1 |
!! |
2 |
!! Copyright (c) 2005, 2009 The University of Notre Dame. All Rights Reserved. |
3 |
!! |
4 |
!! The University of Notre Dame grants you ("Licensee") a |
5 |
!! non-exclusive, royalty free, license to use, modify and |
6 |
!! redistribute this software in source and binary code form, provided |
7 |
!! that the following conditions are met: |
8 |
!! |
9 |
!! 1. Redistributions of source code must retain the above copyright |
10 |
!! notice, this list of conditions and the following disclaimer. |
11 |
!! |
12 |
!! 2. Redistributions in binary form must reproduce the above copyright |
13 |
!! notice, this list of conditions and the following disclaimer in the |
14 |
!! documentation and/or other materials provided with the |
15 |
!! distribution. |
16 |
!! |
17 |
!! This software is provided "AS IS," without a warranty of any |
18 |
!! kind. All express or implied conditions, representations and |
19 |
!! warranties, including any implied warranty of merchantability, |
20 |
!! fitness for a particular purpose or non-infringement, are hereby |
21 |
!! excluded. The University of Notre Dame and its licensors shall not |
22 |
!! be liable for any damages suffered by licensee as a result of |
23 |
!! using, modifying or distributing the software or its |
24 |
!! derivatives. In no event will the University of Notre Dame or its |
25 |
!! licensors be liable for any lost revenue, profit or data, or for |
26 |
!! direct, indirect, special, consequential, incidental or punitive |
27 |
!! damages, however caused and regardless of the theory of liability, |
28 |
!! arising out of the use of or inability to use software, even if the |
29 |
!! University of Notre Dame has been advised of the possibility of |
30 |
!! such damages. |
31 |
!! |
32 |
!! SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
!! research, please cite the appropriate papers when you publish your |
34 |
!! work. Good starting points are: |
35 |
!! |
36 |
!! [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
!! [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
!! [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 |
!! [4] Vardeman & Gezelter, in progress (2009). |
40 |
!! |
41 |
|
42 |
!! doForces.F90 |
43 |
!! module doForces |
44 |
!! Calculates Long Range forces. |
45 |
|
46 |
!! @author Charles F. Vardeman II |
47 |
!! @author Matthew Meineke |
48 |
!! @version $Id$, $Date$, $Name: not supported by cvs2svn $, $Revision$ |
49 |
|
50 |
|
51 |
module doForces |
52 |
use force_globals |
53 |
use fForceOptions |
54 |
use simulation |
55 |
use definitions |
56 |
use atype_module |
57 |
use switcheroo |
58 |
use neighborLists |
59 |
use vector_class |
60 |
use status |
61 |
use ISO_C_BINDING |
62 |
|
63 |
#ifdef IS_MPI |
64 |
use mpiSimulation |
65 |
#endif |
66 |
|
67 |
implicit none |
68 |
PRIVATE |
69 |
|
70 |
real(kind=dp), external :: get_cutoff |
71 |
|
72 |
#define __FORTRAN90 |
73 |
#include "UseTheForce/DarkSide/fInteractionMap.h" |
74 |
#include "UseTheForce/DarkSide/fElectrostaticSummationMethod.h" |
75 |
|
76 |
INTEGER, PARAMETER:: PREPAIR_LOOP = 1 |
77 |
INTEGER, PARAMETER:: PAIR_LOOP = 2 |
78 |
|
79 |
logical, save :: haveNeighborList = .false. |
80 |
logical, save :: haveSIMvariables = .false. |
81 |
logical, save :: haveSaneForceField = .false. |
82 |
logical, save :: haveDefaultCutoffs = .false. |
83 |
logical, save :: haveSkinThickness = .false. |
84 |
logical, save :: haveElectrostaticSummationMethod = .false. |
85 |
|
86 |
logical, save :: FF_uses_DirectionalAtoms |
87 |
logical, save :: FF_uses_Dipoles |
88 |
logical, save :: FF_uses_GayBerne |
89 |
logical, save :: FF_uses_EAM |
90 |
logical, save :: FF_uses_SC |
91 |
logical, save :: FF_uses_MNM |
92 |
|
93 |
logical, save :: SIM_uses_DirectionalAtoms |
94 |
logical, save :: SIM_uses_EAM |
95 |
logical, save :: SIM_uses_SC |
96 |
logical, save :: SIM_uses_MNM |
97 |
logical, save :: SIM_requires_postpair_calc |
98 |
logical, save :: SIM_requires_prepair_calc |
99 |
logical, save :: SIM_uses_PBC |
100 |
logical, save :: SIM_uses_AtomicVirial |
101 |
|
102 |
integer, save :: electrostaticSummationMethod |
103 |
|
104 |
real(kind=dp), save :: defaultRcut, defaultRsw, largestRcut |
105 |
real(kind=dp), save :: skinThickness |
106 |
logical, save :: defaultDoShiftPot |
107 |
logical, save :: defaultDoShiftFrc |
108 |
|
109 |
public :: init_FF |
110 |
public :: setCutoffs |
111 |
public :: setElectrostaticMethod |
112 |
public :: setSkinThickness |
113 |
public :: do_force_loop |
114 |
|
115 |
#ifdef PROFILE |
116 |
public :: getforcetime |
117 |
real, save :: forceTime = 0 |
118 |
real :: forceTimeInitial, forceTimeFinal |
119 |
integer :: nLoops |
120 |
#endif |
121 |
|
122 |
contains |
123 |
|
124 |
subroutine setCutoffs(defRcut, defRsw, defSP, defSF) |
125 |
|
126 |
real(kind=dp),intent(in) :: defRcut, defRsw |
127 |
integer, intent(in) :: defSP, defSF |
128 |
character(len = statusMsgSize) :: errMsg |
129 |
integer :: localError |
130 |
|
131 |
defaultRcut = defRcut |
132 |
defaultRsw = defRsw |
133 |
|
134 |
if (defSP .ne. 0) then |
135 |
defaultDoShiftPot = .true. |
136 |
else |
137 |
defaultDoShiftPot = .false. |
138 |
endif |
139 |
if (defSF .ne. 0) then |
140 |
defaultDoShiftFrc = .true. |
141 |
else |
142 |
defaultDoShiftFrc = .false. |
143 |
endif |
144 |
|
145 |
if (abs(defaultRcut-defaultRsw) .lt. 0.0001) then |
146 |
if (defaultDoShiftFrc) then |
147 |
write(errMsg, *) & |
148 |
'cutoffRadius and switchingRadius are set to the', newline & |
149 |
// tab, 'same value. OpenMD will use shifted force', newline & |
150 |
// tab, 'potentials instead of switching functions.' |
151 |
|
152 |
call handleInfo("setCutoffs", errMsg) |
153 |
else |
154 |
write(errMsg, *) & |
155 |
'cutoffRadius and switchingRadius are set to the', newline & |
156 |
// tab, 'same value. OpenMD will use shifted', newline & |
157 |
// tab, 'potentials instead of switching functions.' |
158 |
|
159 |
call handleInfo("setCutoffs", errMsg) |
160 |
|
161 |
defaultDoShiftPot = .true. |
162 |
endif |
163 |
|
164 |
endif |
165 |
|
166 |
localError = 0 |
167 |
call set_switch(defaultRsw, defaultRcut) |
168 |
call setHmatDangerousRcutValue(defaultRcut) |
169 |
|
170 |
haveDefaultCutoffs = .true. |
171 |
end subroutine setCutoffs |
172 |
|
173 |
subroutine setElectrostaticMethod( thisESM ) |
174 |
|
175 |
integer, intent(in) :: thisESM |
176 |
|
177 |
electrostaticSummationMethod = thisESM |
178 |
haveElectrostaticSummationMethod = .true. |
179 |
|
180 |
end subroutine setElectrostaticMethod |
181 |
|
182 |
subroutine setSkinThickness( thisSkin ) |
183 |
|
184 |
real(kind=dp), intent(in) :: thisSkin |
185 |
|
186 |
skinThickness = thisSkin |
187 |
haveSkinThickness = .true. |
188 |
haveGtypeCutoffMap = .false. |
189 |
|
190 |
end subroutine setSkinThickness |
191 |
|
192 |
subroutine setSimVariables() |
193 |
SIM_uses_DirectionalAtoms = SimUsesDirectionalAtoms() |
194 |
SIM_uses_EAM = SimUsesEAM() |
195 |
SIM_requires_postpair_calc = SimRequiresPostpairCalc() |
196 |
SIM_requires_prepair_calc = SimRequiresPrepairCalc() |
197 |
SIM_uses_PBC = SimUsesPBC() |
198 |
SIM_uses_SC = SimUsesSC() |
199 |
SIM_uses_AtomicVirial = SimUsesAtomicVirial() |
200 |
|
201 |
haveSIMvariables = .true. |
202 |
|
203 |
return |
204 |
end subroutine setSimVariables |
205 |
|
206 |
subroutine doReadyCheck(error) |
207 |
integer, intent(out) :: error |
208 |
integer :: myStatus |
209 |
|
210 |
error = 0 |
211 |
|
212 |
if (.not. haveSIMvariables) then |
213 |
call setSimVariables() |
214 |
endif |
215 |
|
216 |
if (.not. haveNeighborList) then |
217 |
write(default_error, *) 'neighbor list has not been initialized in doForces!' |
218 |
error = -1 |
219 |
return |
220 |
end if |
221 |
|
222 |
if (.not. haveSaneForceField) then |
223 |
write(default_error, *) 'Force Field is not sane in doForces!' |
224 |
error = -1 |
225 |
return |
226 |
end if |
227 |
|
228 |
#ifdef IS_MPI |
229 |
if (.not. isMPISimSet()) then |
230 |
write(default_error,*) "ERROR: mpiSimulation has not been initialized!" |
231 |
error = -1 |
232 |
return |
233 |
endif |
234 |
#endif |
235 |
return |
236 |
end subroutine doReadyCheck |
237 |
|
238 |
subroutine init_FF(thisStat) |
239 |
|
240 |
integer, intent(out) :: thisStat |
241 |
integer :: my_status, nMatches |
242 |
integer, pointer :: MatchList(:) => null() |
243 |
|
244 |
!! assume things are copacetic, unless they aren't |
245 |
thisStat = 0 |
246 |
|
247 |
!! init_FF is called *after* all of the atom types have been |
248 |
!! defined in atype_module using the new_atype subroutine. |
249 |
!! |
250 |
!! this will scan through the known atypes and figure out what |
251 |
!! interactions are used by the force field. |
252 |
|
253 |
FF_uses_DirectionalAtoms = .false. |
254 |
FF_uses_Dipoles = .false. |
255 |
FF_uses_GayBerne = .false. |
256 |
FF_uses_EAM = .false. |
257 |
FF_uses_SC = .false. |
258 |
|
259 |
call getMatchingElementList(atypes, "is_Directional", .true., & |
260 |
nMatches, MatchList) |
261 |
if (nMatches .gt. 0) FF_uses_DirectionalAtoms = .true. |
262 |
|
263 |
call getMatchingElementList(atypes, "is_Dipole", .true., & |
264 |
nMatches, MatchList) |
265 |
if (nMatches .gt. 0) FF_uses_Dipoles = .true. |
266 |
|
267 |
call getMatchingElementList(atypes, "is_GayBerne", .true., & |
268 |
nMatches, MatchList) |
269 |
if (nMatches .gt. 0) FF_uses_GayBerne = .true. |
270 |
|
271 |
call getMatchingElementList(atypes, "is_EAM", .true., nMatches, MatchList) |
272 |
if (nMatches .gt. 0) FF_uses_EAM = .true. |
273 |
|
274 |
call getMatchingElementList(atypes, "is_SC", .true., nMatches, MatchList) |
275 |
if (nMatches .gt. 0) FF_uses_SC = .true. |
276 |
|
277 |
|
278 |
haveSaneForceField = .true. |
279 |
|
280 |
|
281 |
if (.not. haveNeighborList) then |
282 |
!! Create neighbor lists |
283 |
call expandNeighborList(nLocal, my_status) |
284 |
if (my_Status /= 0) then |
285 |
write(default_error,*) "SimSetup: ExpandNeighborList returned error." |
286 |
thisStat = -1 |
287 |
return |
288 |
endif |
289 |
haveNeighborList = .true. |
290 |
endif |
291 |
|
292 |
end subroutine init_FF |
293 |
|
294 |
|
295 |
!! Does force loop over i,j pairs. Calls do_pair to calculates forces. |
296 |
!-------------------------------------------------------------> |
297 |
subroutine do_force_loop(q, q_group, A, eFrame, f, t, tau, pot, particle_pot, & |
298 |
error) |
299 |
!! Position array provided by C, dimensioned by getNlocal |
300 |
real ( kind = dp ), dimension(3, nLocal) :: q |
301 |
!! molecular center-of-mass position array |
302 |
real ( kind = dp ), dimension(3, nGroups) :: q_group |
303 |
!! Rotation Matrix for each long range particle in simulation. |
304 |
real( kind = dp), dimension(9, nLocal) :: A |
305 |
!! Unit vectors for dipoles (lab frame) |
306 |
real( kind = dp ), dimension(9,nLocal) :: eFrame |
307 |
!! Force array provided by C, dimensioned by getNlocal |
308 |
real ( kind = dp ), dimension(3,nLocal) :: f |
309 |
!! Torsion array provided by C, dimensioned by getNlocal |
310 |
real( kind = dp ), dimension(3,nLocal) :: t |
311 |
|
312 |
!! Stress Tensor |
313 |
real( kind = dp), dimension(9) :: tau |
314 |
real ( kind = dp ),dimension(LR_POT_TYPES) :: pot |
315 |
real( kind = dp ), dimension(nLocal) :: particle_pot |
316 |
real( kind = dp ), dimension(nLocal) :: skipped_charge |
317 |
|
318 |
logical :: in_switching_region |
319 |
#ifdef IS_MPI |
320 |
real( kind = DP ), dimension(LR_POT_TYPES) :: pot_local |
321 |
integer :: nAtomsInRow |
322 |
integer :: nAtomsInCol |
323 |
integer :: nprocs |
324 |
integer :: nGroupsInRow |
325 |
integer :: nGroupsInCol |
326 |
#endif |
327 |
integer :: natoms |
328 |
logical :: update_nlist |
329 |
integer :: i, j, jstart, jend, jnab |
330 |
integer :: istart, iend |
331 |
integer :: ia, jb, atom1, atom2 |
332 |
integer :: nlist |
333 |
real( kind = DP ) :: ratmsq, rgrpsq, rgrp, rag, vpair, vij |
334 |
real( kind = DP ) :: sw, dswdr, swderiv, mf |
335 |
real( kind = DP ) :: rVal |
336 |
real(kind=dp),dimension(3) :: d_atm, d_grp, fpair, fij, fg, dag |
337 |
real(kind=dp) :: rfpot, mu_i |
338 |
real(kind=dp):: rCut |
339 |
integer :: me_i, me_j, n_in_i, n_in_j, iG, j1 |
340 |
logical :: is_dp_i |
341 |
integer :: neighborListSize |
342 |
integer :: listerror, error |
343 |
integer :: localError |
344 |
integer :: propPack_i, propPack_j |
345 |
integer :: loopStart, loopEnd, loop |
346 |
integer :: i1, topoDist |
347 |
|
348 |
real(kind=dp) :: skch |
349 |
|
350 |
!! initialize local variables |
351 |
|
352 |
#ifdef IS_MPI |
353 |
pot_local = 0.0_dp |
354 |
nAtomsInRow = getNatomsInRow(plan_atom_row) |
355 |
nAtomsInCol = getNatomsInCol(plan_atom_col) |
356 |
nGroupsInRow = getNgroupsInRow(plan_group_row) |
357 |
nGroupsInCol = getNgroupsInCol(plan_group_col) |
358 |
#else |
359 |
natoms = nlocal |
360 |
#endif |
361 |
|
362 |
call doReadyCheck(localError) |
363 |
if ( localError .ne. 0 ) then |
364 |
call handleError("do_force_loop", "Not Initialized") |
365 |
error = -1 |
366 |
return |
367 |
end if |
368 |
call zero_work_arrays() |
369 |
|
370 |
! Gather all information needed by all force loops: |
371 |
|
372 |
#ifdef IS_MPI |
373 |
|
374 |
call gather(q, q_Row, plan_atom_row_3d) |
375 |
call gather(q, q_Col, plan_atom_col_3d) |
376 |
|
377 |
call gather(q_group, q_group_Row, plan_group_row_3d) |
378 |
call gather(q_group, q_group_Col, plan_group_col_3d) |
379 |
|
380 |
if (FF_UsesDirectionalAtoms() .and. SIM_uses_DirectionalAtoms) then |
381 |
call gather(eFrame, eFrame_Row, plan_atom_row_rotation) |
382 |
call gather(eFrame, eFrame_Col, plan_atom_col_rotation) |
383 |
|
384 |
call gather(A, A_Row, plan_atom_row_rotation) |
385 |
call gather(A, A_Col, plan_atom_col_rotation) |
386 |
endif |
387 |
|
388 |
#endif |
389 |
|
390 |
!! Begin force loop timing: |
391 |
#ifdef PROFILE |
392 |
call cpu_time(forceTimeInitial) |
393 |
nloops = nloops + 1 |
394 |
#endif |
395 |
|
396 |
loopEnd = PAIR_LOOP |
397 |
if (FF_RequiresPrepairCalc() .and. SIM_requires_prepair_calc) then |
398 |
loopStart = PREPAIR_LOOP |
399 |
else |
400 |
loopStart = PAIR_LOOP |
401 |
endif |
402 |
|
403 |
do loop = loopStart, loopEnd |
404 |
|
405 |
! See if we need to update neighbor lists |
406 |
! (but only on the first time through): |
407 |
if (loop .eq. loopStart) then |
408 |
#ifdef IS_MPI |
409 |
call checkNeighborList(nGroupsInRow, q_group_row, skinThickness, & |
410 |
update_nlist) |
411 |
#else |
412 |
call checkNeighborList(nGroups, q_group, skinThickness, & |
413 |
update_nlist) |
414 |
#endif |
415 |
endif |
416 |
|
417 |
if (update_nlist) then |
418 |
!! save current configuration and construct neighbor list |
419 |
#ifdef IS_MPI |
420 |
call saveNeighborList(nGroupsInRow, q_group_row) |
421 |
#else |
422 |
call saveNeighborList(nGroups, q_group) |
423 |
#endif |
424 |
neighborListSize = size(list) |
425 |
nlist = 0 |
426 |
endif |
427 |
|
428 |
istart = 1 |
429 |
#ifdef IS_MPI |
430 |
iend = nGroupsInRow |
431 |
#else |
432 |
iend = nGroups - 1 |
433 |
#endif |
434 |
outer: do i = istart, iend |
435 |
|
436 |
if (update_nlist) point(i) = nlist + 1 |
437 |
|
438 |
n_in_i = groupStartRow(i+1) - groupStartRow(i) |
439 |
|
440 |
if (update_nlist) then |
441 |
#ifdef IS_MPI |
442 |
jstart = 1 |
443 |
jend = nGroupsInCol |
444 |
#else |
445 |
jstart = i+1 |
446 |
jend = nGroups |
447 |
#endif |
448 |
else |
449 |
jstart = point(i) |
450 |
jend = point(i+1) - 1 |
451 |
! make sure group i has neighbors |
452 |
if (jstart .gt. jend) cycle outer |
453 |
endif |
454 |
|
455 |
do jnab = jstart, jend |
456 |
if (update_nlist) then |
457 |
j = jnab |
458 |
else |
459 |
j = list(jnab) |
460 |
endif |
461 |
|
462 |
#ifdef IS_MPI |
463 |
me_j = atid_col(j) |
464 |
call get_interatomic_vector(q_group_Row(:,i), & |
465 |
q_group_Col(:,j), d_grp, rgrpsq) |
466 |
#else |
467 |
me_j = atid(j) |
468 |
call get_interatomic_vector(q_group(:,i), & |
469 |
q_group(:,j), d_grp, rgrpsq) |
470 |
#endif |
471 |
|
472 |
if (rgrpsq < gtypeCutoffMap(groupToGtypeRow(i),groupToGtypeCol(j))%rListsq) then |
473 |
if (update_nlist) then |
474 |
nlist = nlist + 1 |
475 |
|
476 |
if (nlist > neighborListSize) then |
477 |
#ifdef IS_MPI |
478 |
call expandNeighborList(nGroupsInRow, listerror) |
479 |
#else |
480 |
call expandNeighborList(nGroups, listerror) |
481 |
#endif |
482 |
if (listerror /= 0) then |
483 |
error = -1 |
484 |
write(DEFAULT_ERROR,*) "ERROR: nlist > list size and max allocations exceeded." |
485 |
return |
486 |
end if |
487 |
neighborListSize = size(list) |
488 |
endif |
489 |
|
490 |
list(nlist) = j |
491 |
endif |
492 |
|
493 |
if (rgrpsq < gtypeCutoffMap(groupToGtypeRow(i),groupToGtypeCol(j))%rCutsq) then |
494 |
|
495 |
rCut = gtypeCutoffMap(groupToGtypeRow(i),groupToGtypeCol(j))%rCut |
496 |
if (loop .eq. PAIR_LOOP) then |
497 |
vij = 0.0_dp |
498 |
fij(1) = 0.0_dp |
499 |
fij(2) = 0.0_dp |
500 |
fij(3) = 0.0_dp |
501 |
endif |
502 |
|
503 |
call get_switch(rgrpsq, sw, dswdr,rgrp, in_switching_region) |
504 |
|
505 |
n_in_j = groupStartCol(j+1) - groupStartCol(j) |
506 |
|
507 |
do ia = groupStartRow(i), groupStartRow(i+1)-1 |
508 |
|
509 |
atom1 = groupListRow(ia) |
510 |
|
511 |
inner: do jb = groupStartCol(j), groupStartCol(j+1)-1 |
512 |
|
513 |
atom2 = groupListCol(jb) |
514 |
|
515 |
if (skipThisPair(atom1, atom2)) cycle inner |
516 |
|
517 |
if ((n_in_i .eq. 1).and.(n_in_j .eq. 1)) then |
518 |
d_atm(1) = d_grp(1) |
519 |
d_atm(2) = d_grp(2) |
520 |
d_atm(3) = d_grp(3) |
521 |
ratmsq = rgrpsq |
522 |
else |
523 |
#ifdef IS_MPI |
524 |
call get_interatomic_vector(q_Row(:,atom1), & |
525 |
q_Col(:,atom2), d_atm, ratmsq) |
526 |
#else |
527 |
call get_interatomic_vector(q(:,atom1), & |
528 |
q(:,atom2), d_atm, ratmsq) |
529 |
#endif |
530 |
endif |
531 |
|
532 |
topoDist = getTopoDistance(atom1, atom2) |
533 |
|
534 |
if (loop .eq. PREPAIR_LOOP) then |
535 |
#ifdef IS_MPI |
536 |
call do_prepair(atom1, atom2, ratmsq, d_atm, sw, & |
537 |
rgrpsq, d_grp, rCut, & |
538 |
eFrame, A, f, t, pot_local) |
539 |
#else |
540 |
call do_prepair(atom1, atom2, ratmsq, d_atm, sw, & |
541 |
rgrpsq, d_grp, rCut, & |
542 |
eFrame, A, f, t, pot) |
543 |
#endif |
544 |
else |
545 |
#ifdef IS_MPI |
546 |
call f_do_pair(atom1, atom2, ratmsq, d_atm, sw, & |
547 |
eFrame, A, f, t, pot_local, particle_pot, vpair, & |
548 |
fpair, d_grp, rgrp, rCut, topoDist) |
549 |
! particle_pot will be accumulated from row & column |
550 |
! arrays later |
551 |
#else |
552 |
call f_do_pair(atom1, atom2, ratmsq, d_atm, sw, & |
553 |
eFrame, A, f, t, pot, particle_pot, vpair, & |
554 |
fpair, d_grp, rgrp, rCut, topoDist) |
555 |
#endif |
556 |
vij = vij + vpair |
557 |
fij(1) = fij(1) + fpair(1) |
558 |
fij(2) = fij(2) + fpair(2) |
559 |
fij(3) = fij(3) + fpair(3) |
560 |
call add_stress_tensor(d_atm, fpair, tau) |
561 |
endif |
562 |
enddo inner |
563 |
enddo |
564 |
|
565 |
if (loop .eq. PAIR_LOOP) then |
566 |
if (in_switching_region) then |
567 |
swderiv = vij*dswdr/rgrp |
568 |
fg = swderiv*d_grp |
569 |
|
570 |
fij(1) = fij(1) + fg(1) |
571 |
fij(2) = fij(2) + fg(2) |
572 |
fij(3) = fij(3) + fg(3) |
573 |
|
574 |
if ((n_in_i .eq. 1).and.(n_in_j .eq. 1)) then |
575 |
call add_stress_tensor(d_atm, fg, tau) |
576 |
endif |
577 |
|
578 |
do ia=groupStartRow(i), groupStartRow(i+1)-1 |
579 |
atom1=groupListRow(ia) |
580 |
mf = mfactRow(atom1) |
581 |
! fg is the force on atom ia due to cutoff group's |
582 |
! presence in switching region |
583 |
fg = swderiv*d_grp*mf |
584 |
#ifdef IS_MPI |
585 |
f_Row(1,atom1) = f_Row(1,atom1) + fg(1) |
586 |
f_Row(2,atom1) = f_Row(2,atom1) + fg(2) |
587 |
f_Row(3,atom1) = f_Row(3,atom1) + fg(3) |
588 |
#else |
589 |
f(1,atom1) = f(1,atom1) + fg(1) |
590 |
f(2,atom1) = f(2,atom1) + fg(2) |
591 |
f(3,atom1) = f(3,atom1) + fg(3) |
592 |
#endif |
593 |
if (n_in_i .gt. 1) then |
594 |
if (SIM_uses_AtomicVirial) then |
595 |
! find the distance between the atom |
596 |
! and the center of the cutoff group: |
597 |
#ifdef IS_MPI |
598 |
call get_interatomic_vector(q_Row(:,atom1), & |
599 |
q_group_Row(:,i), dag, rag) |
600 |
#else |
601 |
call get_interatomic_vector(q(:,atom1), & |
602 |
q_group(:,i), dag, rag) |
603 |
#endif |
604 |
call add_stress_tensor(dag,fg,tau) |
605 |
endif |
606 |
endif |
607 |
enddo |
608 |
|
609 |
do jb=groupStartCol(j), groupStartCol(j+1)-1 |
610 |
atom2=groupListCol(jb) |
611 |
mf = mfactCol(atom2) |
612 |
! fg is the force on atom jb due to cutoff group's |
613 |
! presence in switching region |
614 |
fg = -swderiv*d_grp*mf |
615 |
#ifdef IS_MPI |
616 |
f_Col(1,atom2) = f_Col(1,atom2) + fg(1) |
617 |
f_Col(2,atom2) = f_Col(2,atom2) + fg(2) |
618 |
f_Col(3,atom2) = f_Col(3,atom2) + fg(3) |
619 |
#else |
620 |
f(1,atom2) = f(1,atom2) + fg(1) |
621 |
f(2,atom2) = f(2,atom2) + fg(2) |
622 |
f(3,atom2) = f(3,atom2) + fg(3) |
623 |
#endif |
624 |
if (n_in_j .gt. 1) then |
625 |
if (SIM_uses_AtomicVirial) then |
626 |
! find the distance between the atom |
627 |
! and the center of the cutoff group: |
628 |
#ifdef IS_MPI |
629 |
call get_interatomic_vector(q_Col(:,atom2), & |
630 |
q_group_Col(:,j), dag, rag) |
631 |
#else |
632 |
call get_interatomic_vector(q(:,atom2), & |
633 |
q_group(:,j), dag, rag) |
634 |
#endif |
635 |
call add_stress_tensor(dag,fg,tau) |
636 |
endif |
637 |
endif |
638 |
enddo |
639 |
endif |
640 |
!if (.not.SIM_uses_AtomicVirial) then |
641 |
! call add_stress_tensor(d_grp, fij, tau) |
642 |
!endif |
643 |
endif |
644 |
endif |
645 |
endif |
646 |
enddo |
647 |
|
648 |
enddo outer |
649 |
|
650 |
if (update_nlist) then |
651 |
#ifdef IS_MPI |
652 |
point(nGroupsInRow + 1) = nlist + 1 |
653 |
#else |
654 |
point(nGroups) = nlist + 1 |
655 |
#endif |
656 |
if (loop .eq. PREPAIR_LOOP) then |
657 |
! we just did the neighbor list update on the first |
658 |
! pass, so we don't need to do it |
659 |
! again on the second pass |
660 |
update_nlist = .false. |
661 |
endif |
662 |
endif |
663 |
|
664 |
if (loop .eq. PREPAIR_LOOP) then |
665 |
#ifdef IS_MPI |
666 |
call do_preforce(nlocal, pot_local, particle_pot) |
667 |
#else |
668 |
call do_preforce(nlocal, pot, particle_pot) |
669 |
#endif |
670 |
endif |
671 |
|
672 |
enddo |
673 |
|
674 |
!! Do timing |
675 |
#ifdef PROFILE |
676 |
call cpu_time(forceTimeFinal) |
677 |
forceTime = forceTime + forceTimeFinal - forceTimeInitial |
678 |
#endif |
679 |
|
680 |
#ifdef IS_MPI |
681 |
!!distribute forces |
682 |
|
683 |
f_temp = 0.0_dp |
684 |
call scatter(f_Row,f_temp,plan_atom_row_3d) |
685 |
do i = 1,nlocal |
686 |
f(1:3,i) = f(1:3,i) + f_temp(1:3,i) |
687 |
end do |
688 |
|
689 |
f_temp = 0.0_dp |
690 |
call scatter(f_Col,f_temp,plan_atom_col_3d) |
691 |
do i = 1,nlocal |
692 |
f(1:3,i) = f(1:3,i) + f_temp(1:3,i) |
693 |
end do |
694 |
|
695 |
if (FF_UsesDirectionalAtoms() .and. SIM_uses_DirectionalAtoms) then |
696 |
t_temp = 0.0_dp |
697 |
call scatter(t_Row,t_temp,plan_atom_row_3d) |
698 |
do i = 1,nlocal |
699 |
t(1:3,i) = t(1:3,i) + t_temp(1:3,i) |
700 |
end do |
701 |
t_temp = 0.0_dp |
702 |
call scatter(t_Col,t_temp,plan_atom_col_3d) |
703 |
|
704 |
do i = 1,nlocal |
705 |
t(1:3,i) = t(1:3,i) + t_temp(1:3,i) |
706 |
end do |
707 |
endif |
708 |
|
709 |
! scatter/gather pot_row into the members of my column |
710 |
do i = 1,LR_POT_TYPES |
711 |
call scatter(pot_Row(i,:), pot_Temp(i,:), plan_atom_row) |
712 |
end do |
713 |
! scatter/gather pot_local into all other procs |
714 |
! add resultant to get total pot |
715 |
do i = 1, nlocal |
716 |
pot_local(1:LR_POT_TYPES) = pot_local(1:LR_POT_TYPES) & |
717 |
+ pot_Temp(1:LR_POT_TYPES,i) |
718 |
enddo |
719 |
|
720 |
do i = 1,LR_POT_TYPES |
721 |
particle_pot(1:nlocal) = particle_pot(1:nlocal) + pot_Temp(i,1:nlocal) |
722 |
enddo |
723 |
|
724 |
pot_Temp = 0.0_DP |
725 |
|
726 |
do i = 1,LR_POT_TYPES |
727 |
call scatter(pot_Col(i,:), pot_Temp(i,:), plan_atom_col) |
728 |
end do |
729 |
|
730 |
do i = 1, nlocal |
731 |
pot_local(1:LR_POT_TYPES) = pot_local(1:LR_POT_TYPES)& |
732 |
+ pot_Temp(1:LR_POT_TYPES,i) |
733 |
enddo |
734 |
|
735 |
do i = 1,LR_POT_TYPES |
736 |
particle_pot(1:nlocal) = particle_pot(1:nlocal) + pot_Temp(i,1:nlocal) |
737 |
enddo |
738 |
|
739 |
ppot_Temp = 0.0_DP |
740 |
|
741 |
call scatter(ppot_Row(:), ppot_Temp(:), plan_atom_row) |
742 |
do i = 1, nlocal |
743 |
particle_pot(i) = particle_pot(i) + ppot_Temp(i) |
744 |
enddo |
745 |
|
746 |
ppot_Temp = 0.0_DP |
747 |
|
748 |
call scatter(ppot_Col(:), ppot_Temp(:), plan_atom_col) |
749 |
do i = 1, nlocal |
750 |
particle_pot(i) = particle_pot(i) + ppot_Temp(i) |
751 |
enddo |
752 |
|
753 |
#endif |
754 |
|
755 |
if (SIM_requires_postpair_calc) then |
756 |
do i = 1, nlocal |
757 |
|
758 |
do i1 = 1, nSkipsForLocalAtom(i) |
759 |
j = skipsForLocalAtom(i, i1) |
760 |
|
761 |
! prevent overcounting the skips |
762 |
if (i.lt.j) then |
763 |
|
764 |
call get_interatomic_vector(q(:,i), q(:,j), d_atm, ratmsq) |
765 |
rVal = sqrt(ratmsq) |
766 |
call get_switch(ratmsq, sw, dswdr, rVal,in_switching_region) |
767 |
#ifdef IS_MPI |
768 |
call do_skip_correction(c_idents_local(i), c_idents_local(j), & |
769 |
d_atm, rVal, skipped_charge(i), skipped_charge(j), sw, & |
770 |
1.0_dp, pot_local(ELECTROSTATIC_POT), vpair, f, t(:,i), t(:,j)) |
771 |
# else |
772 |
call do_skip_correction(c_idents_local(i), c_idents_local(j), & |
773 |
d_atm, rVal, skipped_charge(i), skipped_charge(j), sw, & |
774 |
1.0_dp, pot(ELECTROSTATIC_POT), vpair, f, t(:,i), t(:,j)) |
775 |
#endif |
776 |
endif |
777 |
enddo |
778 |
enddo |
779 |
|
780 |
do i = 1, nlocal |
781 |
|
782 |
#ifdef IS_MPI |
783 |
call do_self_correction(c_idents_local(i), eFrame(:,i), & |
784 |
skipped_charge(i), pot_local(ELECTROSTATIC_POT), t(:,i)) |
785 |
#else |
786 |
call do_self_correction(c_idents_local(i), eFrame(:,i), & |
787 |
skipped_charge(i), pot(ELECTROSTATIC_POT), t(:,i)) |
788 |
#endif |
789 |
enddo |
790 |
endif |
791 |
|
792 |
#ifdef IS_MPI |
793 |
#ifdef SINGLE_PRECISION |
794 |
call mpi_allreduce(pot_local, pot, LR_POT_TYPES,mpi_real,mpi_sum, & |
795 |
mpi_comm_world,mpi_err) |
796 |
#else |
797 |
call mpi_allreduce(pot_local, pot, LR_POT_TYPES,mpi_double_precision, & |
798 |
mpi_sum, mpi_comm_world,mpi_err) |
799 |
#endif |
800 |
#endif |
801 |
|
802 |
end subroutine do_force_loop |
803 |
|
804 |
subroutine f_do_pair(i, j, rijsq, d, sw, & |
805 |
eFrame, A, f, t, pot, particle_pot, vpair, & |
806 |
fpair, d_grp, r_grp, rCut, topoDist) |
807 |
|
808 |
real( kind = dp ) :: vpair, sw |
809 |
real( kind = dp ), dimension(LR_POT_TYPES) :: pot, pairpot |
810 |
real( kind = dp ), dimension(nLocal) :: particle_pot |
811 |
real( kind = dp ), dimension(3) :: fpair |
812 |
real( kind = dp ), dimension(nLocal) :: mfact |
813 |
real( kind = dp ), dimension(9,nLocal) :: eFrame |
814 |
real( kind = dp ), dimension(9,nLocal) :: A |
815 |
real( kind = dp ), dimension(3,nLocal) :: f |
816 |
real( kind = dp ), dimension(3,nLocal) :: t |
817 |
|
818 |
integer, intent(in) :: i, j |
819 |
real ( kind = dp ), intent(inout) :: rijsq |
820 |
real ( kind = dp ), intent(inout) :: r_grp |
821 |
real ( kind = dp ), intent(inout) :: d(3) |
822 |
real ( kind = dp ), intent(inout) :: d_grp(3) |
823 |
real ( kind = dp ), intent(inout) :: rCut |
824 |
integer, intent(inout) :: topoDist |
825 |
real ( kind = dp ) :: r, pair_pot, vdwMult, electroMult |
826 |
real ( kind = dp ) :: a_k, b_k, c_k, d_k, dx |
827 |
|
828 |
real( kind = dp), dimension(3) :: f1, t1, t2 |
829 |
real( kind = dp), dimension(9) :: A1, A2, eF1, eF2 |
830 |
real( kind = dp) :: dfrhodrho_i, dfrhodrho_j |
831 |
real( kind = dp) :: rho_i, rho_j |
832 |
real( kind = dp) :: fshift_i, fshift_j |
833 |
real( kind = dp) :: p_vdw, p_elect, p_hb, p_met |
834 |
integer :: id1, id2, idx |
835 |
integer :: k |
836 |
integer :: c_ident_i, c_ident_j |
837 |
|
838 |
integer :: iHash |
839 |
|
840 |
r = sqrt(rijsq) |
841 |
|
842 |
vpair = 0.0_dp |
843 |
fpair(1:3) = 0.0_dp |
844 |
|
845 |
p_vdw = 0.0 |
846 |
p_elect = 0.0 |
847 |
p_hb = 0.0 |
848 |
p_met = 0.0 |
849 |
|
850 |
f1(1:3) = 0.0 |
851 |
t1(1:3) = 0.0 |
852 |
t2(1:3) = 0.0 |
853 |
|
854 |
#ifdef IS_MPI |
855 |
c_ident_i = c_idents_row(i) |
856 |
c_ident_j = c_idents_col(j) |
857 |
|
858 |
A1(:) = A_Row(:,i) |
859 |
A2(:) = A_Col(:,j) |
860 |
eF1(:) = eFrame_Row(:,i) |
861 |
eF2(:) = eFrame_Col(:,j) |
862 |
|
863 |
dfrhodrho_i = dfrhodrho_row(i) |
864 |
dfrhodrho_j = dfrhodrho_col(j) |
865 |
rho_i = rho_row(i) |
866 |
rho_j = rho_col(j) |
867 |
#else |
868 |
c_ident_i = c_idents_local(i) |
869 |
c_ident_j = c_idents_local(j) |
870 |
|
871 |
A1(:) = A(:,i) |
872 |
A2(:) = A(:,j) |
873 |
eF1(:) = eFrame(:,i) |
874 |
eF2(:) = eFrame(:,j) |
875 |
|
876 |
dfrhodrho_i = dfrhodrho(i) |
877 |
dfrhodrho_j = dfrhodrho(j) |
878 |
rho_i = rho(i) |
879 |
rho_j = rho(j) |
880 |
#endif |
881 |
|
882 |
vdwMult = vdwScale(topoDist) |
883 |
electroMult = electrostaticScale(topoDist) |
884 |
|
885 |
call doPairInteraction(c_ident_i, c_ident_j, d, r, rijsq, sw, vpair, & |
886 |
vdwMult, electroMult, A1, A2, eF1, eF2, & |
887 |
pairpot, f1, t1, t2, & |
888 |
rho_i, rho_j, dfrhodrho_i, dfrhodrho_j, fshift_i, fshift_j) |
889 |
|
890 |
#ifdef IS_MPI |
891 |
id1 = AtomRowToGlobal(i) |
892 |
id2 = AtomColToGlobal(j) |
893 |
|
894 |
pot_row(VDW_POT,i) = pot_row(VDW_POT,i) + 0.5*pairpot(VDW_POT) |
895 |
pot_col(VDW_POT,j) = pot_col(VDW_POT,j) + 0.5*pairpot(VDW_POT) |
896 |
pot_row(ELECTROSTATIC_POT,i) = pot_row(ELECTROSTATIC_POT,i) + 0.5*pairpot(ELECTROSTATIC_POT) |
897 |
pot_col(ELECTROSTATIC_POT,j) = pot_col(ELECTROSTATIC_POT,j) + 0.5*pairpot(ELECTROSTATIC_POT) |
898 |
pot_row(HB_POT,i) = pot_row(HB_POT,i) + 0.5*pairpot(HB_POT) |
899 |
pot_col(HB_POT,j) = pot_col(HB_POT,j) + 0.5*pairpot(HB_POT) |
900 |
pot_Row(METALLIC_POT,i) = pot_Row(METALLIC_POT,i) + 0.5*pairpot(METALLIC_POT) |
901 |
pot_Col(METALLIC_POT,j) = pot_Col(METALLIC_POT,j) + 0.5*pairpot(METALLIC_POT) |
902 |
|
903 |
do idx = 1, 3 |
904 |
f_Row(idx,i) = f_Row(idx,i) + f1(idx) |
905 |
f_Col(idx,j) = f_Col(idx,j) - f1(idx) |
906 |
|
907 |
t_Row(idx,i) = t_Row(idx,i) + t1(idx) |
908 |
t_Col(idx,j) = t_Col(idx,j) + t2(idx) |
909 |
enddo |
910 |
! particle_pot is the difference between the full potential |
911 |
! and the full potential without the presence of a particular |
912 |
! particle (atom1). |
913 |
! |
914 |
! This reduces the density at other particle locations, so |
915 |
! we need to recompute the density at atom2 assuming atom1 |
916 |
! didn't contribute. This then requires recomputing the |
917 |
! density functional for atom2 as well. |
918 |
! |
919 |
! Most of the particle_pot heavy lifting comes from the |
920 |
! pair interaction, and will be handled by vpair. Parallel version. |
921 |
|
922 |
if ( (iand(iHash, EAM_PAIR).ne.0) .or. (iand(iHash, SC_PAIR).ne.0) ) then |
923 |
ppot_row(i) = ppot_row(i) - frho_row(j) + fshift_j |
924 |
ppot_col(j) = ppot_col(j) - frho_col(i) + fshift_i |
925 |
end if |
926 |
|
927 |
#else |
928 |
id1 = i |
929 |
id2 = j |
930 |
|
931 |
pot(VDW_POT) = pot(VDW_POT) + pairpot(VDW_POT) |
932 |
pot(ELECTROSTATIC_POT) = pot(ELECTROSTATIC_POT) + pairpot(ELECTROSTATIC_POT) |
933 |
pot(HB_POT) = pot(HB_POT) + pairpot(HB_POT) |
934 |
pot(METALLIC_POT) = pot(METALLIC_POT) + pairpot(METALLIC_POT) |
935 |
|
936 |
do idx = 1, 3 |
937 |
f(idx,i) = f(idx,i) + f1(idx) |
938 |
f(idx,j) = f(idx,j) - f1(idx) |
939 |
|
940 |
t(idx,i) = t(idx,i) + t1(idx) |
941 |
t(idx,j) = t(idx,j) + t2(idx) |
942 |
enddo |
943 |
! particle_pot is the difference between the full potential |
944 |
! and the full potential without the presence of a particular |
945 |
! particle (atom1). |
946 |
! |
947 |
! This reduces the density at other particle locations, so |
948 |
! we need to recompute the density at atom2 assuming atom1 |
949 |
! didn't contribute. This then requires recomputing the |
950 |
! density functional for atom2 as well. |
951 |
! |
952 |
! Most of the particle_pot heavy lifting comes from the |
953 |
! pair interaction, and will be handled by vpair. NonParallel version. |
954 |
|
955 |
if ( (iand(iHash, EAM_PAIR).ne.0) .or. (iand(iHash, SC_PAIR).ne.0) ) then |
956 |
particle_pot(i) = particle_pot(i) - frho(j) + fshift_j |
957 |
particle_pot(j) = particle_pot(j) - frho(i) + fshift_i |
958 |
end if |
959 |
|
960 |
|
961 |
#endif |
962 |
|
963 |
if (molMembershipList(id1) .ne. molMembershipList(id2)) then |
964 |
|
965 |
fpair(1) = fpair(1) + f1(1) |
966 |
fpair(2) = fpair(2) + f1(2) |
967 |
fpair(3) = fpair(3) + f1(3) |
968 |
|
969 |
endif |
970 |
end subroutine f_do_pair |
971 |
|
972 |
subroutine do_prepair(i, j, rijsq, d, sw, rcijsq, dc, rCut, & |
973 |
eFrame, A, f, t, pot) |
974 |
|
975 |
real( kind = dp ) :: sw |
976 |
real( kind = dp ), dimension(LR_POT_TYPES) :: pot |
977 |
real( kind = dp ), dimension(9,nLocal) :: eFrame |
978 |
real (kind=dp), dimension(9,nLocal) :: A |
979 |
real (kind=dp), dimension(3,nLocal) :: f |
980 |
real (kind=dp), dimension(3,nLocal) :: t |
981 |
|
982 |
integer, intent(in) :: i, j |
983 |
real ( kind = dp ), intent(inout) :: rijsq, rcijsq, rCut |
984 |
real ( kind = dp ) :: r, rc |
985 |
real ( kind = dp ), intent(inout) :: d(3), dc(3) |
986 |
real ( kind = dp ) :: rho_i_at_j, rho_j_at_i |
987 |
integer :: c_ident_i, c_ident_j |
988 |
|
989 |
r = sqrt(rijsq) |
990 |
|
991 |
#ifdef IS_MPI |
992 |
c_ident_i = c_idents_row(i) |
993 |
c_ident_j = c_idents_col(j) |
994 |
#else |
995 |
c_ident_i = c_idents_local(i) |
996 |
c_ident_j = c_idents_local(j) |
997 |
#endif |
998 |
rho_i_at_j = 0.0_dp |
999 |
rho_j_at_i = 0.0_dp |
1000 |
|
1001 |
call doPrepairInteraction(c_ident_i, c_ident_j, r, & |
1002 |
rho_i_at_j, rho_j_at_i) |
1003 |
|
1004 |
#ifdef IS_MPI |
1005 |
rho_col(j) = rho_col(j) + rho_i_at_j |
1006 |
rho_row(i) = rho_row(i) + rho_j_at_i |
1007 |
#else |
1008 |
rho(j) = rho(j) + rho_i_at_j |
1009 |
rho(i) = rho(i) + rho_j_at_i |
1010 |
#endif |
1011 |
|
1012 |
end subroutine do_prepair |
1013 |
|
1014 |
|
1015 |
subroutine do_preforce(nlocal, pot, particle_pot) |
1016 |
integer :: nlocal |
1017 |
real( kind = dp ),dimension(LR_POT_TYPES) :: pot |
1018 |
real( kind = dp ),dimension(nlocal) :: particle_pot |
1019 |
integer :: sc_err = 0 |
1020 |
integer :: atom, c_ident1 |
1021 |
|
1022 |
if ((FF_uses_EAM .and. SIM_uses_EAM) .or. (FF_uses_SC .and. SIM_uses_SC)) then |
1023 |
|
1024 |
#ifdef IS_MPI |
1025 |
call scatter(rho_row,rho,plan_atom_row,sc_err) |
1026 |
if (sc_err /= 0 ) then |
1027 |
call handleError("do_preforce()", "Error scattering rho_row into rho") |
1028 |
endif |
1029 |
call scatter(rho_col,rho_tmp,plan_atom_col,sc_err) |
1030 |
if (sc_err /= 0 ) then |
1031 |
call handleError("do_preforce()", "Error scattering rho_col into rho") |
1032 |
endif |
1033 |
rho(1:nlocal) = rho(1:nlocal) + rho_tmp(1:nlocal) |
1034 |
#endif |
1035 |
|
1036 |
|
1037 |
do atom = 1, nlocal |
1038 |
c_ident1 = c_idents_local(atom) |
1039 |
|
1040 |
call doPreforceInteraction(c_ident1, rho(atom), frho(atom), dfrhodrho(atom)) |
1041 |
pot(METALLIC_POT) = pot(METALLIC_POT) + frho(atom) |
1042 |
particle_pot(atom) = particle_pot(atom) + frho(atom) |
1043 |
end do |
1044 |
|
1045 |
#ifdef IS_MPI |
1046 |
!! communicate f(rho) and derivatives back into row and column arrays |
1047 |
call gather(frho,frho_row,plan_atom_row, sc_err) |
1048 |
if (sc_err /= 0) then |
1049 |
call handleError("do_preforce()","MPI gather frho_row failure") |
1050 |
endif |
1051 |
call gather(dfrhodrho,dfrhodrho_row,plan_atom_row, sc_err) |
1052 |
if (sc_err /= 0) then |
1053 |
call handleError("do_preforce()","MPI gather dfrhodrho_row failure") |
1054 |
endif |
1055 |
call gather(frho,frho_col,plan_atom_col, sc_err) |
1056 |
if (sc_err /= 0) then |
1057 |
call handleError("do_preforce()","MPI gather frho_col failure") |
1058 |
endif |
1059 |
call gather(dfrhodrho,dfrhodrho_col,plan_atom_col, sc_err) |
1060 |
if (sc_err /= 0) then |
1061 |
call handleError("do_preforce()","MPI gather dfrhodrho_col failure") |
1062 |
endif |
1063 |
#endif |
1064 |
|
1065 |
end if |
1066 |
end subroutine do_preforce |
1067 |
|
1068 |
|
1069 |
subroutine get_interatomic_vector(q_i, q_j, d, r_sq) |
1070 |
|
1071 |
real (kind = dp), dimension(3) :: q_i |
1072 |
real (kind = dp), dimension(3) :: q_j |
1073 |
real ( kind = dp ), intent(out) :: r_sq |
1074 |
real( kind = dp ) :: d(3), scaled(3) |
1075 |
integer i |
1076 |
|
1077 |
d(1) = q_j(1) - q_i(1) |
1078 |
d(2) = q_j(2) - q_i(2) |
1079 |
d(3) = q_j(3) - q_i(3) |
1080 |
|
1081 |
! Wrap back into periodic box if necessary |
1082 |
if ( SIM_uses_PBC ) then |
1083 |
|
1084 |
if( .not.boxIsOrthorhombic ) then |
1085 |
! calc the scaled coordinates. |
1086 |
! scaled = matmul(HmatInv, d) |
1087 |
|
1088 |
scaled(1) = HmatInv(1,1)*d(1) + HmatInv(1,2)*d(2) + HmatInv(1,3)*d(3) |
1089 |
scaled(2) = HmatInv(2,1)*d(1) + HmatInv(2,2)*d(2) + HmatInv(2,3)*d(3) |
1090 |
scaled(3) = HmatInv(3,1)*d(1) + HmatInv(3,2)*d(2) + HmatInv(3,3)*d(3) |
1091 |
|
1092 |
! wrap the scaled coordinates |
1093 |
|
1094 |
scaled(1) = scaled(1) - anint(scaled(1), kind=dp) |
1095 |
scaled(2) = scaled(2) - anint(scaled(2), kind=dp) |
1096 |
scaled(3) = scaled(3) - anint(scaled(3), kind=dp) |
1097 |
|
1098 |
! calc the wrapped real coordinates from the wrapped scaled |
1099 |
! coordinates |
1100 |
! d = matmul(Hmat,scaled) |
1101 |
d(1)= Hmat(1,1)*scaled(1) + Hmat(1,2)*scaled(2) + Hmat(1,3)*scaled(3) |
1102 |
d(2)= Hmat(2,1)*scaled(1) + Hmat(2,2)*scaled(2) + Hmat(2,3)*scaled(3) |
1103 |
d(3)= Hmat(3,1)*scaled(1) + Hmat(3,2)*scaled(2) + Hmat(3,3)*scaled(3) |
1104 |
|
1105 |
else |
1106 |
! calc the scaled coordinates. |
1107 |
|
1108 |
scaled(1) = d(1) * HmatInv(1,1) |
1109 |
scaled(2) = d(2) * HmatInv(2,2) |
1110 |
scaled(3) = d(3) * HmatInv(3,3) |
1111 |
|
1112 |
! wrap the scaled coordinates |
1113 |
|
1114 |
scaled(1) = scaled(1) - anint(scaled(1), kind=dp) |
1115 |
scaled(2) = scaled(2) - anint(scaled(2), kind=dp) |
1116 |
scaled(3) = scaled(3) - anint(scaled(3), kind=dp) |
1117 |
|
1118 |
! calc the wrapped real coordinates from the wrapped scaled |
1119 |
! coordinates |
1120 |
|
1121 |
d(1) = scaled(1)*Hmat(1,1) |
1122 |
d(2) = scaled(2)*Hmat(2,2) |
1123 |
d(3) = scaled(3)*Hmat(3,3) |
1124 |
|
1125 |
endif |
1126 |
|
1127 |
endif |
1128 |
|
1129 |
r_sq = d(1)*d(1) + d(2)*d(2) + d(3)*d(3) |
1130 |
|
1131 |
end subroutine get_interatomic_vector |
1132 |
|
1133 |
subroutine zero_work_arrays() |
1134 |
|
1135 |
#ifdef IS_MPI |
1136 |
|
1137 |
q_Row = 0.0_dp |
1138 |
q_Col = 0.0_dp |
1139 |
|
1140 |
q_group_Row = 0.0_dp |
1141 |
q_group_Col = 0.0_dp |
1142 |
|
1143 |
eFrame_Row = 0.0_dp |
1144 |
eFrame_Col = 0.0_dp |
1145 |
|
1146 |
A_Row = 0.0_dp |
1147 |
A_Col = 0.0_dp |
1148 |
|
1149 |
f_Row = 0.0_dp |
1150 |
f_Col = 0.0_dp |
1151 |
f_Temp = 0.0_dp |
1152 |
|
1153 |
t_Row = 0.0_dp |
1154 |
t_Col = 0.0_dp |
1155 |
t_Temp = 0.0_dp |
1156 |
|
1157 |
pot_Row = 0.0_dp |
1158 |
pot_Col = 0.0_dp |
1159 |
pot_Temp = 0.0_dp |
1160 |
ppot_Temp = 0.0_dp |
1161 |
|
1162 |
frho_row = 0.0_dp |
1163 |
frho_col = 0.0_dp |
1164 |
rho_row = 0.0_dp |
1165 |
rho_col = 0.0_dp |
1166 |
rho_tmp = 0.0_dp |
1167 |
dfrhodrho_row = 0.0_dp |
1168 |
dfrhodrho_col = 0.0_dp |
1169 |
|
1170 |
#endif |
1171 |
rho = 0.0_dp |
1172 |
frho = 0.0_dp |
1173 |
dfrhodrho = 0.0_dp |
1174 |
|
1175 |
end subroutine zero_work_arrays |
1176 |
|
1177 |
function skipThisPair(atom1, atom2) result(skip_it) |
1178 |
integer, intent(in) :: atom1 |
1179 |
integer, intent(in), optional :: atom2 |
1180 |
logical :: skip_it |
1181 |
integer :: unique_id_1, unique_id_2 |
1182 |
integer :: i |
1183 |
|
1184 |
skip_it = .false. |
1185 |
|
1186 |
!! there are a number of reasons to skip a pair or a particle |
1187 |
!! mostly we do this to exclude atoms who are involved in short |
1188 |
!! range interactions (bonds, bends, torsions), but we also need |
1189 |
!! to exclude some overcounted interactions that result from |
1190 |
!! the parallel decomposition |
1191 |
|
1192 |
#ifdef IS_MPI |
1193 |
!! in MPI, we have to look up the unique IDs for each atom |
1194 |
unique_id_1 = AtomRowToGlobal(atom1) |
1195 |
unique_id_2 = AtomColToGlobal(atom2) |
1196 |
!! this situation should only arise in MPI simulations |
1197 |
if (unique_id_1 == unique_id_2) then |
1198 |
skip_it = .true. |
1199 |
return |
1200 |
end if |
1201 |
|
1202 |
!! this prevents us from doing the pair on multiple processors |
1203 |
if (unique_id_1 < unique_id_2) then |
1204 |
if (mod(unique_id_1 + unique_id_2,2) == 0) then |
1205 |
skip_it = .true. |
1206 |
return |
1207 |
endif |
1208 |
else |
1209 |
if (mod(unique_id_1 + unique_id_2,2) == 1) then |
1210 |
skip_it = .true. |
1211 |
return |
1212 |
endif |
1213 |
endif |
1214 |
#else |
1215 |
!! in the normal loop, the atom numbers are unique |
1216 |
unique_id_1 = atom1 |
1217 |
unique_id_2 = atom2 |
1218 |
#endif |
1219 |
|
1220 |
#ifdef IS_MPI |
1221 |
do i = 1, nSkipsForRowAtom(atom1) |
1222 |
if (skipsForRowAtom(atom1, i) .eq. unique_id_2) then |
1223 |
skip_it = .true. |
1224 |
return |
1225 |
endif |
1226 |
end do |
1227 |
#else |
1228 |
do i = 1, nSkipsForLocalAtom(atom1) |
1229 |
if (skipsForLocalAtom(atom1, i) .eq. unique_id_2) then |
1230 |
skip_it = .true. |
1231 |
return |
1232 |
endif |
1233 |
end do |
1234 |
#endif |
1235 |
|
1236 |
return |
1237 |
end function skipThisPair |
1238 |
|
1239 |
function getTopoDistance(atom1, atom2) result(topoDist) |
1240 |
integer, intent(in) :: atom1 |
1241 |
integer, intent(in) :: atom2 |
1242 |
integer :: topoDist |
1243 |
integer :: unique_id_2 |
1244 |
integer :: i |
1245 |
|
1246 |
#ifdef IS_MPI |
1247 |
unique_id_2 = AtomColToGlobal(atom2) |
1248 |
#else |
1249 |
unique_id_2 = atom2 |
1250 |
#endif |
1251 |
|
1252 |
! zero is default for unconnected (i.e. normal) pair interactions |
1253 |
|
1254 |
topoDist = 0 |
1255 |
|
1256 |
do i = 1, nTopoPairsForAtom(atom1) |
1257 |
if (toposForAtom(atom1, i) .eq. unique_id_2) then |
1258 |
topoDist = topoDistance(atom1, i) |
1259 |
return |
1260 |
endif |
1261 |
end do |
1262 |
|
1263 |
return |
1264 |
end function getTopoDistance |
1265 |
|
1266 |
function FF_UsesDirectionalAtoms() result(doesit) |
1267 |
logical :: doesit |
1268 |
doesit = FF_uses_DirectionalAtoms |
1269 |
end function FF_UsesDirectionalAtoms |
1270 |
|
1271 |
function FF_RequiresPrepairCalc() result(doesit) |
1272 |
logical :: doesit |
1273 |
doesit = FF_uses_EAM .or. FF_uses_SC |
1274 |
end function FF_RequiresPrepairCalc |
1275 |
|
1276 |
#ifdef PROFILE |
1277 |
function getforcetime() result(totalforcetime) |
1278 |
real(kind=dp) :: totalforcetime |
1279 |
totalforcetime = forcetime |
1280 |
end function getforcetime |
1281 |
#endif |
1282 |
|
1283 |
!! This cleans componets of force arrays belonging only to fortran |
1284 |
|
1285 |
subroutine add_stress_tensor(dpair, fpair, tau) |
1286 |
|
1287 |
real( kind = dp ), dimension(3), intent(in) :: dpair, fpair |
1288 |
real( kind = dp ), dimension(9), intent(inout) :: tau |
1289 |
|
1290 |
! because the d vector is the rj - ri vector, and |
1291 |
! because fx, fy, fz are the force on atom i, we need a |
1292 |
! negative sign here: |
1293 |
|
1294 |
tau(1) = tau(1) - dpair(1) * fpair(1) |
1295 |
tau(2) = tau(2) - dpair(1) * fpair(2) |
1296 |
tau(3) = tau(3) - dpair(1) * fpair(3) |
1297 |
tau(4) = tau(4) - dpair(2) * fpair(1) |
1298 |
tau(5) = tau(5) - dpair(2) * fpair(2) |
1299 |
tau(6) = tau(6) - dpair(2) * fpair(3) |
1300 |
tau(7) = tau(7) - dpair(3) * fpair(1) |
1301 |
tau(8) = tau(8) - dpair(3) * fpair(2) |
1302 |
tau(9) = tau(9) - dpair(3) * fpair(3) |
1303 |
|
1304 |
end subroutine add_stress_tensor |
1305 |
|
1306 |
end module doForces |