* cr = new HydroProp(); |
76 |
HydroProp* cd = new HydroProp(); |
77 |
calcHydroPropsAtCR(beads_, viscosity, temperature, cr); |
78 |
calcHydroPropsAtCD(beads_, viscosity, temperature, cd); |
79 |
setCR(cr); |
80 |
setCD(cd); |
81 |
return true; |
82 |
} |
83 |
|
84 |
bool ApproximationModel::calcHydroPropsAtCR(std::vector<BeadParam>& beads, RealType viscosity, RealType temperature, HydroProp* cr) { |
85 |
|
86 |
unsigned int nbeads = beads.size(); |
87 |
DynamicRectMatrix<RealType> B(3*nbeads, 3*nbeads); |
88 |
DynamicRectMatrix<RealType> C(3*nbeads, 3*nbeads); |
89 |
Mat3x3d I; |
90 |
I(0, 0) = 1.0; |
91 |
I(1, 1) = 1.0; |
92 |
I(2, 2) = 1.0; |
93 |
|
94 |
for (std::size_t i = 0; i < nbeads; ++i) { |
95 |
for (std::size_t j = 0; j < nbeads; ++j) { |
96 |
Mat3x3d Tij; |
97 |
if (i != j ) { |
98 |
Vector3d Rij = beads[i].pos - beads[j].pos; |
99 |
RealType rij = Rij.length(); |
100 |
RealType rij2 = rij * rij; |
101 |
RealType sumSigma2OverRij2 = ((beads[i].radius*beads[i].radius) + (beads[j].radius*beads[j].radius)) / rij2; |
102 |
Mat3x3d tmpMat; |
103 |
tmpMat = outProduct(Rij, Rij) / rij2; |
104 |
RealType constant = 8.0 * NumericConstant::PI * viscosity * rij; |
105 |
RealType tmp1 = 1.0 + sumSigma2OverRij2/3.0; |
106 |
RealType tmp2 = 1.0 - sumSigma2OverRij2; |
107 |
Tij = (tmp1 * I + tmp2 * tmpMat ) / constant; |
108 |
}else { |
109 |
RealType constant = 1.0 / (6.0 * NumericConstant::PI * viscosity * beads[i].radius); |
110 |
Tij(0, 0) = constant; |
111 |
Tij(1, 1) = constant; |
112 |
Tij(2, 2) = constant; |
113 |
} |
114 |
B.setSubMatrix(i*3, j*3, Tij); |
115 |
} |
116 |
} |
117 |
|
118 |
//invert B Matrix |
119 |
invertMatrix(B, C); |
120 |
|
121 |
//prepare U Matrix relative to arbitrary origin O(0.0, 0.0, 0.0) |
122 |
std::vector<Mat3x3d> U; |
123 |
for (unsigned int i = 0; i < nbeads; ++i) { |
124 |
Mat3x3d currU; |
125 |
currU.setupSkewMat(beads[i].pos); |
126 |
U.push_back(currU); |
127 |
} |
128 |
|
129 |
//calculate Xi matrix at arbitrary origin O |
130 |
Mat3x3d Xiott; |
131 |
Mat3x3d Xiorr; |
132 |
Mat3x3d Xiotr; |
133 |
|
134 |
//calculate the total volume |
135 |
|
136 |
RealType volume = 0.0; |
137 |
for (std::vector<BeadParam>::iterator iter = beads.begin(); iter != beads.end(); ++iter) { |
138 |
volume += 4.0/3.0 * NumericConstant::PI * pow((*iter).radius,3); |
139 |
} |
140 |
|
141 |
for (std::size_t i = 0; i < nbeads; ++i) { |
142 |
for (std::size_t j = 0; j < nbeads; ++j) { |
143 |
Mat3x3d Cij; |
144 |
C.getSubMatrix(i*3, j*3, Cij); |
145 |
|
146 |
Xiott += Cij; |
147 |
Xiotr += U[i] * Cij; |
148 |
// uncorrected here. Volume correction is added after we assemble Xiorr |
149 |
Xiorr += -U[i] * Cij * U[j]; |
150 |
} |
151 |
} |
152 |
|
153 |
// add the volume correction |
154 |
Xiorr += (RealType(6.0) * viscosity * volume) * I; |
155 |
|
156 |
Xiott *= PhysicalConstants::viscoConvert; |
157 |
Xiotr *= PhysicalConstants::viscoConvert; |
158 |
Xiorr *= PhysicalConstants::viscoConvert; |
159 |
|
160 |
Mat3x3d tmp; |
161 |
Mat3x3d tmpInv; |
162 |
Vector3d tmpVec; |
163 |
tmp(0, 0) = Xiott(1, 1) + Xiott(2, 2); |
164 |
tmp(0, 1) = - Xiott(0, 1); |
165 |
tmp(0, 2) = -Xiott(0, 2); |
166 |
tmp(1, 0) = -Xiott(0, 1); |
167 |
tmp(1, 1) = Xiott(0, 0) + Xiott(2, 2); |
168 |
tmp(1, 2) = -Xiott(1, 2); |
169 |
tmp(2, 0) = -Xiott(0, 2); |
170 |
tmp(2, 1) = -Xiott(1, 2); |
171 |
tmp(2, 2) = Xiott(1, 1) + Xiott(0, 0); |
172 |
tmpVec[0] = Xiotr(2, 1) - Xiotr(1, 2); |
173 |
tmpVec[1] = Xiotr(0, 2) - Xiotr(2, 0); |
174 |
tmpVec[2] = Xiotr(1, 0) - Xiotr(0, 1); |
175 |
tmpInv = tmp.inverse(); |
176 |
Vector3d ror = tmpInv * tmpVec; //center of resistance |
177 |
Mat3x3d Uor; |
178 |
Uor.setupSkewMat(ror); |
179 |
|
180 |
Mat3x3d Xirtt; |
181 |
Mat3x3d Xirrr; |
182 |
Mat3x3d Xirtr; |
183 |
|
184 |
Xirtt = Xiott; |
185 |
Xirtr = (Xiotr - Uor * Xiott); |
186 |
Xirrr = Xiorr - Uor * Xiott * Uor + Xiotr * Uor - Uor * Xiotr.transpose(); |
187 |
|
188 |
|
189 |
SquareMatrix<RealType,6> Xir6x6; |
190 |
SquareMatrix<RealType,6> Dr6x6; |
191 |
|
192 |
Xir6x6.setSubMatrix(0, 0, Xirtt); |
193 |
Xir6x6.setSubMatrix(0, 3, Xirtr.transpose()); |
194 |
Xir6x6.setSubMatrix(3, 0, Xirtr); |
195 |
Xir6x6.setSubMatrix(3, 3, Xirrr); |
196 |
|
197 |
invertMatrix(Xir6x6, Dr6x6); |
198 |
Mat3x3d Drtt; |
199 |
Mat3x3d Drtr; |
200 |
Mat3x3d Drrt; |
201 |
Mat3x3d Drrr; |
202 |
Dr6x6.getSubMatrix(0, 0, Drtt); |
203 |
Dr6x6.getSubMatrix(0, 3, Drrt); |
204 |
Dr6x6.getSubMatrix(3, 0, Drtr); |
205 |
Dr6x6.getSubMatrix(3, 3, Drrr); |
206 |
RealType kt = PhysicalConstants::kb * temperature ; // in kcal mol^-1 |
207 |
Drtt *= kt; |
208 |
Drrt *= kt; |
209 |
Drtr *= kt; |
210 |
Drrr *= kt; |
211 |
//Xirtt *= PhysicalConstants::kb * temperature; |
212 |
//Xirtr *= PhysicalConstants::kb * temperature; |
213 |
//Xirrr *= PhysicalConstants::kb * temperature; |
214 |
|
215 |
Mat6x6d Xi, D; |
216 |
|
217 |
cr->setCOR(ror); |
218 |
|
219 |
Xi.setSubMatrix(0, 0, Xirtt); |
220 |
Xi.setSubMatrix(0, 3, Xirtr); |
221 |
Xi.setSubMatrix(3, 0, Xirtr); |
222 |
Xi.setSubMatrix(3, 3, Xirrr); |
223 |
|
224 |
cr->setXi(Xi); |
225 |
|
226 |
D.setSubMatrix(0, 0, Drtt); |
227 |
D.setSubMatrix(0, 3, Drrt); |
228 |
D.setSubMatrix(3, 0, Drtr); |
229 |
D.setSubMatrix(3, 3, Drrr); |
230 |
|
231 |
cr->setD(D); |
232 |
|
233 |
std::cout << "-----------------------------------------\n"; |
234 |
std::cout << "center of resistance :" << std::endl; |
235 |
std::cout << ror << std::endl; |
236 |
std::cout << "resistant tensor at center of resistance" << std::endl; |
237 |
std::cout << "translation:" << std::endl; |
238 |
std::cout << Xirtt << std::endl; |
239 |
std::cout << "translation-rotation:" << std::endl; |
240 |
std::cout << Xirtr << std::endl; |
241 |
std::cout << "rotation:" << std::endl; |
242 |
std::cout << Xirrr << std::endl; |
243 |
std::cout << "diffusion tensor at center of resistance" << std::endl; |
244 |
std::cout << "translation:" << std::endl; |
245 |
std::cout << Drtt << std::endl; |
246 |
std::cout << "rotation-translation:" << std::endl; |
247 |
std::cout << Drrt << std::endl; |
248 |
std::cout << "translation-rotation:" << std::endl; |
249 |
std::cout << Drtr << std::endl; |
250 |
std::cout << "rotation:" << std::endl; |
251 |
std::cout << Drrr << std::endl; |
252 |
std::cout << "-----------------------------------------\n"; |
253 |
|
254 |
return true; |
255 |
} |
256 |
|
257 |
bool ApproximationModel::calcHydroPropsAtCD(std::vector<BeadParam>& beads, RealType viscosity, RealType temperature, HydroProp* cd) { |
258 |
|
259 |
unsigned int nbeads = beads.size(); |
260 |
DynamicRectMatrix<RealType> B(3*nbeads, 3*nbeads); |
261 |
DynamicRectMatrix<RealType> C(3*nbeads, 3*nbeads); |
262 |
Mat3x3d I; |
263 |
I(0, 0) = 1.0; |
264 |
I(1, 1) = 1.0; |
265 |
I(2, 2) = 1.0; |
266 |
|
267 |
for (std::size_t i = 0; i < nbeads; ++i) { |
268 |
for (std::size_t j = 0; j < nbeads; ++j) { |
269 |
Mat3x3d Tij; |
270 |
if (i != j ) { |
271 |
Vector3d Rij = beads[i].pos - beads[j].pos; |
272 |
RealType rij = Rij.length(); |
273 |
RealType rij2 = rij * rij; |
274 |
RealType sumSigma2OverRij2 = ((beads[i].radius*beads[i].radius) + (beads[j].radius*beads[j].radius)) / rij2; |
275 |
Mat3x3d tmpMat; |
276 |
tmpMat = outProduct(Rij, Rij) / rij2; |
277 |
RealType constant = 8.0 * NumericConstant::PI * viscosity * rij; |
278 |
RealType tmp1 = 1.0 + sumSigma2OverRij2/3.0; |
279 |
RealType tmp2 = 1.0 - sumSigma2OverRij2; |
280 |
Tij = (tmp1 * I + tmp2 * tmpMat ) / constant; |
281 |
}else { |
282 |
RealType constant = 1.0 / (6.0 * NumericConstant::PI * viscosity * beads[i].radius); |
283 |
Tij(0, 0) = constant; |
284 |
Tij(1, 1) = constant; |
285 |
Tij(2, 2) = constant; |
286 |
} |
287 |
B.setSubMatrix(i*3, j*3, Tij); |
288 |
} |
289 |
} |
290 |
|
291 |
//invert B Matrix |
292 |
invertMatrix(B, C); |
293 |
|
294 |
//prepare U Matrix relative to arbitrary origin O(0.0, 0.0, 0.0) |
295 |
std::vector<Mat3x3d> U; |
296 |
for (unsigned int i = 0; i < nbeads; ++i) { |
297 |
Mat3x3d currU; |
298 |
currU.setupSkewMat(beads[i].pos); |
299 |
U.push_back(currU); |
300 |
} |
301 |
|
302 |
//calculate Xi matrix at arbitrary origin O |
303 |
Mat3x3d Xitt; |
304 |
Mat3x3d Xirr; |
305 |
Mat3x3d Xitr; |
306 |
|
307 |
//calculate the total volume |
308 |
|
309 |
RealType volume = 0.0; |
310 |
for (std::vector<BeadParam>::iterator iter = beads.begin(); iter != beads.end(); ++iter) { |
311 |
volume += 4.0/3.0 * NumericConstant::PI * pow((*iter).radius,3); |
312 |
} |
313 |
|
314 |
for (std::size_t i = 0; i < nbeads; ++i) { |
315 |
for (std::size_t j = 0; j < nbeads; ++j) { |
316 |
Mat3x3d Cij; |
317 |
C.getSubMatrix(i*3, j*3, Cij); |
318 |
|
319 |
Xitt += Cij; |
320 |
Xitr += U[i] * Cij; |
321 |
// uncorrected here. Volume correction is added after we assemble Xiorr |
322 |
Xirr += -U[i] * Cij * U[j]; |
323 |
} |
324 |
} |
325 |
// add the volume correction here: |
326 |
Xirr += (RealType(6.0) * viscosity * volume) * I; |
327 |
|
328 |
Xitt *= PhysicalConstants::viscoConvert; |
329 |
Xitr *= PhysicalConstants::viscoConvert; |
330 |
Xirr *= PhysicalConstants::viscoConvert; |
331 |
|
332 |
RealType kt = PhysicalConstants::kb * temperature; // in kcal mol^-1 |
333 |
|
334 |
Mat3x3d Dott; //translational diffusion tensor at arbitrary origin O |
335 |
Mat3x3d Dorr; //rotational diffusion tensor at arbitrary origin O |
336 |
Mat3x3d Dotr; //translation-rotation couplingl diffusion tensor at arbitrary origin O |
337 |
|
338 |
const static Mat3x3d zeroMat(0.0); |
339 |
|
340 |
Mat3x3d XittInv(0.0); |
341 |
XittInv = Xitt.inverse(); |
342 |
|
343 |
Mat3x3d XirrInv; |
344 |
XirrInv = Xirr.inverse(); |
345 |
|
346 |
Mat3x3d tmp; |
347 |
Mat3x3d tmpInv; |
348 |
tmp = Xitt - Xitr.transpose() * XirrInv * Xitr; |
349 |
tmpInv = tmp.inverse(); |
350 |
|
351 |
Dott = tmpInv; |
352 |
Dotr = -XirrInv * Xitr * tmpInv; |
353 |
|
354 |
tmp = Xirr - Xitr * XittInv * Xitr.transpose(); |
355 |
tmpInv = tmp.inverse(); |
356 |
|
357 |
Dorr = tmpInv; |
358 |
|
359 |
//calculate center of diffusion |
360 |
tmp(0, 0) = Dorr(1, 1) + Dorr(2, 2); |
361 |
tmp(0, 1) = - Dorr(0, 1); |
362 |
tmp(0, 2) = -Dorr(0, 2); |
363 |
tmp(1, 0) = -Dorr(0, 1); |
364 |
tmp(1, 1) = Dorr(0, 0) + Dorr(2, 2); |
365 |
tmp(1, 2) = -Dorr(1, 2); |
366 |
tmp(2, 0) = -Dorr(0, 2); |
367 |
tmp(2, 1) = -Dorr(1, 2); |
368 |
tmp(2, 2) = Dorr(1, 1) + Dorr(0, 0); |
369 |
|
370 |
Vector3d tmpVec; |
371 |
tmpVec[0] = Dotr(1, 2) - Dotr(2, 1); |
372 |
tmpVec[1] = Dotr(2, 0) - Dotr(0, 2); |
373 |
tmpVec[2] = Dotr(0, 1) - Dotr(1, 0); |
374 |
|
375 |
tmpInv = tmp.inverse(); |
376 |
|
377 |
Vector3d rod = tmpInv * tmpVec; |
378 |
|
379 |
//calculate Diffusion Tensor at center of diffusion |
380 |
Mat3x3d Uod; |
381 |
Uod.setupSkewMat(rod); |
382 |
|
383 |
Mat3x3d Ddtt; //translational diffusion tensor at diffusion center |
384 |
Mat3x3d Ddtr; //rotational diffusion tensor at diffusion center |
385 |
Mat3x3d Ddrr; //translation-rotation couplingl diffusion tensor at diffusion tensor |
386 |
|
387 |
Ddtt = Dott - Uod * Dorr * Uod + Dotr.transpose() * Uod - Uod * Dotr; |
388 |
Ddrr = Dorr; |
389 |
Ddtr = Dotr + Dorr * Uod; |
390 |
|
391 |
SquareMatrix<RealType, 6> Dd; |
392 |
Dd.setSubMatrix(0, 0, Ddtt); |
393 |
Dd.setSubMatrix(0, 3, Ddtr.transpose()); |
394 |
Dd.setSubMatrix(3, 0, Ddtr); |
395 |
Dd.setSubMatrix(3, 3, Ddrr); |
396 |
SquareMatrix<RealType, 6> Xid; |
397 |
Ddtt *= kt; |
398 |
Ddtr *=kt; |
399 |
Ddrr *= kt; |
400 |
invertMatrix(Dd, Xid); |
401 |
|
402 |
|
403 |
|
404 |
//Xidtt in units of kcal*fs*mol^-1*Ang^-2 |
405 |
//Xid /= PhysicalConstants::energyConvert; |
406 |
Xid *= PhysicalConstants::kb * temperature; |
407 |
|
408 |
Mat6x6d Xi, D; |
409 |
|
410 |
cd->setCOR(rod); |
411 |
|
412 |
cd->setXi(Xid); |
413 |
|
414 |
D.setSubMatrix(0, 0, Ddtt); |
415 |
D.setSubMatrix(0, 3, Ddtr); |
416 |
D.setSubMatrix(3, 0, Ddtr); |
417 |
D.setSubMatrix(3, 3, Ddrr); |
418 |
|
419 |
cd->setD(D); |
420 |
|
421 |
std::cout << "viscosity = " << viscosity << std::endl; |
422 |
std::cout << "temperature = " << temperature << std::endl; |
423 |
std::cout << "center of diffusion :" << std::endl; |
424 |
std::cout << rod << std::endl; |
425 |
std::cout << "diffusion tensor at center of diffusion " << std::endl; |
426 |
std::cout << "translation(A^2 / fs) :" << std::endl; |
427 |
std::cout << Ddtt << std::endl; |
428 |
std::cout << "translation-rotation(A / fs):" << std::endl; |
429 |
std::cout << Ddtr << std::endl; |
430 |
std::cout << "rotation(fs^-1):" << std::endl; |
431 |
std::cout << Ddrr << std::endl; |
432 |
|
433 |
std::cout << "resistance tensor at center of diffusion " << std::endl; |
434 |
std::cout << "translation(kcal*fs*mol^-1*Ang^-2) :" << std::endl; |
435 |
|
436 |
Mat3x3d Xidtt; |
437 |
Mat3x3d Xidrt; |
438 |
Mat3x3d Xidtr; |
439 |
Mat3x3d Xidrr; |
440 |
Xid.getSubMatrix(0, 0, Xidtt); |
441 |
Xid.getSubMatrix(0, 3, Xidrt); |
442 |
Xid.getSubMatrix(3, 0, Xidtr); |
443 |
Xid.getSubMatrix(3, 3, Xidrr); |
444 |
|
445 |
std::cout << Xidtt << std::endl; |
446 |
std::cout << "rotation-translation (kcal*fs*mol^-1*Ang^-1):" << std::endl; |
447 |
std::cout << Xidrt << std::endl; |
448 |
std::cout << "translation-rotation(kcal*fs*mol^-1*Ang^-1):" << std::endl; |
449 |
std::cout << Xidtr << std::endl; |
450 |
std::cout << "rotation(kcal*fs*mol^-1):" << std::endl; |
451 |
std::cout << Xidrr << std::endl; |
452 |
|
453 |
return true; |
454 |
|
455 |
} |
456 |
|
457 |
void ApproximationModel::writeBeads(std::ostream& os) { |
458 |
std::vector<BeadParam>::iterator iter; |
459 |
os << beads_.size() << std::endl; |
460 |
os << "Generated by Hydro" << std::endl; |
461 |
for (iter = beads_.begin(); iter != beads_.end(); ++iter) { |
462 |
os << iter->atomName << "\t" << iter->pos[0] << "\t" << iter->pos[1] << "\t" << iter->pos[2] << std::endl; |
463 |
} |
464 |
|
465 |
} |
466 |
} |