ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/UseTheForce/doForces.F90
Revision: 1390
Committed: Wed Nov 25 20:02:06 2009 UTC (15 years, 5 months ago) by gezelter
Original Path: trunk/src/UseTheForce/doForces.F90
File size: 67645 byte(s)
Log Message:
Almost all of the changes necessary to create OpenMD out of our old
project (OOPSE-4)

File Contents

# User Rev Content
1 gezelter 246 !!
2 chuckv 1388 !! Copyright (c) 2005, 2009 The University of Notre Dame. All Rights Reserved.
3 gezelter 246 !!
4     !! The University of Notre Dame grants you ("Licensee") a
5     !! non-exclusive, royalty free, license to use, modify and
6     !! redistribute this software in source and binary code form, provided
7     !! that the following conditions are met:
8     !!
9 gezelter 1390 !! 1. Redistributions of source code must retain the above copyright
10 gezelter 246 !! notice, this list of conditions and the following disclaimer.
11     !!
12 gezelter 1390 !! 2. Redistributions in binary form must reproduce the above copyright
13 gezelter 246 !! notice, this list of conditions and the following disclaimer in the
14     !! documentation and/or other materials provided with the
15     !! distribution.
16     !!
17     !! This software is provided "AS IS," without a warranty of any
18     !! kind. All express or implied conditions, representations and
19     !! warranties, including any implied warranty of merchantability,
20     !! fitness for a particular purpose or non-infringement, are hereby
21     !! excluded. The University of Notre Dame and its licensors shall not
22     !! be liable for any damages suffered by licensee as a result of
23     !! using, modifying or distributing the software or its
24     !! derivatives. In no event will the University of Notre Dame or its
25     !! licensors be liable for any lost revenue, profit or data, or for
26     !! direct, indirect, special, consequential, incidental or punitive
27     !! damages, however caused and regardless of the theory of liability,
28     !! arising out of the use of or inability to use software, even if the
29     !! University of Notre Dame has been advised of the possibility of
30     !! such damages.
31     !!
32 gezelter 1390 !! SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your
33     !! research, please cite the appropriate papers when you publish your
34     !! work. Good starting points are:
35     !!
36     !! [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).
37     !! [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).
38     !! [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).
39     !! [4] Vardeman & Gezelter, in progress (2009).
40     !!
41 gezelter 246
42 gezelter 117 !! doForces.F90
43     !! module doForces
44     !! Calculates Long Range forces.
45    
46     !! @author Charles F. Vardeman II
47     !! @author Matthew Meineke
48 gezelter 1390 !! @version $Id: doForces.F90,v 1.106 2009-11-25 20:01:57 gezelter Exp $, $Date: 2009-11-25 20:01:57 $, $Name: not supported by cvs2svn $, $Revision: 1.106 $
49 gezelter 117
50 gezelter 246
51 gezelter 117 module doForces
52     use force_globals
53 gezelter 1286 use fForceOptions
54 gezelter 117 use simulation
55     use definitions
56     use atype_module
57     use switcheroo
58     use neighborLists
59     use lj
60 gezelter 246 use sticky
61 gezelter 401 use electrostatic_module
62 gezelter 676 use gayberne
63 chrisfen 143 use shapes
64 gezelter 117 use vector_class
65     use eam
66 chuckv 1162 use MetalNonMetal
67 chuckv 733 use suttonchen
68 gezelter 117 use status
69     #ifdef IS_MPI
70     use mpiSimulation
71     #endif
72    
73     implicit none
74     PRIVATE
75    
76     #define __FORTRAN90
77 gezelter 574 #include "UseTheForce/fCutoffPolicy.h"
78 gezelter 560 #include "UseTheForce/DarkSide/fInteractionMap.h"
79 chrisfen 611 #include "UseTheForce/DarkSide/fElectrostaticSummationMethod.h"
80 gezelter 117
81     INTEGER, PARAMETER:: PREPAIR_LOOP = 1
82     INTEGER, PARAMETER:: PAIR_LOOP = 2
83    
84     logical, save :: haveNeighborList = .false.
85     logical, save :: haveSIMvariables = .false.
86     logical, save :: haveSaneForceField = .false.
87 gezelter 571 logical, save :: haveInteractionHash = .false.
88     logical, save :: haveGtypeCutoffMap = .false.
89 chrisfen 618 logical, save :: haveDefaultCutoffs = .false.
90 gezelter 762 logical, save :: haveSkinThickness = .false.
91     logical, save :: haveElectrostaticSummationMethod = .false.
92     logical, save :: haveCutoffPolicy = .false.
93     logical, save :: VisitCutoffsAfterComputing = .false.
94 chrisfen 998 logical, save :: do_box_dipole = .false.
95 chrisfen 532
96 gezelter 141 logical, save :: FF_uses_DirectionalAtoms
97 gezelter 401 logical, save :: FF_uses_Dipoles
98 gezelter 141 logical, save :: FF_uses_GayBerne
99     logical, save :: FF_uses_EAM
100 chuckv 733 logical, save :: FF_uses_SC
101 chuckv 1162 logical, save :: FF_uses_MNM
102 chuckv 733
103 gezelter 141
104     logical, save :: SIM_uses_DirectionalAtoms
105     logical, save :: SIM_uses_EAM
106 chuckv 733 logical, save :: SIM_uses_SC
107 chuckv 1162 logical, save :: SIM_uses_MNM
108 gezelter 117 logical, save :: SIM_requires_postpair_calc
109     logical, save :: SIM_requires_prepair_calc
110     logical, save :: SIM_uses_PBC
111 gezelter 1126 logical, save :: SIM_uses_AtomicVirial
112 gezelter 117
113 chrisfen 607 integer, save :: electrostaticSummationMethod
114 gezelter 762 integer, save :: cutoffPolicy = TRADITIONAL_CUTOFF_POLICY
115 chrisfen 580
116 gezelter 762 real(kind=dp), save :: defaultRcut, defaultRsw, largestRcut
117     real(kind=dp), save :: skinThickness
118 chrisfen 1129 logical, save :: defaultDoShiftPot
119     logical, save :: defaultDoShiftFrc
120 gezelter 762
121 gezelter 117 public :: init_FF
122 gezelter 762 public :: setCutoffs
123     public :: cWasLame
124     public :: setElectrostaticMethod
125 chrisfen 998 public :: setBoxDipole
126     public :: getBoxDipole
127 gezelter 762 public :: setCutoffPolicy
128     public :: setSkinThickness
129 gezelter 117 public :: do_force_loop
130    
131     #ifdef PROFILE
132     public :: getforcetime
133     real, save :: forceTime = 0
134     real :: forceTimeInitial, forceTimeFinal
135     integer :: nLoops
136     #endif
137 chuckv 561
138 gezelter 571 !! Variables for cutoff mapping and interaction mapping
139     ! Bit hash to determine pair-pair interactions.
140     integer, dimension(:,:), allocatable :: InteractionHash
141     real(kind=dp), dimension(:), allocatable :: atypeMaxCutoff
142 chuckv 651 real(kind=dp), dimension(:), allocatable, target :: groupMaxCutoffRow
143     real(kind=dp), dimension(:), pointer :: groupMaxCutoffCol
144    
145     integer, dimension(:), allocatable, target :: groupToGtypeRow
146     integer, dimension(:), pointer :: groupToGtypeCol => null()
147    
148     real(kind=dp), dimension(:), allocatable,target :: gtypeMaxCutoffRow
149     real(kind=dp), dimension(:), pointer :: gtypeMaxCutoffCol
150 gezelter 571 type ::gtypeCutoffs
151     real(kind=dp) :: rcut
152     real(kind=dp) :: rcutsq
153     real(kind=dp) :: rlistsq
154     end type gtypeCutoffs
155     type(gtypeCutoffs), dimension(:,:), allocatable :: gtypeCutoffMap
156 gezelter 574
157 chrisfen 998 real(kind=dp), dimension(3) :: boxDipole
158 gezelter 939
159 gezelter 117 contains
160    
161 gezelter 762 subroutine createInteractionHash()
162 chuckv 561 integer :: nAtypes
163     integer :: i
164     integer :: j
165 gezelter 571 integer :: iHash
166 tim 568 !! Test Types
167 chuckv 561 logical :: i_is_LJ
168     logical :: i_is_Elect
169     logical :: i_is_Sticky
170     logical :: i_is_StickyP
171     logical :: i_is_GB
172     logical :: i_is_EAM
173     logical :: i_is_Shape
174 chuckv 733 logical :: i_is_SC
175 chuckv 561 logical :: j_is_LJ
176     logical :: j_is_Elect
177     logical :: j_is_Sticky
178     logical :: j_is_StickyP
179     logical :: j_is_GB
180     logical :: j_is_EAM
181     logical :: j_is_Shape
182 chuckv 733 logical :: j_is_SC
183 gezelter 576 real(kind=dp) :: myRcut
184    
185 chuckv 561 if (.not. associated(atypes)) then
186 gezelter 762 call handleError("doForces", "atypes was not present before call of createInteractionHash!")
187 chuckv 561 return
188     endif
189    
190     nAtypes = getSize(atypes)
191    
192     if (nAtypes == 0) then
193 gezelter 762 call handleError("doForces", "nAtypes was zero during call of createInteractionHash!")
194 chuckv 561 return
195     end if
196 chrisfen 532
197 chuckv 570 if (.not. allocated(InteractionHash)) then
198     allocate(InteractionHash(nAtypes,nAtypes))
199 chuckv 655 else
200     deallocate(InteractionHash)
201     allocate(InteractionHash(nAtypes,nAtypes))
202 chuckv 561 endif
203 gezelter 571
204     if (.not. allocated(atypeMaxCutoff)) then
205     allocate(atypeMaxCutoff(nAtypes))
206 chuckv 655 else
207     deallocate(atypeMaxCutoff)
208     allocate(atypeMaxCutoff(nAtypes))
209 gezelter 571 endif
210 chuckv 561
211     do i = 1, nAtypes
212     call getElementProperty(atypes, i, "is_LennardJones", i_is_LJ)
213     call getElementProperty(atypes, i, "is_Electrostatic", i_is_Elect)
214     call getElementProperty(atypes, i, "is_Sticky", i_is_Sticky)
215     call getElementProperty(atypes, i, "is_StickyPower", i_is_StickyP)
216     call getElementProperty(atypes, i, "is_GayBerne", i_is_GB)
217     call getElementProperty(atypes, i, "is_EAM", i_is_EAM)
218     call getElementProperty(atypes, i, "is_Shape", i_is_Shape)
219 chuckv 733 call getElementProperty(atypes, i, "is_SC", i_is_SC)
220 gezelter 117
221 chuckv 561 do j = i, nAtypes
222 chrisfen 532
223 chuckv 561 iHash = 0
224     myRcut = 0.0_dp
225 gezelter 117
226 chuckv 561 call getElementProperty(atypes, j, "is_LennardJones", j_is_LJ)
227     call getElementProperty(atypes, j, "is_Electrostatic", j_is_Elect)
228     call getElementProperty(atypes, j, "is_Sticky", j_is_Sticky)
229     call getElementProperty(atypes, j, "is_StickyPower", j_is_StickyP)
230     call getElementProperty(atypes, j, "is_GayBerne", j_is_GB)
231     call getElementProperty(atypes, j, "is_EAM", j_is_EAM)
232     call getElementProperty(atypes, j, "is_Shape", j_is_Shape)
233 chuckv 733 call getElementProperty(atypes, j, "is_SC", j_is_SC)
234 gezelter 117
235 chuckv 561 if (i_is_LJ .and. j_is_LJ) then
236 gezelter 562 iHash = ior(iHash, LJ_PAIR)
237     endif
238    
239     if (i_is_Elect .and. j_is_Elect) then
240     iHash = ior(iHash, ELECTROSTATIC_PAIR)
241     endif
242    
243     if (i_is_Sticky .and. j_is_Sticky) then
244     iHash = ior(iHash, STICKY_PAIR)
245     endif
246 chuckv 561
247 gezelter 562 if (i_is_StickyP .and. j_is_StickyP) then
248     iHash = ior(iHash, STICKYPOWER_PAIR)
249     endif
250 chuckv 561
251 gezelter 562 if (i_is_EAM .and. j_is_EAM) then
252     iHash = ior(iHash, EAM_PAIR)
253 chuckv 561 endif
254    
255 chuckv 733 if (i_is_SC .and. j_is_SC) then
256     iHash = ior(iHash, SC_PAIR)
257     endif
258    
259 chuckv 561 if (i_is_GB .and. j_is_GB) iHash = ior(iHash, GAYBERNE_PAIR)
260     if (i_is_GB .and. j_is_LJ) iHash = ior(iHash, GAYBERNE_LJ)
261     if (i_is_LJ .and. j_is_GB) iHash = ior(iHash, GAYBERNE_LJ)
262 chuckv 1162
263     if ((i_is_EAM.or.i_is_SC).and.(.not.(j_is_EAM.or.j_is_SC))) iHash = ior(iHash, MNM_PAIR)
264     if ((j_is_EAM.or.j_is_SC).and.(.not.(i_is_EAM.or.i_is_SC))) iHash = ior(iHash, MNM_PAIR)
265 chuckv 561
266     if (i_is_Shape .and. j_is_Shape) iHash = ior(iHash, SHAPE_PAIR)
267     if (i_is_Shape .and. j_is_LJ) iHash = ior(iHash, SHAPE_LJ)
268     if (i_is_LJ .and. j_is_Shape) iHash = ior(iHash, SHAPE_LJ)
269    
270    
271 chuckv 570 InteractionHash(i,j) = iHash
272     InteractionHash(j,i) = iHash
273 chuckv 561
274     end do
275    
276     end do
277 tim 568
278 gezelter 571 haveInteractionHash = .true.
279     end subroutine createInteractionHash
280 chuckv 561
281 gezelter 762 subroutine createGtypeCutoffMap()
282 gezelter 569
283 gezelter 574 logical :: i_is_LJ
284     logical :: i_is_Elect
285     logical :: i_is_Sticky
286     logical :: i_is_StickyP
287     logical :: i_is_GB
288     logical :: i_is_EAM
289     logical :: i_is_Shape
290 chuckv 831 logical :: i_is_SC
291 gezelter 587 logical :: GtypeFound
292 chuckv 561
293 gezelter 576 integer :: myStatus, nAtypes, i, j, istart, iend, jstart, jend
294 chuckv 652 integer :: n_in_i, me_i, ia, g, atom1, ja, n_in_j,me_j
295 chuckv 589 integer :: nGroupsInRow
296 chuckv 651 integer :: nGroupsInCol
297     integer :: nGroupTypesRow,nGroupTypesCol
298 gezelter 762 real(kind=dp):: thisSigma, bigSigma, thisRcut, tradRcut, tol
299 gezelter 576 real(kind=dp) :: biggestAtypeCutoff
300 gezelter 571
301     if (.not. haveInteractionHash) then
302 gezelter 762 call createInteractionHash()
303 chuckv 567 endif
304 chuckv 589 #ifdef IS_MPI
305     nGroupsInRow = getNgroupsInRow(plan_group_row)
306 chuckv 651 nGroupsInCol = getNgroupsInCol(plan_group_col)
307 chuckv 589 #endif
308 chuckv 563 nAtypes = getSize(atypes)
309 chuckv 599 ! Set all of the initial cutoffs to zero.
310     atypeMaxCutoff = 0.0_dp
311 gezelter 1313 biggestAtypeCutoff = 0.0_dp
312 gezelter 571 do i = 1, nAtypes
313 gezelter 582 if (SimHasAtype(i)) then
314 gezelter 575 call getElementProperty(atypes, i, "is_LennardJones", i_is_LJ)
315     call getElementProperty(atypes, i, "is_Electrostatic", i_is_Elect)
316     call getElementProperty(atypes, i, "is_Sticky", i_is_Sticky)
317     call getElementProperty(atypes, i, "is_StickyPower", i_is_StickyP)
318     call getElementProperty(atypes, i, "is_GayBerne", i_is_GB)
319     call getElementProperty(atypes, i, "is_EAM", i_is_EAM)
320     call getElementProperty(atypes, i, "is_Shape", i_is_Shape)
321 chuckv 831 call getElementProperty(atypes, i, "is_SC", i_is_SC)
322 chuckv 599
323 chrisfen 618 if (haveDefaultCutoffs) then
324     atypeMaxCutoff(i) = defaultRcut
325     else
326     if (i_is_LJ) then
327     thisRcut = getSigma(i) * 2.5_dp
328     if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
329     endif
330     if (i_is_Elect) then
331     thisRcut = defaultRcut
332     if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
333     endif
334     if (i_is_Sticky) then
335     thisRcut = getStickyCut(i)
336     if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
337     endif
338     if (i_is_StickyP) then
339     thisRcut = getStickyPowerCut(i)
340     if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
341     endif
342     if (i_is_GB) then
343     thisRcut = getGayBerneCut(i)
344     if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
345     endif
346     if (i_is_EAM) then
347     thisRcut = getEAMCut(i)
348     if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
349     endif
350     if (i_is_Shape) then
351     thisRcut = getShapeCut(i)
352     if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
353     endif
354 chuckv 831 if (i_is_SC) then
355     thisRcut = getSCCut(i)
356     if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
357     endif
358 gezelter 575 endif
359 gezelter 762
360 gezelter 575 if (atypeMaxCutoff(i).gt.biggestAtypeCutoff) then
361     biggestAtypeCutoff = atypeMaxCutoff(i)
362     endif
363 chrisfen 618
364 gezelter 574 endif
365 gezelter 575 enddo
366 gezelter 581
367 gezelter 575 istart = 1
368 chuckv 651 jstart = 1
369 gezelter 575 #ifdef IS_MPI
370     iend = nGroupsInRow
371 chuckv 651 jend = nGroupsInCol
372 gezelter 575 #else
373     iend = nGroups
374 chuckv 651 jend = nGroups
375 gezelter 575 #endif
376 gezelter 582
377 gezelter 581 !! allocate the groupToGtype and gtypeMaxCutoff here.
378 chuckv 651 if(.not.allocated(groupToGtypeRow)) then
379     ! allocate(groupToGtype(iend))
380     allocate(groupToGtypeRow(iend))
381     else
382     deallocate(groupToGtypeRow)
383     allocate(groupToGtypeRow(iend))
384 chuckv 583 endif
385 chuckv 651 if(.not.allocated(groupMaxCutoffRow)) then
386     allocate(groupMaxCutoffRow(iend))
387     else
388     deallocate(groupMaxCutoffRow)
389     allocate(groupMaxCutoffRow(iend))
390     end if
391    
392     if(.not.allocated(gtypeMaxCutoffRow)) then
393     allocate(gtypeMaxCutoffRow(iend))
394     else
395     deallocate(gtypeMaxCutoffRow)
396     allocate(gtypeMaxCutoffRow(iend))
397     endif
398    
399    
400     #ifdef IS_MPI
401     ! We only allocate new storage if we are in MPI because Ncol /= Nrow
402 chuckv 652 if(.not.associated(groupToGtypeCol)) then
403 chuckv 651 allocate(groupToGtypeCol(jend))
404     else
405     deallocate(groupToGtypeCol)
406     allocate(groupToGtypeCol(jend))
407     end if
408    
409 tim 833 if(.not.associated(groupMaxCutoffCol)) then
410     allocate(groupMaxCutoffCol(jend))
411 chuckv 651 else
412 tim 833 deallocate(groupMaxCutoffCol)
413     allocate(groupMaxCutoffCol(jend))
414 chuckv 651 end if
415 chuckv 652 if(.not.associated(gtypeMaxCutoffCol)) then
416 chuckv 651 allocate(gtypeMaxCutoffCol(jend))
417     else
418     deallocate(gtypeMaxCutoffCol)
419     allocate(gtypeMaxCutoffCol(jend))
420     end if
421    
422     groupMaxCutoffCol = 0.0_dp
423     gtypeMaxCutoffCol = 0.0_dp
424    
425     #endif
426     groupMaxCutoffRow = 0.0_dp
427     gtypeMaxCutoffRow = 0.0_dp
428    
429    
430 gezelter 582 !! first we do a single loop over the cutoff groups to find the
431     !! largest cutoff for any atypes present in this group. We also
432     !! create gtypes at this point.
433    
434 gezelter 960 tol = 1.0e-6_dp
435 chuckv 651 nGroupTypesRow = 0
436 tim 833 nGroupTypesCol = 0
437 gezelter 581 do i = istart, iend
438 gezelter 575 n_in_i = groupStartRow(i+1) - groupStartRow(i)
439 chuckv 651 groupMaxCutoffRow(i) = 0.0_dp
440 gezelter 581 do ia = groupStartRow(i), groupStartRow(i+1)-1
441     atom1 = groupListRow(ia)
442 gezelter 575 #ifdef IS_MPI
443 gezelter 581 me_i = atid_row(atom1)
444 gezelter 575 #else
445 gezelter 581 me_i = atid(atom1)
446     #endif
447 chuckv 651 if (atypeMaxCutoff(me_i).gt.groupMaxCutoffRow(i)) then
448     groupMaxCutoffRow(i)=atypeMaxCutoff(me_i)
449 gezelter 587 endif
450 gezelter 581 enddo
451 chuckv 651 if (nGroupTypesRow.eq.0) then
452     nGroupTypesRow = nGroupTypesRow + 1
453     gtypeMaxCutoffRow(nGroupTypesRow) = groupMaxCutoffRow(i)
454     groupToGtypeRow(i) = nGroupTypesRow
455 gezelter 581 else
456 gezelter 587 GtypeFound = .false.
457 chuckv 651 do g = 1, nGroupTypesRow
458     if ( abs(groupMaxCutoffRow(i) - gtypeMaxCutoffRow(g)).lt.tol) then
459     groupToGtypeRow(i) = g
460 gezelter 587 GtypeFound = .true.
461 gezelter 581 endif
462     enddo
463 gezelter 587 if (.not.GtypeFound) then
464 chuckv 651 nGroupTypesRow = nGroupTypesRow + 1
465     gtypeMaxCutoffRow(nGroupTypesRow) = groupMaxCutoffRow(i)
466     groupToGtypeRow(i) = nGroupTypesRow
467 gezelter 587 endif
468 gezelter 581 endif
469 gezelter 587 enddo
470    
471 chuckv 651 #ifdef IS_MPI
472     do j = jstart, jend
473     n_in_j = groupStartCol(j+1) - groupStartCol(j)
474     groupMaxCutoffCol(j) = 0.0_dp
475     do ja = groupStartCol(j), groupStartCol(j+1)-1
476     atom1 = groupListCol(ja)
477    
478     me_j = atid_col(atom1)
479    
480     if (atypeMaxCutoff(me_j).gt.groupMaxCutoffCol(j)) then
481     groupMaxCutoffCol(j)=atypeMaxCutoff(me_j)
482     endif
483     enddo
484    
485     if (nGroupTypesCol.eq.0) then
486     nGroupTypesCol = nGroupTypesCol + 1
487     gtypeMaxCutoffCol(nGroupTypesCol) = groupMaxCutoffCol(j)
488     groupToGtypeCol(j) = nGroupTypesCol
489     else
490     GtypeFound = .false.
491     do g = 1, nGroupTypesCol
492     if ( abs(groupMaxCutoffCol(j) - gtypeMaxCutoffCol(g)).lt.tol) then
493     groupToGtypeCol(j) = g
494     GtypeFound = .true.
495     endif
496     enddo
497     if (.not.GtypeFound) then
498     nGroupTypesCol = nGroupTypesCol + 1
499     gtypeMaxCutoffCol(nGroupTypesCol) = groupMaxCutoffCol(j)
500     groupToGtypeCol(j) = nGroupTypesCol
501     endif
502     endif
503     enddo
504    
505     #else
506     ! Set pointers to information we just found
507     nGroupTypesCol = nGroupTypesRow
508     groupToGtypeCol => groupToGtypeRow
509     gtypeMaxCutoffCol => gtypeMaxCutoffRow
510     groupMaxCutoffCol => groupMaxCutoffRow
511     #endif
512    
513 gezelter 581 !! allocate the gtypeCutoffMap here.
514 chuckv 651 allocate(gtypeCutoffMap(nGroupTypesRow,nGroupTypesCol))
515 gezelter 581 !! then we do a double loop over all the group TYPES to find the cutoff
516     !! map between groups of two types
517 chuckv 651 tradRcut = max(maxval(gtypeMaxCutoffRow),maxval(gtypeMaxCutoffCol))
518    
519 gezelter 762 do i = 1, nGroupTypesRow
520 chuckv 651 do j = 1, nGroupTypesCol
521 gezelter 576
522 gezelter 581 select case(cutoffPolicy)
523 gezelter 582 case(TRADITIONAL_CUTOFF_POLICY)
524 chuckv 651 thisRcut = tradRcut
525 gezelter 582 case(MIX_CUTOFF_POLICY)
526 chuckv 651 thisRcut = 0.5_dp * (gtypeMaxCutoffRow(i) + gtypeMaxCutoffCol(j))
527 gezelter 582 case(MAX_CUTOFF_POLICY)
528 chuckv 651 thisRcut = max(gtypeMaxCutoffRow(i), gtypeMaxCutoffCol(j))
529 gezelter 582 case default
530     call handleError("createGtypeCutoffMap", "Unknown Cutoff Policy")
531     return
532     end select
533     gtypeCutoffMap(i,j)%rcut = thisRcut
534 gezelter 762
535     if (thisRcut.gt.largestRcut) largestRcut = thisRcut
536    
537 gezelter 582 gtypeCutoffMap(i,j)%rcutsq = thisRcut*thisRcut
538 gezelter 585
539 gezelter 762 if (.not.haveSkinThickness) then
540     skinThickness = 1.0_dp
541     endif
542    
543     gtypeCutoffMap(i,j)%rlistsq = (thisRcut + skinThickness)**2
544    
545 chrisfen 618 ! sanity check
546    
547     if (haveDefaultCutoffs) then
548     if (abs(gtypeCutoffMap(i,j)%rcut - defaultRcut).gt.0.0001) then
549     call handleError("createGtypeCutoffMap", "user-specified rCut does not match computed group Cutoff")
550     endif
551     endif
552 gezelter 581 enddo
553     enddo
554 gezelter 762
555 chuckv 651 if(allocated(gtypeMaxCutoffRow)) deallocate(gtypeMaxCutoffRow)
556     if(allocated(groupMaxCutoffRow)) deallocate(groupMaxCutoffRow)
557     if(allocated(atypeMaxCutoff)) deallocate(atypeMaxCutoff)
558     #ifdef IS_MPI
559     if(associated(groupMaxCutoffCol)) deallocate(groupMaxCutoffCol)
560     if(associated(gtypeMaxCutoffCol)) deallocate(gtypeMaxCutoffCol)
561     #endif
562     groupMaxCutoffCol => null()
563     gtypeMaxCutoffCol => null()
564    
565 gezelter 581 haveGtypeCutoffMap = .true.
566 chrisfen 596 end subroutine createGtypeCutoffMap
567 chrisfen 578
568 chrisfen 1129 subroutine setCutoffs(defRcut, defRsw, defSP, defSF)
569 chrisfen 596
570 gezelter 762 real(kind=dp),intent(in) :: defRcut, defRsw
571 gezelter 1386 integer, intent(in) :: defSP, defSF
572 gezelter 762 character(len = statusMsgSize) :: errMsg
573     integer :: localError
574    
575 chrisfen 596 defaultRcut = defRcut
576     defaultRsw = defRsw
577 gezelter 1386
578     if (defSP .ne. 0) then
579     defaultDoShiftPot = .true.
580     else
581     defaultDoShiftPot = .false.
582     endif
583     if (defSF .ne. 0) then
584     defaultDoShiftFrc = .true.
585     else
586     defaultDoShiftFrc = .false.
587     endif
588 chrisfen 1129
589 gezelter 762 if (abs(defaultRcut-defaultRsw) .lt. 0.0001) then
590 chrisfen 1129 if (defaultDoShiftFrc) then
591     write(errMsg, *) &
592     'cutoffRadius and switchingRadius are set to the', newline &
593 gezelter 1390 // tab, 'same value. OpenMD will use shifted force', newline &
594 chrisfen 1129 // tab, 'potentials instead of switching functions.'
595    
596     call handleInfo("setCutoffs", errMsg)
597     else
598     write(errMsg, *) &
599     'cutoffRadius and switchingRadius are set to the', newline &
600 gezelter 1390 // tab, 'same value. OpenMD will use shifted', newline &
601 chrisfen 1129 // tab, 'potentials instead of switching functions.'
602    
603     call handleInfo("setCutoffs", errMsg)
604    
605     defaultDoShiftPot = .true.
606     endif
607    
608 gezelter 762 endif
609 gezelter 939
610 gezelter 762 localError = 0
611 chrisfen 1129 call setLJDefaultCutoff( defaultRcut, defaultDoShiftPot, &
612     defaultDoShiftFrc )
613 gezelter 813 call setElectrostaticCutoffRadius( defaultRcut, defaultRsw )
614 gezelter 938 call setCutoffEAM( defaultRcut )
615     call setCutoffSC( defaultRcut )
616 chuckv 1162 call setMnMDefaultCutoff( defaultRcut, defaultDoShiftPot, &
617     defaultDoShiftFrc )
618 gezelter 939 call set_switch(defaultRsw, defaultRcut)
619 gezelter 889 call setHmatDangerousRcutValue(defaultRcut)
620 gezelter 939
621 chrisfen 618 haveDefaultCutoffs = .true.
622 gezelter 813 haveGtypeCutoffMap = .false.
623 gezelter 939
624 gezelter 762 end subroutine setCutoffs
625 chrisfen 596
626 gezelter 762 subroutine cWasLame()
627    
628     VisitCutoffsAfterComputing = .true.
629     return
630    
631     end subroutine cWasLame
632    
633 chrisfen 596 subroutine setCutoffPolicy(cutPolicy)
634 gezelter 762
635 chrisfen 596 integer, intent(in) :: cutPolicy
636 gezelter 762
637 chrisfen 596 cutoffPolicy = cutPolicy
638 gezelter 762 haveCutoffPolicy = .true.
639 gezelter 813 haveGtypeCutoffMap = .false.
640 gezelter 762
641 gezelter 576 end subroutine setCutoffPolicy
642 gezelter 1126
643 chrisfen 998 subroutine setBoxDipole()
644    
645     do_box_dipole = .true.
646    
647     end subroutine setBoxDipole
648    
649     subroutine getBoxDipole( box_dipole )
650    
651     real(kind=dp), intent(inout), dimension(3) :: box_dipole
652    
653     box_dipole = boxDipole
654    
655     end subroutine getBoxDipole
656    
657 gezelter 762 subroutine setElectrostaticMethod( thisESM )
658    
659     integer, intent(in) :: thisESM
660    
661     electrostaticSummationMethod = thisESM
662     haveElectrostaticSummationMethod = .true.
663 gezelter 574
664 gezelter 762 end subroutine setElectrostaticMethod
665    
666     subroutine setSkinThickness( thisSkin )
667 gezelter 574
668 gezelter 762 real(kind=dp), intent(in) :: thisSkin
669    
670     skinThickness = thisSkin
671 gezelter 813 haveSkinThickness = .true.
672     haveGtypeCutoffMap = .false.
673 gezelter 762
674     end subroutine setSkinThickness
675    
676     subroutine setSimVariables()
677     SIM_uses_DirectionalAtoms = SimUsesDirectionalAtoms()
678     SIM_uses_EAM = SimUsesEAM()
679     SIM_requires_postpair_calc = SimRequiresPostpairCalc()
680     SIM_requires_prepair_calc = SimRequiresPrepairCalc()
681     SIM_uses_PBC = SimUsesPBC()
682 chuckv 841 SIM_uses_SC = SimUsesSC()
683 gezelter 1126 SIM_uses_AtomicVirial = SimUsesAtomicVirial()
684 chrisfen 998
685 gezelter 762 haveSIMvariables = .true.
686    
687     return
688     end subroutine setSimVariables
689 gezelter 117
690     subroutine doReadyCheck(error)
691     integer, intent(out) :: error
692     integer :: myStatus
693    
694     error = 0
695 chrisfen 532
696 gezelter 571 if (.not. haveInteractionHash) then
697 gezelter 762 call createInteractionHash()
698 gezelter 117 endif
699    
700 gezelter 571 if (.not. haveGtypeCutoffMap) then
701 gezelter 762 call createGtypeCutoffMap()
702 gezelter 571 endif
703    
704 gezelter 762 if (VisitCutoffsAfterComputing) then
705 gezelter 939 call set_switch(largestRcut, largestRcut)
706 gezelter 889 call setHmatDangerousRcutValue(largestRcut)
707 gezelter 938 call setCutoffEAM(largestRcut)
708     call setCutoffSC(largestRcut)
709     VisitCutoffsAfterComputing = .false.
710 gezelter 762 endif
711    
712 gezelter 117 if (.not. haveSIMvariables) then
713     call setSimVariables()
714     endif
715    
716     if (.not. haveNeighborList) then
717     write(default_error, *) 'neighbor list has not been initialized in doForces!'
718     error = -1
719     return
720     end if
721 gezelter 939
722 gezelter 117 if (.not. haveSaneForceField) then
723     write(default_error, *) 'Force Field is not sane in doForces!'
724     error = -1
725     return
726     end if
727 gezelter 939
728 gezelter 117 #ifdef IS_MPI
729     if (.not. isMPISimSet()) then
730     write(default_error,*) "ERROR: mpiSimulation has not been initialized!"
731     error = -1
732     return
733     endif
734     #endif
735     return
736     end subroutine doReadyCheck
737    
738 chrisfen 532
739 gezelter 762 subroutine init_FF(thisStat)
740 gezelter 117
741     integer, intent(out) :: thisStat
742     integer :: my_status, nMatches
743     integer, pointer :: MatchList(:) => null()
744    
745     !! assume things are copacetic, unless they aren't
746     thisStat = 0
747    
748     !! init_FF is called *after* all of the atom types have been
749     !! defined in atype_module using the new_atype subroutine.
750     !!
751     !! this will scan through the known atypes and figure out what
752     !! interactions are used by the force field.
753 chrisfen 532
754 gezelter 141 FF_uses_DirectionalAtoms = .false.
755     FF_uses_Dipoles = .false.
756     FF_uses_GayBerne = .false.
757 gezelter 117 FF_uses_EAM = .false.
758 chuckv 834 FF_uses_SC = .false.
759 chrisfen 532
760 gezelter 141 call getMatchingElementList(atypes, "is_Directional", .true., &
761     nMatches, MatchList)
762     if (nMatches .gt. 0) FF_uses_DirectionalAtoms = .true.
763    
764     call getMatchingElementList(atypes, "is_Dipole", .true., &
765     nMatches, MatchList)
766 gezelter 571 if (nMatches .gt. 0) FF_uses_Dipoles = .true.
767 chrisfen 523
768 gezelter 141 call getMatchingElementList(atypes, "is_GayBerne", .true., &
769     nMatches, MatchList)
770 gezelter 571 if (nMatches .gt. 0) FF_uses_GayBerne = .true.
771 chrisfen 532
772 gezelter 117 call getMatchingElementList(atypes, "is_EAM", .true., nMatches, MatchList)
773     if (nMatches .gt. 0) FF_uses_EAM = .true.
774 chrisfen 532
775 chuckv 834 call getMatchingElementList(atypes, "is_SC", .true., nMatches, MatchList)
776     if (nMatches .gt. 0) FF_uses_SC = .true.
777 gezelter 141
778 chuckv 834
779 gezelter 117 haveSaneForceField = .true.
780 chrisfen 532
781 gezelter 117
782     if (.not. haveNeighborList) then
783     !! Create neighbor lists
784     call expandNeighborList(nLocal, my_status)
785     if (my_Status /= 0) then
786     write(default_error,*) "SimSetup: ExpandNeighborList returned error."
787     thisStat = -1
788     return
789     endif
790     haveNeighborList = .true.
791 chrisfen 532 endif
792    
793 gezelter 117 end subroutine init_FF
794    
795 chrisfen 532
796 gezelter 117 !! Does force loop over i,j pairs. Calls do_pair to calculates forces.
797     !------------------------------------------------------------->
798 gezelter 1285 subroutine do_force_loop(q, q_group, A, eFrame, f, t, tau, pot, particle_pot, &
799 gezelter 117 do_pot_c, do_stress_c, error)
800     !! Position array provided by C, dimensioned by getNlocal
801     real ( kind = dp ), dimension(3, nLocal) :: q
802     !! molecular center-of-mass position array
803     real ( kind = dp ), dimension(3, nGroups) :: q_group
804     !! Rotation Matrix for each long range particle in simulation.
805     real( kind = dp), dimension(9, nLocal) :: A
806     !! Unit vectors for dipoles (lab frame)
807 gezelter 246 real( kind = dp ), dimension(9,nLocal) :: eFrame
808 gezelter 117 !! Force array provided by C, dimensioned by getNlocal
809     real ( kind = dp ), dimension(3,nLocal) :: f
810     !! Torsion array provided by C, dimensioned by getNlocal
811     real( kind = dp ), dimension(3,nLocal) :: t
812    
813     !! Stress Tensor
814     real( kind = dp), dimension(9) :: tau
815 gezelter 662 real ( kind = dp ),dimension(LR_POT_TYPES) :: pot
816 chuckv 1245 real( kind = dp ), dimension(nLocal) :: particle_pot
817 gezelter 117 logical ( kind = 2) :: do_pot_c, do_stress_c
818     logical :: do_pot
819     logical :: do_stress
820     logical :: in_switching_region
821     #ifdef IS_MPI
822 gezelter 662 real( kind = DP ), dimension(LR_POT_TYPES) :: pot_local
823 gezelter 117 integer :: nAtomsInRow
824     integer :: nAtomsInCol
825     integer :: nprocs
826     integer :: nGroupsInRow
827     integer :: nGroupsInCol
828     #endif
829     integer :: natoms
830     logical :: update_nlist
831     integer :: i, j, jstart, jend, jnab
832     integer :: istart, iend
833     integer :: ia, jb, atom1, atom2
834     integer :: nlist
835 gezelter 1126 real( kind = DP ) :: ratmsq, rgrpsq, rgrp, rag, vpair, vij
836 gezelter 117 real( kind = DP ) :: sw, dswdr, swderiv, mf
837 chrisfen 699 real( kind = DP ) :: rVal
838 gezelter 1126 real(kind=dp),dimension(3) :: d_atm, d_grp, fpair, fij, fg, dag
839     real(kind=dp) :: rfpot, mu_i
840 gezelter 762 real(kind=dp):: rCut
841 gezelter 1345 integer :: me_i, me_j, n_in_i, n_in_j, iG, j1
842 gezelter 117 logical :: is_dp_i
843     integer :: neighborListSize
844     integer :: listerror, error
845     integer :: localError
846     integer :: propPack_i, propPack_j
847     integer :: loopStart, loopEnd, loop
848 gezelter 1352 integer :: iHash, jHash
849 gezelter 1286 integer :: i1, topoDist
850 chrisfen 532
851 chrisfen 998 !! the variables for the box dipole moment
852     #ifdef IS_MPI
853     integer :: pChgCount_local
854     integer :: nChgCount_local
855     real(kind=dp) :: pChg_local
856     real(kind=dp) :: nChg_local
857     real(kind=dp), dimension(3) :: pChgPos_local
858     real(kind=dp), dimension(3) :: nChgPos_local
859     real(kind=dp), dimension(3) :: dipVec_local
860     #endif
861     integer :: pChgCount
862     integer :: nChgCount
863     real(kind=dp) :: pChg
864     real(kind=dp) :: nChg
865     real(kind=dp) :: chg_value
866     real(kind=dp), dimension(3) :: pChgPos
867     real(kind=dp), dimension(3) :: nChgPos
868     real(kind=dp), dimension(3) :: dipVec
869     real(kind=dp), dimension(3) :: chgVec
870 gezelter 1340 real(kind=dp) :: skch
871 chrisfen 998
872     !! initialize box dipole variables
873     if (do_box_dipole) then
874     #ifdef IS_MPI
875     pChg_local = 0.0_dp
876     nChg_local = 0.0_dp
877     pChgCount_local = 0
878     nChgCount_local = 0
879     do i=1, 3
880     pChgPos_local = 0.0_dp
881     nChgPos_local = 0.0_dp
882     dipVec_local = 0.0_dp
883     enddo
884     #endif
885     pChg = 0.0_dp
886     nChg = 0.0_dp
887     pChgCount = 0
888     nChgCount = 0
889     chg_value = 0.0_dp
890    
891     do i=1, 3
892     pChgPos(i) = 0.0_dp
893     nChgPos(i) = 0.0_dp
894     dipVec(i) = 0.0_dp
895     chgVec(i) = 0.0_dp
896     boxDipole(i) = 0.0_dp
897     enddo
898     endif
899    
900 gezelter 117 !! initialize local variables
901 chrisfen 532
902 gezelter 117 #ifdef IS_MPI
903     pot_local = 0.0_dp
904     nAtomsInRow = getNatomsInRow(plan_atom_row)
905     nAtomsInCol = getNatomsInCol(plan_atom_col)
906     nGroupsInRow = getNgroupsInRow(plan_group_row)
907     nGroupsInCol = getNgroupsInCol(plan_group_col)
908     #else
909     natoms = nlocal
910     #endif
911 chrisfen 532
912 gezelter 117 call doReadyCheck(localError)
913     if ( localError .ne. 0 ) then
914     call handleError("do_force_loop", "Not Initialized")
915     error = -1
916     return
917     end if
918     call zero_work_arrays()
919 chrisfen 532
920 gezelter 117 do_pot = do_pot_c
921     do_stress = do_stress_c
922 chrisfen 532
923 gezelter 117 ! Gather all information needed by all force loops:
924 chrisfen 532
925 gezelter 117 #ifdef IS_MPI
926 chrisfen 532
927 gezelter 117 call gather(q, q_Row, plan_atom_row_3d)
928     call gather(q, q_Col, plan_atom_col_3d)
929    
930     call gather(q_group, q_group_Row, plan_group_row_3d)
931     call gather(q_group, q_group_Col, plan_group_col_3d)
932 chrisfen 532
933 gezelter 141 if (FF_UsesDirectionalAtoms() .and. SIM_uses_DirectionalAtoms) then
934 gezelter 246 call gather(eFrame, eFrame_Row, plan_atom_row_rotation)
935     call gather(eFrame, eFrame_Col, plan_atom_col_rotation)
936 chrisfen 532
937 gezelter 117 call gather(A, A_Row, plan_atom_row_rotation)
938     call gather(A, A_Col, plan_atom_col_rotation)
939     endif
940 chrisfen 532
941 gezelter 117 #endif
942 chrisfen 532
943 gezelter 117 !! Begin force loop timing:
944     #ifdef PROFILE
945     call cpu_time(forceTimeInitial)
946     nloops = nloops + 1
947     #endif
948 chrisfen 532
949 gezelter 117 loopEnd = PAIR_LOOP
950     if (FF_RequiresPrepairCalc() .and. SIM_requires_prepair_calc) then
951     loopStart = PREPAIR_LOOP
952     else
953     loopStart = PAIR_LOOP
954     endif
955    
956     do loop = loopStart, loopEnd
957    
958     ! See if we need to update neighbor lists
959     ! (but only on the first time through):
960     if (loop .eq. loopStart) then
961     #ifdef IS_MPI
962 gezelter 762 call checkNeighborList(nGroupsInRow, q_group_row, skinThickness, &
963 chrisfen 532 update_nlist)
964 gezelter 117 #else
965 gezelter 762 call checkNeighborList(nGroups, q_group, skinThickness, &
966 chrisfen 532 update_nlist)
967 gezelter 117 #endif
968     endif
969 chrisfen 532
970 gezelter 117 if (update_nlist) then
971     !! save current configuration and construct neighbor list
972     #ifdef IS_MPI
973     call saveNeighborList(nGroupsInRow, q_group_row)
974     #else
975     call saveNeighborList(nGroups, q_group)
976     #endif
977     neighborListSize = size(list)
978     nlist = 0
979     endif
980 chrisfen 532
981 gezelter 117 istart = 1
982     #ifdef IS_MPI
983     iend = nGroupsInRow
984     #else
985     iend = nGroups - 1
986     #endif
987     outer: do i = istart, iend
988    
989     if (update_nlist) point(i) = nlist + 1
990 chrisfen 532
991 gezelter 117 n_in_i = groupStartRow(i+1) - groupStartRow(i)
992 chrisfen 532
993 gezelter 117 if (update_nlist) then
994     #ifdef IS_MPI
995     jstart = 1
996     jend = nGroupsInCol
997     #else
998     jstart = i+1
999     jend = nGroups
1000     #endif
1001     else
1002     jstart = point(i)
1003     jend = point(i+1) - 1
1004     ! make sure group i has neighbors
1005     if (jstart .gt. jend) cycle outer
1006     endif
1007 chrisfen 532
1008 gezelter 117 do jnab = jstart, jend
1009     if (update_nlist) then
1010     j = jnab
1011     else
1012     j = list(jnab)
1013     endif
1014    
1015     #ifdef IS_MPI
1016 chuckv 567 me_j = atid_col(j)
1017 gezelter 117 call get_interatomic_vector(q_group_Row(:,i), &
1018     q_group_Col(:,j), d_grp, rgrpsq)
1019     #else
1020 chuckv 567 me_j = atid(j)
1021 gezelter 117 call get_interatomic_vector(q_group(:,i), &
1022     q_group(:,j), d_grp, rgrpsq)
1023 chrisfen 618 #endif
1024 gezelter 117
1025 chuckv 651 if (rgrpsq < gtypeCutoffMap(groupToGtypeRow(i),groupToGtypeCol(j))%rListsq) then
1026 gezelter 117 if (update_nlist) then
1027     nlist = nlist + 1
1028 chrisfen 532
1029 gezelter 117 if (nlist > neighborListSize) then
1030     #ifdef IS_MPI
1031     call expandNeighborList(nGroupsInRow, listerror)
1032     #else
1033     call expandNeighborList(nGroups, listerror)
1034     #endif
1035     if (listerror /= 0) then
1036     error = -1
1037     write(DEFAULT_ERROR,*) "ERROR: nlist > list size and max allocations exceeded."
1038     return
1039     end if
1040     neighborListSize = size(list)
1041     endif
1042 chrisfen 532
1043 gezelter 117 list(nlist) = j
1044     endif
1045 gezelter 939
1046 chrisfen 708 if (rgrpsq < gtypeCutoffMap(groupToGtypeRow(i),groupToGtypeCol(j))%rCutsq) then
1047 chrisfen 532
1048 gezelter 762 rCut = gtypeCutoffMap(groupToGtypeRow(i),groupToGtypeCol(j))%rCut
1049 chrisfen 708 if (loop .eq. PAIR_LOOP) then
1050 gezelter 960 vij = 0.0_dp
1051 gezelter 938 fij(1) = 0.0_dp
1052     fij(2) = 0.0_dp
1053     fij(3) = 0.0_dp
1054 chrisfen 708 endif
1055    
1056 gezelter 939 call get_switch(rgrpsq, sw, dswdr,rgrp, in_switching_region)
1057 chrisfen 708
1058     n_in_j = groupStartCol(j+1) - groupStartCol(j)
1059    
1060     do ia = groupStartRow(i), groupStartRow(i+1)-1
1061 chrisfen 703
1062 chrisfen 708 atom1 = groupListRow(ia)
1063    
1064     inner: do jb = groupStartCol(j), groupStartCol(j+1)-1
1065    
1066     atom2 = groupListCol(jb)
1067    
1068     if (skipThisPair(atom1, atom2)) cycle inner
1069    
1070     if ((n_in_i .eq. 1).and.(n_in_j .eq. 1)) then
1071 gezelter 938 d_atm(1) = d_grp(1)
1072     d_atm(2) = d_grp(2)
1073     d_atm(3) = d_grp(3)
1074 chrisfen 708 ratmsq = rgrpsq
1075     else
1076 gezelter 117 #ifdef IS_MPI
1077 chrisfen 708 call get_interatomic_vector(q_Row(:,atom1), &
1078     q_Col(:,atom2), d_atm, ratmsq)
1079 gezelter 117 #else
1080 chrisfen 708 call get_interatomic_vector(q(:,atom1), &
1081     q(:,atom2), d_atm, ratmsq)
1082 gezelter 117 #endif
1083 gezelter 1286 endif
1084    
1085     topoDist = getTopoDistance(atom1, atom2)
1086    
1087 chrisfen 708 if (loop .eq. PREPAIR_LOOP) then
1088 gezelter 117 #ifdef IS_MPI
1089 chrisfen 708 call do_prepair(atom1, atom2, ratmsq, d_atm, sw, &
1090 gezelter 762 rgrpsq, d_grp, rCut, do_pot, do_stress, &
1091 chrisfen 708 eFrame, A, f, t, pot_local)
1092 gezelter 117 #else
1093 chrisfen 708 call do_prepair(atom1, atom2, ratmsq, d_atm, sw, &
1094 gezelter 762 rgrpsq, d_grp, rCut, do_pot, do_stress, &
1095 chrisfen 708 eFrame, A, f, t, pot)
1096 gezelter 117 #endif
1097 chrisfen 708 else
1098 gezelter 117 #ifdef IS_MPI
1099 chrisfen 708 call do_pair(atom1, atom2, ratmsq, d_atm, sw, &
1100 gezelter 1309 do_pot, eFrame, A, f, t, pot_local, particle_pot, vpair, &
1101 gezelter 1286 fpair, d_grp, rgrp, rCut, topoDist)
1102 chuckv 1245 ! particle_pot will be accumulated from row & column
1103     ! arrays later
1104 gezelter 117 #else
1105 chrisfen 708 call do_pair(atom1, atom2, ratmsq, d_atm, sw, &
1106 gezelter 1309 do_pot, eFrame, A, f, t, pot, particle_pot, vpair, &
1107 gezelter 1286 fpair, d_grp, rgrp, rCut, topoDist)
1108 gezelter 117 #endif
1109 chrisfen 708 vij = vij + vpair
1110 gezelter 938 fij(1) = fij(1) + fpair(1)
1111     fij(2) = fij(2) + fpair(2)
1112     fij(3) = fij(3) + fpair(3)
1113 gezelter 1127 if (do_stress) then
1114 gezelter 1126 call add_stress_tensor(d_atm, fpair, tau)
1115     endif
1116 chrisfen 708 endif
1117     enddo inner
1118     enddo
1119 gezelter 117
1120 chrisfen 708 if (loop .eq. PAIR_LOOP) then
1121     if (in_switching_region) then
1122     swderiv = vij*dswdr/rgrp
1123 chrisfen 1131 fg = swderiv*d_grp
1124    
1125     fij(1) = fij(1) + fg(1)
1126     fij(2) = fij(2) + fg(2)
1127     fij(3) = fij(3) + fg(3)
1128 chrisfen 708
1129 chrisfen 1132 if (do_stress .and. (n_in_i .eq. 1).and.(n_in_j .eq. 1)) then
1130 chrisfen 1131 call add_stress_tensor(d_atm, fg, tau)
1131     endif
1132    
1133 chrisfen 708 do ia=groupStartRow(i), groupStartRow(i+1)-1
1134     atom1=groupListRow(ia)
1135     mf = mfactRow(atom1)
1136 gezelter 1126 ! fg is the force on atom ia due to cutoff group's
1137     ! presence in switching region
1138     fg = swderiv*d_grp*mf
1139 gezelter 117 #ifdef IS_MPI
1140 gezelter 1126 f_Row(1,atom1) = f_Row(1,atom1) + fg(1)
1141     f_Row(2,atom1) = f_Row(2,atom1) + fg(2)
1142     f_Row(3,atom1) = f_Row(3,atom1) + fg(3)
1143 gezelter 117 #else
1144 gezelter 1126 f(1,atom1) = f(1,atom1) + fg(1)
1145     f(2,atom1) = f(2,atom1) + fg(2)
1146     f(3,atom1) = f(3,atom1) + fg(3)
1147 gezelter 117 #endif
1148 gezelter 1127 if (n_in_i .gt. 1) then
1149     if (do_stress.and.SIM_uses_AtomicVirial) then
1150     ! find the distance between the atom and the center of
1151     ! the cutoff group:
1152 gezelter 1126 #ifdef IS_MPI
1153 gezelter 1127 call get_interatomic_vector(q_Row(:,atom1), &
1154     q_group_Row(:,i), dag, rag)
1155 gezelter 1126 #else
1156 gezelter 1127 call get_interatomic_vector(q(:,atom1), &
1157     q_group(:,i), dag, rag)
1158 gezelter 1126 #endif
1159 gezelter 1127 call add_stress_tensor(dag,fg,tau)
1160     endif
1161 gezelter 1126 endif
1162 chrisfen 708 enddo
1163    
1164     do jb=groupStartCol(j), groupStartCol(j+1)-1
1165     atom2=groupListCol(jb)
1166     mf = mfactCol(atom2)
1167 gezelter 1126 ! fg is the force on atom jb due to cutoff group's
1168     ! presence in switching region
1169     fg = -swderiv*d_grp*mf
1170 gezelter 117 #ifdef IS_MPI
1171 gezelter 1126 f_Col(1,atom2) = f_Col(1,atom2) + fg(1)
1172     f_Col(2,atom2) = f_Col(2,atom2) + fg(2)
1173     f_Col(3,atom2) = f_Col(3,atom2) + fg(3)
1174 gezelter 117 #else
1175 gezelter 1126 f(1,atom2) = f(1,atom2) + fg(1)
1176     f(2,atom2) = f(2,atom2) + fg(2)
1177     f(3,atom2) = f(3,atom2) + fg(3)
1178 gezelter 117 #endif
1179 gezelter 1127 if (n_in_j .gt. 1) then
1180     if (do_stress.and.SIM_uses_AtomicVirial) then
1181     ! find the distance between the atom and the center of
1182     ! the cutoff group:
1183 gezelter 1126 #ifdef IS_MPI
1184 gezelter 1127 call get_interatomic_vector(q_Col(:,atom2), &
1185     q_group_Col(:,j), dag, rag)
1186 gezelter 1126 #else
1187 gezelter 1127 call get_interatomic_vector(q(:,atom2), &
1188     q_group(:,j), dag, rag)
1189 gezelter 1126 #endif
1190 gezelter 1127 call add_stress_tensor(dag,fg,tau)
1191     endif
1192     endif
1193 chrisfen 708 enddo
1194     endif
1195 gezelter 1174 !if (do_stress.and.(.not.SIM_uses_AtomicVirial)) then
1196     ! call add_stress_tensor(d_grp, fij, tau)
1197     !endif
1198 gezelter 117 endif
1199     endif
1200 chrisfen 708 endif
1201 gezelter 117 enddo
1202 chrisfen 708
1203 gezelter 117 enddo outer
1204 chrisfen 532
1205 gezelter 117 if (update_nlist) then
1206     #ifdef IS_MPI
1207     point(nGroupsInRow + 1) = nlist + 1
1208     #else
1209     point(nGroups) = nlist + 1
1210     #endif
1211     if (loop .eq. PREPAIR_LOOP) then
1212     ! we just did the neighbor list update on the first
1213     ! pass, so we don't need to do it
1214     ! again on the second pass
1215     update_nlist = .false.
1216     endif
1217     endif
1218 chrisfen 532
1219 gezelter 117 if (loop .eq. PREPAIR_LOOP) then
1220 chuckv 1133 #ifdef IS_MPI
1221 gezelter 1285 call do_preforce(nlocal, pot_local, particle_pot)
1222 chuckv 1133 #else
1223 gezelter 1285 call do_preforce(nlocal, pot, particle_pot)
1224 chuckv 1133 #endif
1225 gezelter 117 endif
1226 chrisfen 532
1227 gezelter 117 enddo
1228 chrisfen 532
1229 gezelter 117 !! Do timing
1230     #ifdef PROFILE
1231     call cpu_time(forceTimeFinal)
1232     forceTime = forceTime + forceTimeFinal - forceTimeInitial
1233     #endif
1234 chrisfen 532
1235 gezelter 117 #ifdef IS_MPI
1236     !!distribute forces
1237 chrisfen 532
1238 gezelter 117 f_temp = 0.0_dp
1239     call scatter(f_Row,f_temp,plan_atom_row_3d)
1240     do i = 1,nlocal
1241     f(1:3,i) = f(1:3,i) + f_temp(1:3,i)
1242     end do
1243 chrisfen 532
1244 gezelter 117 f_temp = 0.0_dp
1245     call scatter(f_Col,f_temp,plan_atom_col_3d)
1246     do i = 1,nlocal
1247     f(1:3,i) = f(1:3,i) + f_temp(1:3,i)
1248     end do
1249 chrisfen 532
1250 gezelter 141 if (FF_UsesDirectionalAtoms() .and. SIM_uses_DirectionalAtoms) then
1251 gezelter 117 t_temp = 0.0_dp
1252     call scatter(t_Row,t_temp,plan_atom_row_3d)
1253     do i = 1,nlocal
1254     t(1:3,i) = t(1:3,i) + t_temp(1:3,i)
1255     end do
1256     t_temp = 0.0_dp
1257     call scatter(t_Col,t_temp,plan_atom_col_3d)
1258 chrisfen 532
1259 gezelter 117 do i = 1,nlocal
1260     t(1:3,i) = t(1:3,i) + t_temp(1:3,i)
1261     end do
1262     endif
1263 chrisfen 532
1264 gezelter 117 if (do_pot) then
1265     ! scatter/gather pot_row into the members of my column
1266 gezelter 662 do i = 1,LR_POT_TYPES
1267 chuckv 657 call scatter(pot_Row(i,:), pot_Temp(i,:), plan_atom_row)
1268     end do
1269 gezelter 117 ! scatter/gather pot_local into all other procs
1270     ! add resultant to get total pot
1271     do i = 1, nlocal
1272 gezelter 662 pot_local(1:LR_POT_TYPES) = pot_local(1:LR_POT_TYPES) &
1273     + pot_Temp(1:LR_POT_TYPES,i)
1274 gezelter 117 enddo
1275 chrisfen 532
1276 chuckv 1245 do i = 1,LR_POT_TYPES
1277     particle_pot(1:nlocal) = particle_pot(1:nlocal) + pot_Temp(i,1:nlocal)
1278     enddo
1279    
1280 gezelter 117 pot_Temp = 0.0_DP
1281 chuckv 1245
1282 gezelter 662 do i = 1,LR_POT_TYPES
1283 chuckv 657 call scatter(pot_Col(i,:), pot_Temp(i,:), plan_atom_col)
1284     end do
1285 chuckv 1245
1286 gezelter 117 do i = 1, nlocal
1287 gezelter 662 pot_local(1:LR_POT_TYPES) = pot_local(1:LR_POT_TYPES)&
1288     + pot_Temp(1:LR_POT_TYPES,i)
1289 gezelter 117 enddo
1290 chrisfen 532
1291 chuckv 1245 do i = 1,LR_POT_TYPES
1292     particle_pot(1:nlocal) = particle_pot(1:nlocal) + pot_Temp(i,1:nlocal)
1293     enddo
1294 gezelter 1309
1295     ppot_Temp = 0.0_DP
1296    
1297     call scatter(ppot_Row(:), ppot_Temp(:), plan_atom_row)
1298     do i = 1, nlocal
1299     particle_pot(i) = particle_pot(i) + ppot_Temp(i)
1300     enddo
1301 chuckv 1245
1302 gezelter 1309 ppot_Temp = 0.0_DP
1303 chuckv 1245
1304 gezelter 1309 call scatter(ppot_Col(:), ppot_Temp(:), plan_atom_col)
1305     do i = 1, nlocal
1306     particle_pot(i) = particle_pot(i) + ppot_Temp(i)
1307     enddo
1308    
1309    
1310 gezelter 117 endif
1311     #endif
1312 chrisfen 532
1313 chrisfen 691 if (SIM_requires_postpair_calc) then
1314 chrisfen 695 do i = 1, nlocal
1315    
1316     ! we loop only over the local atoms, so we don't need row and column
1317     ! lookups for the types
1318 gezelter 1346
1319 chrisfen 691 me_i = atid(i)
1320    
1321 chrisfen 695 ! is the atom electrostatic? See if it would have an
1322     ! electrostatic interaction with itself
1323     iHash = InteractionHash(me_i,me_i)
1324 chrisfen 699
1325 chrisfen 691 if ( iand(iHash, ELECTROSTATIC_PAIR).ne.0 ) then
1326 gezelter 1340
1327     ! loop over the excludes to accumulate charge in the
1328     ! cutoff sphere that we've left out of the normal pair loop
1329     skch = 0.0_dp
1330 gezelter 1345
1331 gezelter 1346 do i1 = 1, nSkipsForLocalAtom(i)
1332     j = skipsForLocalAtom(i, i1)
1333 gezelter 1340 me_j = atid(j)
1334 gezelter 1352 jHash = InteractionHash(me_i,me_j)
1335     if ( iand(jHash, ELECTROSTATIC_PAIR).ne.0 ) then
1336     skch = skch + getCharge(me_j)
1337     endif
1338 gezelter 1340 enddo
1339 gezelter 1346
1340 gezelter 117 #ifdef IS_MPI
1341 gezelter 1340 call self_self(i, eFrame, skch, pot_local(ELECTROSTATIC_POT), &
1342 chrisfen 695 t, do_pot)
1343 gezelter 117 #else
1344 gezelter 1340 call self_self(i, eFrame, skch, pot(ELECTROSTATIC_POT), &
1345 chrisfen 695 t, do_pot)
1346 gezelter 117 #endif
1347 chrisfen 691 endif
1348 chrisfen 699
1349 chrisfen 703
1350 chrisfen 708 if (electrostaticSummationMethod.eq.REACTION_FIELD) then
1351 chrisfen 699
1352 chrisfen 703 ! loop over the excludes to accumulate RF stuff we've
1353     ! left out of the normal pair loop
1354    
1355 gezelter 1346 do i1 = 1, nSkipsForLocalAtom(i)
1356     j = skipsForLocalAtom(i, i1)
1357 chrisfen 703
1358     ! prevent overcounting of the skips
1359     if (i.lt.j) then
1360 gezelter 939 call get_interatomic_vector(q(:,i), q(:,j), d_atm, ratmsq)
1361 gezelter 960 rVal = sqrt(ratmsq)
1362 gezelter 939 call get_switch(ratmsq, sw, dswdr, rVal,in_switching_region)
1363 chrisfen 699 #ifdef IS_MPI
1364 gezelter 1286 call rf_self_excludes(i, j, sw, 1.0_dp, eFrame, d_atm, rVal, &
1365 chrisfen 703 vpair, pot_local(ELECTROSTATIC_POT), f, t, do_pot)
1366 chrisfen 699 #else
1367 gezelter 1286 call rf_self_excludes(i, j, sw, 1.0_dp, eFrame, d_atm, rVal, &
1368 chrisfen 703 vpair, pot(ELECTROSTATIC_POT), f, t, do_pot)
1369 chrisfen 699 #endif
1370 chrisfen 703 endif
1371     enddo
1372 chrisfen 708 endif
1373 chrisfen 998
1374     if (do_box_dipole) then
1375     #ifdef IS_MPI
1376     call accumulate_box_dipole(i, eFrame, q(:,i), pChg_local, &
1377     nChg_local, pChgPos_local, nChgPos_local, dipVec_local, &
1378     pChgCount_local, nChgCount_local)
1379     #else
1380     call accumulate_box_dipole(i, eFrame, q(:,i), pChg, nChg, &
1381     pChgPos, nChgPos, dipVec, pChgCount, nChgCount)
1382     #endif
1383     endif
1384 chrisfen 703 enddo
1385 gezelter 117 endif
1386 chrisfen 998
1387 gezelter 117 #ifdef IS_MPI
1388     if (do_pot) then
1389 gezelter 962 #ifdef SINGLE_PRECISION
1390     call mpi_allreduce(pot_local, pot, LR_POT_TYPES,mpi_real,mpi_sum, &
1391     mpi_comm_world,mpi_err)
1392     #else
1393 chrisfen 998 call mpi_allreduce(pot_local, pot, LR_POT_TYPES,mpi_double_precision, &
1394     mpi_sum, mpi_comm_world,mpi_err)
1395 gezelter 962 #endif
1396 gezelter 117 endif
1397 gezelter 1126
1398 chrisfen 998 if (do_box_dipole) then
1399    
1400     #ifdef SINGLE_PRECISION
1401     call mpi_allreduce(pChg_local, pChg, 1, mpi_real, mpi_sum, &
1402     mpi_comm_world, mpi_err)
1403     call mpi_allreduce(nChg_local, nChg, 1, mpi_real, mpi_sum, &
1404     mpi_comm_world, mpi_err)
1405     call mpi_allreduce(pChgCount_local, pChgCount, 1, mpi_integer, mpi_sum,&
1406     mpi_comm_world, mpi_err)
1407     call mpi_allreduce(nChgCount_local, nChgCount, 1, mpi_integer, mpi_sum,&
1408     mpi_comm_world, mpi_err)
1409     call mpi_allreduce(pChgPos_local, pChgPos, 3, mpi_real, mpi_sum, &
1410     mpi_comm_world, mpi_err)
1411     call mpi_allreduce(nChgPos_local, nChgPos, 3, mpi_real, mpi_sum, &
1412     mpi_comm_world, mpi_err)
1413     call mpi_allreduce(dipVec_local, dipVec, 3, mpi_real, mpi_sum, &
1414     mpi_comm_world, mpi_err)
1415 gezelter 117 #else
1416 chrisfen 998 call mpi_allreduce(pChg_local, pChg, 1, mpi_double_precision, mpi_sum, &
1417     mpi_comm_world, mpi_err)
1418     call mpi_allreduce(nChg_local, nChg, 1, mpi_double_precision, mpi_sum, &
1419     mpi_comm_world, mpi_err)
1420     call mpi_allreduce(pChgCount_local, pChgCount, 1, mpi_integer,&
1421     mpi_sum, mpi_comm_world, mpi_err)
1422     call mpi_allreduce(nChgCount_local, nChgCount, 1, mpi_integer,&
1423     mpi_sum, mpi_comm_world, mpi_err)
1424     call mpi_allreduce(pChgPos_local, pChgPos, 3, mpi_double_precision, &
1425     mpi_sum, mpi_comm_world, mpi_err)
1426     call mpi_allreduce(nChgPos_local, nChgPos, 3, mpi_double_precision, &
1427     mpi_sum, mpi_comm_world, mpi_err)
1428     call mpi_allreduce(dipVec_local, dipVec, 3, mpi_double_precision, &
1429     mpi_sum, mpi_comm_world, mpi_err)
1430     #endif
1431    
1432     endif
1433 chrisfen 695
1434 gezelter 117 #endif
1435 chrisfen 998
1436     if (do_box_dipole) then
1437     ! first load the accumulated dipole moment (if dipoles were present)
1438     boxDipole(1) = dipVec(1)
1439     boxDipole(2) = dipVec(2)
1440     boxDipole(3) = dipVec(3)
1441    
1442     ! now include the dipole moment due to charges
1443     ! use the lesser of the positive and negative charge totals
1444     if (nChg .le. pChg) then
1445     chg_value = nChg
1446     else
1447     chg_value = pChg
1448     endif
1449    
1450     ! find the average positions
1451     if (pChgCount .gt. 0 .and. nChgCount .gt. 0) then
1452     pChgPos = pChgPos / pChgCount
1453     nChgPos = nChgPos / nChgCount
1454     endif
1455    
1456     ! dipole is from the negative to the positive (physics notation)
1457     chgVec(1) = pChgPos(1) - nChgPos(1)
1458     chgVec(2) = pChgPos(2) - nChgPos(2)
1459     chgVec(3) = pChgPos(3) - nChgPos(3)
1460    
1461     boxDipole(1) = boxDipole(1) + chgVec(1) * chg_value
1462     boxDipole(2) = boxDipole(2) + chgVec(2) * chg_value
1463     boxDipole(3) = boxDipole(3) + chgVec(3) * chg_value
1464    
1465     endif
1466    
1467 gezelter 117 end subroutine do_force_loop
1468 chrisfen 532
1469 gezelter 117 subroutine do_pair(i, j, rijsq, d, sw, do_pot, &
1470 gezelter 1309 eFrame, A, f, t, pot, particle_pot, vpair, &
1471     fpair, d_grp, r_grp, rCut, topoDist)
1472 gezelter 117
1473 chuckv 656 real( kind = dp ) :: vpair, sw
1474 gezelter 662 real( kind = dp ), dimension(LR_POT_TYPES) :: pot
1475 chuckv 1245 real( kind = dp ), dimension(nLocal) :: particle_pot
1476 gezelter 117 real( kind = dp ), dimension(3) :: fpair
1477     real( kind = dp ), dimension(nLocal) :: mfact
1478 gezelter 246 real( kind = dp ), dimension(9,nLocal) :: eFrame
1479 gezelter 117 real( kind = dp ), dimension(9,nLocal) :: A
1480     real( kind = dp ), dimension(3,nLocal) :: f
1481     real( kind = dp ), dimension(3,nLocal) :: t
1482    
1483     logical, intent(inout) :: do_pot
1484     integer, intent(in) :: i, j
1485     real ( kind = dp ), intent(inout) :: rijsq
1486 chrisfen 695 real ( kind = dp ), intent(inout) :: r_grp
1487 gezelter 117 real ( kind = dp ), intent(inout) :: d(3)
1488 chrisfen 695 real ( kind = dp ), intent(inout) :: d_grp(3)
1489 gezelter 762 real ( kind = dp ), intent(inout) :: rCut
1490 gezelter 1286 integer, intent(inout) :: topoDist
1491     real ( kind = dp ) :: r, pair_pot, vdwMult, electroMult
1492 gezelter 939 real ( kind = dp ) :: a_k, b_k, c_k, d_k, dx
1493 gezelter 1386
1494     real( kind = dp), dimension(3) :: f1, t1, t2
1495     real( kind = dp), dimension(9) :: A1, A2, eF1, eF2
1496 chuckv 1388 real( kind = dp) :: dfrhodrho_i, dfrhodrho_j
1497     real( kind = dp) :: rho_i, rho_j
1498     real( kind = dp) :: fshift_i, fshift_j
1499 gezelter 1386 real( kind = dp) :: p_vdw, p_elect, p_hb, p_met
1500     integer :: atid_i, atid_j, id1, id2, idx
1501 gezelter 939 integer :: k
1502 gezelter 117
1503 gezelter 571 integer :: iHash
1504 gezelter 560
1505 gezelter 1313 !!$ write(*,*) i, j, rijsq, d(1), d(2), d(3), sw, do_pot
1506     !!$ write(*,*) particle_pot(1), vpair, fpair(1), fpair(2), fpair(3)
1507     !!$ write(*,*) rCut
1508    
1509 chrisfen 942 r = sqrt(rijsq)
1510    
1511 gezelter 960 vpair = 0.0_dp
1512     fpair(1:3) = 0.0_dp
1513 gezelter 117
1514 gezelter 1386 p_vdw = 0.0
1515     p_elect = 0.0
1516     p_hb = 0.0
1517     p_met = 0.0
1518    
1519     f1(1:3) = 0.0
1520     t1(1:3) = 0.0
1521     t2(1:3) = 0.0
1522    
1523 gezelter 117 #ifdef IS_MPI
1524 gezelter 1386 atid_i = atid_row(i)
1525     atid_j = atid_col(j)
1526    
1527     do idx = 1, 9
1528     A1(idx) = A_Row(idx, i)
1529     A2(idx) = A_Col(idx, j)
1530     eF1(idx) = eFrame_Row(idx, i)
1531     eF2(idx) = eFrame_Col(idx, j)
1532     enddo
1533    
1534 gezelter 117 #else
1535 gezelter 1386 atid_i = atid(i)
1536     atid_j = atid(j)
1537     do idx = 1, 9
1538     A1(idx) = A(idx, i)
1539     A2(idx) = A(idx, j)
1540     eF1(idx) = eFrame(idx, i)
1541     eF2(idx) = eFrame(idx, j)
1542     enddo
1543    
1544 gezelter 117 #endif
1545 gezelter 202
1546 chuckv 1388
1547 gezelter 1386 iHash = InteractionHash(atid_i, atid_j)
1548 cli2 1289
1549 gezelter 1390 !! For the metallic potentials, we need to pass dF[rho]/drho since
1550     !! the pair calculation routines no longer are aware of parallel.
1551    
1552 chuckv 1388 if ( (iand(iHash, EAM_PAIR).ne.0) .or. (iand(iHash, SC_PAIR).ne.0) ) then
1553     #ifdef IS_MPI
1554     dfrhodrho_i = dfrhodrho_row(i)
1555     dfrhodrho_j = dfrhodrho_col(j)
1556     rho_i = rho_row(i)
1557     rho_j = rho_col(j)
1558     #else
1559     dfrhodrho_i = dfrhodrho(i)
1560     dfrhodrho_j = dfrhodrho(j)
1561     rho_i = rho(i)
1562     rho_j = rho(j)
1563     #endif
1564     end if
1565    
1566 gezelter 1286 vdwMult = vdwScale(topoDist)
1567     electroMult = electrostaticScale(topoDist)
1568 cli2 1289
1569 chrisfen 703 if ( iand(iHash, LJ_PAIR).ne.0 ) then
1570 gezelter 1386 call do_lj_pair(i, j, atid_i, atid_j, d, r, rijsq, rcut, sw, vdwMult, vpair, fpair, &
1571     p_vdw, f1, do_pot)
1572 gezelter 117 endif
1573 chrisfen 532
1574 chrisfen 703 if ( iand(iHash, ELECTROSTATIC_PAIR).ne.0 ) then
1575 gezelter 1386 call doElectrostaticPair(i, j, atid_i, atid_j, d, r, rijsq, rcut, sw, electroMult, &
1576     vpair, fpair, p_elect, eF1, eF2, f1, t1, t2, do_pot)
1577 chrisfen 703 endif
1578    
1579     if ( iand(iHash, STICKY_PAIR).ne.0 ) then
1580 gezelter 1386 call do_sticky_pair(i, j, atid_i, atid_j, d, r, rijsq, sw, vpair, fpair, &
1581     p_hb, A1, A2, f1, t1, t2, do_pot)
1582 chrisfen 703 endif
1583    
1584     if ( iand(iHash, STICKYPOWER_PAIR).ne.0 ) then
1585 gezelter 1386 call do_sticky_power_pair(i, j, atid_i, atid_j, d, r, rijsq, sw, vpair, fpair, &
1586     p_hb, A1, A2, f1, t1, t2, do_pot)
1587 chrisfen 703 endif
1588    
1589     if ( iand(iHash, GAYBERNE_PAIR).ne.0 ) then
1590 gezelter 1386 call do_gb_pair(i, j, atid_i, atid_j, d, r, rijsq, sw, vdwMult, vpair, fpair, &
1591     p_vdw, A1, A2, f1, t1, t2, do_pot)
1592 chrisfen 703 endif
1593    
1594     if ( iand(iHash, GAYBERNE_LJ).ne.0 ) then
1595 gezelter 1386 call do_gb_pair(i, j, atid_i, atid_j, d, r, rijsq, sw, vdwMult, vpair, fpair, &
1596     p_vdw, A1, A2, f1, t1, t2, do_pot)
1597 chrisfen 703 endif
1598    
1599     if ( iand(iHash, EAM_PAIR).ne.0 ) then
1600 chuckv 1388 call do_eam_pair(i, j, atid_i, atid_j, d, r, rijsq, sw, vpair, &
1601     fpair, p_met, f1, rho_i, rho_j, dfrhodrho_i, dfrhodrho_j,fshift_i,fshift_j, do_pot)
1602 chrisfen 703 endif
1603    
1604     if ( iand(iHash, SHAPE_PAIR).ne.0 ) then
1605 gezelter 1386 call do_shape_pair(i, j, atid_i, atid_j, d, r, rijsq, sw, vpair, fpair, &
1606     p_vdw, A1, A2, f1, t1, t2, do_pot)
1607 chrisfen 703 endif
1608    
1609     if ( iand(iHash, SHAPE_LJ).ne.0 ) then
1610 gezelter 1386 call do_shape_pair(i, j, atid_i, atid_j, d, r, rijsq, sw, vpair, fpair, &
1611     p_vdw, A1, A2, f1, t1, t2, do_pot)
1612 chrisfen 703 endif
1613 chuckv 733
1614     if ( iand(iHash, SC_PAIR).ne.0 ) then
1615 chuckv 1388 call do_SC_pair(i, j, atid_i, atid_j, d, r, rijsq, rcut, sw, vpair, &
1616     fpair, p_met, f1, rho_i, rho_j, dfrhodrho_i, dfrhodrho_j, fshift_i, fshift_j, do_pot)
1617 chuckv 733 endif
1618 chrisfen 703
1619 gezelter 1174 if ( iand(iHash, MNM_PAIR).ne.0 ) then
1620 gezelter 1386 call do_mnm_pair(i, j, atid_i, atid_j, d, r, rijsq, rcut, sw, vdwMult, vpair, fpair, &
1621     p_vdw, A1, A2, f1, t1, t2, do_pot)
1622 gezelter 1174 endif
1623 gezelter 1386
1624    
1625     #ifdef IS_MPI
1626     id1 = AtomRowToGlobal(i)
1627     id2 = AtomColToGlobal(j)
1628    
1629     pot_row(VDW_POT,i) = pot_row(VDW_POT,i) + 0.5*p_vdw
1630     pot_col(VDW_POT,j) = pot_col(VDW_POT,j) + 0.5*p_vdw
1631     pot_row(ELECTROSTATIC_POT,i) = pot_row(ELECTROSTATIC_POT,i) + 0.5*p_elect
1632     pot_col(ELECTROSTATIC_POT,j) = pot_col(ELECTROSTATIC_POT,j) + 0.5*p_elect
1633     pot_row(HB_POT,i) = pot_row(HB_POT,i) + 0.5*p_hb
1634     pot_col(HB_POT,j) = pot_col(HB_POT,j) + 0.5*p_hb
1635     pot_Row(METALLIC_POT,i) = pot_Row(METALLIC_POT,i) + 0.5*p_met
1636     pot_Col(METALLIC_POT,j) = pot_Col(METALLIC_POT,j) + 0.5*p_met
1637    
1638     do idx = 1, 3
1639     f_Row(idx,i) = f_Row(idx,i) + f1(idx)
1640     f_Col(idx,j) = f_Col(idx,j) - f1(idx)
1641    
1642     t_Row(idx,i) = t_Row(idx,i) + t1(idx)
1643     t_Col(idx,j) = t_Col(idx,j) + t2(idx)
1644     enddo
1645 chuckv 1388 ! particle_pot is the difference between the full potential
1646     ! and the full potential without the presence of a particular
1647     ! particle (atom1).
1648     !
1649     ! This reduces the density at other particle locations, so
1650     ! we need to recompute the density at atom2 assuming atom1
1651     ! didn't contribute. This then requires recomputing the
1652     ! density functional for atom2 as well.
1653     !
1654     ! Most of the particle_pot heavy lifting comes from the
1655     ! pair interaction, and will be handled by vpair. Parallel version.
1656    
1657 gezelter 1390 if ( (iand(iHash, EAM_PAIR).ne.0) .or. (iand(iHash, SC_PAIR).ne.0) ) then
1658 chuckv 1388 ppot_row(i) = ppot_row(i) - frho_row(j) + fshift_j
1659     ppot_col(j) = ppot_col(j) - frho_col(i) + fshift_i
1660     end if
1661    
1662 gezelter 1386 #else
1663     id1 = i
1664     id2 = j
1665    
1666     pot(VDW_POT) = pot(VDW_POT) + p_vdw
1667     pot(ELECTROSTATIC_POT) = pot(ELECTROSTATIC_POT) + p_elect
1668     pot(HB_POT) = pot(HB_POT) + p_hb
1669     pot(METALLIC_POT) = pot(METALLIC_POT) + p_met
1670    
1671     do idx = 1, 3
1672     f(idx,i) = f(idx,i) + f1(idx)
1673     f(idx,j) = f(idx,j) - f1(idx)
1674    
1675     t(idx,i) = t(idx,i) + t1(idx)
1676     t(idx,j) = t(idx,j) + t2(idx)
1677     enddo
1678 chuckv 1388 ! particle_pot is the difference between the full potential
1679     ! and the full potential without the presence of a particular
1680     ! particle (atom1).
1681     !
1682     ! This reduces the density at other particle locations, so
1683     ! we need to recompute the density at atom2 assuming atom1
1684     ! didn't contribute. This then requires recomputing the
1685     ! density functional for atom2 as well.
1686     !
1687     ! Most of the particle_pot heavy lifting comes from the
1688     ! pair interaction, and will be handled by vpair. NonParallel version.
1689 gezelter 1390
1690     if ( (iand(iHash, EAM_PAIR).ne.0) .or. (iand(iHash, SC_PAIR).ne.0) ) then
1691 chuckv 1388 particle_pot(i) = particle_pot(i) - frho(j) + fshift_j
1692     particle_pot(j) = particle_pot(j) - frho(i) + fshift_i
1693     end if
1694    
1695    
1696 gezelter 1386 #endif
1697    
1698     if (molMembershipList(id1) .ne. molMembershipList(id2)) then
1699    
1700     fpair(1) = fpair(1) + f1(1)
1701     fpair(2) = fpair(2) + f1(2)
1702     fpair(3) = fpair(3) + f1(3)
1703    
1704     endif
1705    
1706    
1707 gezelter 1313 !!$
1708     !!$ particle_pot(i) = particle_pot(i) + vpair*sw
1709     !!$ particle_pot(j) = particle_pot(j) + vpair*sw
1710 gezelter 1174
1711 gezelter 117 end subroutine do_pair
1712    
1713 gezelter 762 subroutine do_prepair(i, j, rijsq, d, sw, rcijsq, dc, rCut, &
1714 gezelter 246 do_pot, do_stress, eFrame, A, f, t, pot)
1715 gezelter 1390
1716 chuckv 656 real( kind = dp ) :: sw
1717 gezelter 662 real( kind = dp ), dimension(LR_POT_TYPES) :: pot
1718 chrisfen 532 real( kind = dp ), dimension(9,nLocal) :: eFrame
1719     real (kind=dp), dimension(9,nLocal) :: A
1720     real (kind=dp), dimension(3,nLocal) :: f
1721     real (kind=dp), dimension(3,nLocal) :: t
1722 gezelter 1390
1723 chrisfen 532 logical, intent(inout) :: do_pot, do_stress
1724     integer, intent(in) :: i, j
1725 gezelter 762 real ( kind = dp ), intent(inout) :: rijsq, rcijsq, rCut
1726 chrisfen 532 real ( kind = dp ) :: r, rc
1727     real ( kind = dp ), intent(inout) :: d(3), dc(3)
1728 chuckv 1389 real ( kind = dp ) :: rho_i_at_j, rho_j_at_i
1729 gezelter 1386 integer :: atid_i, atid_j, iHash
1730 gezelter 1390
1731 chrisfen 942 r = sqrt(rijsq)
1732    
1733 gezelter 117 #ifdef IS_MPI
1734 gezelter 1386 atid_i = atid_row(i)
1735     atid_j = atid_col(j)
1736 gezelter 117 #else
1737 gezelter 1386 atid_i = atid(i)
1738     atid_j = atid(j)
1739 gezelter 117 #endif
1740 chuckv 1388 rho_i_at_j = 0.0_dp
1741     rho_j_at_i = 0.0_dp
1742    
1743 gezelter 1386 iHash = InteractionHash(atid_i, atid_j)
1744 chrisfen 532
1745 gezelter 571 if ( iand(iHash, EAM_PAIR).ne.0 ) then
1746 gezelter 1390 call calc_EAM_prepair_rho(i, j, atid_i, atid_j, d, r, rho_i_at_j, rho_j_at_i, rijsq)
1747 chrisfen 532 endif
1748 gezelter 1390
1749 chuckv 733 if ( iand(iHash, SC_PAIR).ne.0 ) then
1750 gezelter 1390 call calc_SC_prepair_rho(i, j, atid_i, atid_j, d, r, rijsq, rho_i_at_j, rho_j_at_i, rcut)
1751 chuckv 733 endif
1752 chuckv 1388
1753 gezelter 1390 if ( iand(iHash, EAM_PAIR).ne.0 .or. iand(iHash, SC_PAIR).ne.0 ) then
1754 chuckv 1388 #ifdef IS_MPI
1755     rho_col(j) = rho_col(j) + rho_i_at_j
1756     rho_row(i) = rho_row(i) + rho_j_at_i
1757     #else
1758     rho(j) = rho(j) + rho_i_at_j
1759     rho(i) = rho(i) + rho_j_at_i
1760     #endif
1761     endif
1762 gezelter 560
1763 chrisfen 532 end subroutine do_prepair
1764    
1765    
1766 gezelter 1285 subroutine do_preforce(nlocal, pot, particle_pot)
1767 chrisfen 532 integer :: nlocal
1768 gezelter 662 real( kind = dp ),dimension(LR_POT_TYPES) :: pot
1769 gezelter 1285 real( kind = dp ),dimension(nlocal) :: particle_pot
1770 chuckv 1388 integer :: sc_err = 0
1771 chrisfen 532
1772 chuckv 1388 #ifdef IS_MPI
1773 chuckv 1389 if ((FF_uses_EAM .and. SIM_uses_EAM) .or. (FF_uses_SC .and. SIM_uses_SC)) then
1774 chuckv 1388 call scatter(rho_row,rho,plan_atom_row,sc_err)
1775     if (sc_err /= 0 ) then
1776     call handleError("do_preforce()", "Error scattering rho_row into rho")
1777     endif
1778     call scatter(rho_col,rho_tmp,plan_atom_col,sc_err)
1779     if (sc_err /= 0 ) then
1780     call handleError("do_preforce()", "Error scattering rho_col into rho")
1781     endif
1782     rho(1:nlocal) = rho(1:nlocal) + rho_tmp(1:nlocal)
1783     end if
1784     #endif
1785    
1786    
1787    
1788 chrisfen 532 if (FF_uses_EAM .and. SIM_uses_EAM) then
1789 gezelter 1285 call calc_EAM_preforce_Frho(nlocal, pot(METALLIC_POT), particle_pot)
1790 chrisfen 532 endif
1791 chuckv 733 if (FF_uses_SC .and. SIM_uses_SC) then
1792 gezelter 1285 call calc_SC_preforce_Frho(nlocal, pot(METALLIC_POT), particle_pot)
1793 chuckv 733 endif
1794 chuckv 1388
1795     #ifdef IS_MPI
1796 chuckv 1389 if ((FF_uses_EAM .and. SIM_uses_EAM) .or. (FF_uses_SC .and. SIM_uses_SC)) then
1797 chuckv 1388 !! communicate f(rho) and derivatives back into row and column arrays
1798     call gather(frho,frho_row,plan_atom_row, sc_err)
1799     if (sc_err /= 0) then
1800     call handleError("do_preforce()","MPI gather frho_row failure")
1801     endif
1802     call gather(dfrhodrho,dfrhodrho_row,plan_atom_row, sc_err)
1803     if (sc_err /= 0) then
1804     call handleError("do_preforce()","MPI gather dfrhodrho_row failure")
1805     endif
1806     call gather(frho,frho_col,plan_atom_col, sc_err)
1807     if (sc_err /= 0) then
1808     call handleError("do_preforce()","MPI gather frho_col failure")
1809     endif
1810     call gather(dfrhodrho,dfrhodrho_col,plan_atom_col, sc_err)
1811     if (sc_err /= 0) then
1812     call handleError("do_preforce()","MPI gather dfrhodrho_col failure")
1813     endif
1814     end if
1815     #endif
1816    
1817 chrisfen 532 end subroutine do_preforce
1818    
1819    
1820     subroutine get_interatomic_vector(q_i, q_j, d, r_sq)
1821    
1822     real (kind = dp), dimension(3) :: q_i
1823     real (kind = dp), dimension(3) :: q_j
1824     real ( kind = dp ), intent(out) :: r_sq
1825     real( kind = dp ) :: d(3), scaled(3)
1826     integer i
1827    
1828 gezelter 938 d(1) = q_j(1) - q_i(1)
1829     d(2) = q_j(2) - q_i(2)
1830     d(3) = q_j(3) - q_i(3)
1831 chrisfen 532
1832     ! Wrap back into periodic box if necessary
1833     if ( SIM_uses_PBC ) then
1834    
1835     if( .not.boxIsOrthorhombic ) then
1836     ! calc the scaled coordinates.
1837 gezelter 939 ! scaled = matmul(HmatInv, d)
1838 chrisfen 532
1839 gezelter 939 scaled(1) = HmatInv(1,1)*d(1) + HmatInv(1,2)*d(2) + HmatInv(1,3)*d(3)
1840     scaled(2) = HmatInv(2,1)*d(1) + HmatInv(2,2)*d(2) + HmatInv(2,3)*d(3)
1841     scaled(3) = HmatInv(3,1)*d(1) + HmatInv(3,2)*d(2) + HmatInv(3,3)*d(3)
1842    
1843 chrisfen 532 ! wrap the scaled coordinates
1844    
1845 gezelter 960 scaled(1) = scaled(1) - anint(scaled(1), kind=dp)
1846     scaled(2) = scaled(2) - anint(scaled(2), kind=dp)
1847     scaled(3) = scaled(3) - anint(scaled(3), kind=dp)
1848 chrisfen 532
1849     ! calc the wrapped real coordinates from the wrapped scaled
1850     ! coordinates
1851 gezelter 939 ! d = matmul(Hmat,scaled)
1852     d(1)= Hmat(1,1)*scaled(1) + Hmat(1,2)*scaled(2) + Hmat(1,3)*scaled(3)
1853     d(2)= Hmat(2,1)*scaled(1) + Hmat(2,2)*scaled(2) + Hmat(2,3)*scaled(3)
1854     d(3)= Hmat(3,1)*scaled(1) + Hmat(3,2)*scaled(2) + Hmat(3,3)*scaled(3)
1855 chrisfen 532
1856     else
1857     ! calc the scaled coordinates.
1858    
1859 gezelter 938 scaled(1) = d(1) * HmatInv(1,1)
1860     scaled(2) = d(2) * HmatInv(2,2)
1861     scaled(3) = d(3) * HmatInv(3,3)
1862    
1863     ! wrap the scaled coordinates
1864    
1865 gezelter 960 scaled(1) = scaled(1) - anint(scaled(1), kind=dp)
1866     scaled(2) = scaled(2) - anint(scaled(2), kind=dp)
1867     scaled(3) = scaled(3) - anint(scaled(3), kind=dp)
1868 chrisfen 532
1869 gezelter 938 ! calc the wrapped real coordinates from the wrapped scaled
1870     ! coordinates
1871 chrisfen 532
1872 gezelter 938 d(1) = scaled(1)*Hmat(1,1)
1873     d(2) = scaled(2)*Hmat(2,2)
1874     d(3) = scaled(3)*Hmat(3,3)
1875 chrisfen 532
1876     endif
1877    
1878     endif
1879    
1880 gezelter 938 r_sq = d(1)*d(1) + d(2)*d(2) + d(3)*d(3)
1881 chrisfen 532
1882     end subroutine get_interatomic_vector
1883    
1884     subroutine zero_work_arrays()
1885    
1886 gezelter 117 #ifdef IS_MPI
1887    
1888 chrisfen 532 q_Row = 0.0_dp
1889     q_Col = 0.0_dp
1890    
1891     q_group_Row = 0.0_dp
1892     q_group_Col = 0.0_dp
1893    
1894     eFrame_Row = 0.0_dp
1895     eFrame_Col = 0.0_dp
1896    
1897     A_Row = 0.0_dp
1898     A_Col = 0.0_dp
1899    
1900     f_Row = 0.0_dp
1901     f_Col = 0.0_dp
1902     f_Temp = 0.0_dp
1903    
1904     t_Row = 0.0_dp
1905     t_Col = 0.0_dp
1906     t_Temp = 0.0_dp
1907    
1908     pot_Row = 0.0_dp
1909     pot_Col = 0.0_dp
1910     pot_Temp = 0.0_dp
1911 gezelter 1309 ppot_Temp = 0.0_dp
1912 chrisfen 532
1913 chuckv 1388 frho_row = 0.0_dp
1914     frho_col = 0.0_dp
1915     rho_row = 0.0_dp
1916     rho_col = 0.0_dp
1917     rho_tmp = 0.0_dp
1918     dfrhodrho_row = 0.0_dp
1919     dfrhodrho_col = 0.0_dp
1920    
1921 gezelter 117 #endif
1922 chuckv 1388 rho = 0.0_dp
1923     frho = 0.0_dp
1924     dfrhodrho = 0.0_dp
1925 chrisfen 532
1926     end subroutine zero_work_arrays
1927    
1928     function skipThisPair(atom1, atom2) result(skip_it)
1929     integer, intent(in) :: atom1
1930     integer, intent(in), optional :: atom2
1931     logical :: skip_it
1932     integer :: unique_id_1, unique_id_2
1933     integer :: me_i,me_j
1934     integer :: i
1935    
1936     skip_it = .false.
1937    
1938     !! there are a number of reasons to skip a pair or a particle
1939     !! mostly we do this to exclude atoms who are involved in short
1940     !! range interactions (bonds, bends, torsions), but we also need
1941     !! to exclude some overcounted interactions that result from
1942     !! the parallel decomposition
1943    
1944 gezelter 117 #ifdef IS_MPI
1945 chrisfen 532 !! in MPI, we have to look up the unique IDs for each atom
1946     unique_id_1 = AtomRowToGlobal(atom1)
1947     unique_id_2 = AtomColToGlobal(atom2)
1948     !! this situation should only arise in MPI simulations
1949     if (unique_id_1 == unique_id_2) then
1950     skip_it = .true.
1951     return
1952     end if
1953    
1954     !! this prevents us from doing the pair on multiple processors
1955     if (unique_id_1 < unique_id_2) then
1956     if (mod(unique_id_1 + unique_id_2,2) == 0) then
1957     skip_it = .true.
1958     return
1959     endif
1960     else
1961     if (mod(unique_id_1 + unique_id_2,2) == 1) then
1962     skip_it = .true.
1963     return
1964     endif
1965     endif
1966 gezelter 1286 #else
1967     !! in the normal loop, the atom numbers are unique
1968     unique_id_1 = atom1
1969     unique_id_2 = atom2
1970 gezelter 117 #endif
1971 gezelter 1346
1972     #ifdef IS_MPI
1973     do i = 1, nSkipsForRowAtom(atom1)
1974     if (skipsForRowAtom(atom1, i) .eq. unique_id_2) then
1975 chrisfen 532 skip_it = .true.
1976     return
1977     endif
1978     end do
1979 gezelter 1346 #else
1980     do i = 1, nSkipsForLocalAtom(atom1)
1981     if (skipsForLocalAtom(atom1, i) .eq. unique_id_2) then
1982     skip_it = .true.
1983     return
1984     endif
1985     end do
1986     #endif
1987 chrisfen 532
1988     return
1989     end function skipThisPair
1990    
1991 gezelter 1286 function getTopoDistance(atom1, atom2) result(topoDist)
1992     integer, intent(in) :: atom1
1993     integer, intent(in) :: atom2
1994     integer :: topoDist
1995     integer :: unique_id_2
1996     integer :: i
1997    
1998     #ifdef IS_MPI
1999     unique_id_2 = AtomColToGlobal(atom2)
2000     #else
2001     unique_id_2 = atom2
2002     #endif
2003    
2004     ! zero is default for unconnected (i.e. normal) pair interactions
2005    
2006     topoDist = 0
2007    
2008     do i = 1, nTopoPairsForAtom(atom1)
2009     if (toposForAtom(atom1, i) .eq. unique_id_2) then
2010     topoDist = topoDistance(atom1, i)
2011     return
2012     endif
2013     end do
2014    
2015     return
2016     end function getTopoDistance
2017    
2018 chrisfen 532 function FF_UsesDirectionalAtoms() result(doesit)
2019     logical :: doesit
2020 gezelter 571 doesit = FF_uses_DirectionalAtoms
2021 chrisfen 532 end function FF_UsesDirectionalAtoms
2022    
2023     function FF_RequiresPrepairCalc() result(doesit)
2024     logical :: doesit
2025 chuckv 1162 doesit = FF_uses_EAM .or. FF_uses_SC
2026 chrisfen 532 end function FF_RequiresPrepairCalc
2027    
2028 gezelter 117 #ifdef PROFILE
2029 chrisfen 532 function getforcetime() result(totalforcetime)
2030     real(kind=dp) :: totalforcetime
2031     totalforcetime = forcetime
2032     end function getforcetime
2033 gezelter 117 #endif
2034    
2035 chrisfen 532 !! This cleans componets of force arrays belonging only to fortran
2036    
2037 gezelter 1126 subroutine add_stress_tensor(dpair, fpair, tau)
2038 chrisfen 532
2039     real( kind = dp ), dimension(3), intent(in) :: dpair, fpair
2040 gezelter 1126 real( kind = dp ), dimension(9), intent(inout) :: tau
2041 chrisfen 532
2042     ! because the d vector is the rj - ri vector, and
2043     ! because fx, fy, fz are the force on atom i, we need a
2044     ! negative sign here:
2045    
2046 gezelter 1126 tau(1) = tau(1) - dpair(1) * fpair(1)
2047     tau(2) = tau(2) - dpair(1) * fpair(2)
2048     tau(3) = tau(3) - dpair(1) * fpair(3)
2049     tau(4) = tau(4) - dpair(2) * fpair(1)
2050     tau(5) = tau(5) - dpair(2) * fpair(2)
2051     tau(6) = tau(6) - dpair(2) * fpair(3)
2052     tau(7) = tau(7) - dpair(3) * fpair(1)
2053     tau(8) = tau(8) - dpair(3) * fpair(2)
2054     tau(9) = tau(9) - dpair(3) * fpair(3)
2055 chrisfen 532
2056     end subroutine add_stress_tensor
2057    
2058 gezelter 117 end module doForces