1 |
/* |
2 |
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
* |
4 |
* The University of Notre Dame grants you ("Licensee") a |
5 |
* non-exclusive, royalty free, license to use, modify and |
6 |
* redistribute this software in source and binary code form, provided |
7 |
* that the following conditions are met: |
8 |
* |
9 |
* 1. Redistributions of source code must retain the above copyright |
10 |
* notice, this list of conditions and the following disclaimer. |
11 |
* |
12 |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
* notice, this list of conditions and the following disclaimer in the |
14 |
* documentation and/or other materials provided with the |
15 |
* distribution. |
16 |
* |
17 |
* This software is provided "AS IS," without a warranty of any |
18 |
* kind. All express or implied conditions, representations and |
19 |
* warranties, including any implied warranty of merchantability, |
20 |
* fitness for a particular purpose or non-infringement, are hereby |
21 |
* excluded. The University of Notre Dame and its licensors shall not |
22 |
* be liable for any damages suffered by licensee as a result of |
23 |
* using, modifying or distributing the software or its |
24 |
* derivatives. In no event will the University of Notre Dame or its |
25 |
* licensors be liable for any lost revenue, profit or data, or for |
26 |
* direct, indirect, special, consequential, incidental or punitive |
27 |
* damages, however caused and regardless of the theory of liability, |
28 |
* arising out of the use of or inability to use software, even if the |
29 |
* University of Notre Dame has been advised of the possibility of |
30 |
* such damages. |
31 |
* |
32 |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
* research, please cite the appropriate papers when you publish your |
34 |
* work. Good starting points are: |
35 |
* |
36 |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 |
* [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
40 |
* [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
41 |
*/ |
42 |
|
43 |
/** |
44 |
* @file ForceField.cpp |
45 |
* @author tlin |
46 |
* @date 11/04/2004 |
47 |
* @time 22:51am |
48 |
* @version 1.0 |
49 |
*/ |
50 |
|
51 |
#include <algorithm> |
52 |
#include "UseTheForce/ForceField.hpp" |
53 |
#include "utils/simError.h" |
54 |
#include "utils/Tuple.hpp" |
55 |
namespace OpenMD { |
56 |
|
57 |
ForceField::ForceField() { |
58 |
|
59 |
char* tempPath; |
60 |
tempPath = getenv("FORCE_PARAM_PATH"); |
61 |
|
62 |
if (tempPath == NULL) { |
63 |
//convert a macro from compiler to a string in c++ |
64 |
STR_DEFINE(ffPath_, FRC_PATH ); |
65 |
} else { |
66 |
ffPath_ = tempPath; |
67 |
} |
68 |
} |
69 |
|
70 |
/** |
71 |
* getAtomType by string |
72 |
* |
73 |
* finds the requested atom type in this force field using the string |
74 |
* name of the atom type. |
75 |
*/ |
76 |
AtomType* ForceField::getAtomType(const std::string &at) { |
77 |
std::vector<std::string> keys; |
78 |
keys.push_back(at); |
79 |
return atomTypeCont_.find(keys); |
80 |
} |
81 |
|
82 |
/** |
83 |
* getAtomType by ident |
84 |
* |
85 |
* finds the requested atom type in this force field using the |
86 |
* integer ident instead of the string name of the atom type. |
87 |
*/ |
88 |
AtomType* ForceField::getAtomType(int ident) { |
89 |
std::string at = atypeIdentToName.find(ident)->second; |
90 |
return getAtomType(at); |
91 |
} |
92 |
|
93 |
BondType* ForceField::getBondType(const std::string &at1, |
94 |
const std::string &at2) { |
95 |
std::vector<std::string> keys; |
96 |
keys.push_back(at1); |
97 |
keys.push_back(at2); |
98 |
|
99 |
//try exact match first |
100 |
BondType* bondType = bondTypeCont_.find(keys); |
101 |
if (bondType) { |
102 |
return bondType; |
103 |
} else { |
104 |
AtomType* atype1; |
105 |
AtomType* atype2; |
106 |
std::vector<std::string> at1key; |
107 |
at1key.push_back(at1); |
108 |
atype1 = atomTypeCont_.find(at1key); |
109 |
|
110 |
std::vector<std::string> at2key; |
111 |
at2key.push_back(at2); |
112 |
atype2 = atomTypeCont_.find(at2key); |
113 |
|
114 |
// query atom types for their chains of responsibility |
115 |
std::vector<AtomType*> at1Chain = atype1->allYourBase(); |
116 |
std::vector<AtomType*> at2Chain = atype2->allYourBase(); |
117 |
|
118 |
std::vector<AtomType*>::iterator i; |
119 |
std::vector<AtomType*>::iterator j; |
120 |
|
121 |
int ii = 0; |
122 |
int jj = 0; |
123 |
int bondTypeScore; |
124 |
|
125 |
std::vector<std::pair<int, std::vector<std::string> > > foundBonds; |
126 |
|
127 |
for (i = at1Chain.begin(); i != at1Chain.end(); i++) { |
128 |
jj = 0; |
129 |
for (j = at2Chain.begin(); j != at2Chain.end(); j++) { |
130 |
|
131 |
bondTypeScore = ii + jj; |
132 |
|
133 |
std::vector<std::string> myKeys; |
134 |
myKeys.push_back((*i)->getName()); |
135 |
myKeys.push_back((*j)->getName()); |
136 |
|
137 |
BondType* bondType = bondTypeCont_.find(myKeys); |
138 |
if (bondType) { |
139 |
foundBonds.push_back(std::make_pair(bondTypeScore, myKeys)); |
140 |
} |
141 |
jj++; |
142 |
} |
143 |
ii++; |
144 |
} |
145 |
|
146 |
|
147 |
if (foundBonds.size() > 0) { |
148 |
// sort the foundBonds by the score: |
149 |
std::sort(foundBonds.begin(), foundBonds.end()); |
150 |
|
151 |
int bestScore = foundBonds[0].first; |
152 |
std::vector<std::string> theKeys = foundBonds[0].second; |
153 |
|
154 |
BondType* bestType = bondTypeCont_.find(theKeys); |
155 |
|
156 |
return bestType; |
157 |
} else { |
158 |
//if no exact match found, try wild card match |
159 |
return bondTypeCont_.find(keys, wildCardAtomTypeName_); |
160 |
} |
161 |
} |
162 |
} |
163 |
|
164 |
BendType* ForceField::getBendType(const std::string &at1, |
165 |
const std::string &at2, |
166 |
const std::string &at3) { |
167 |
std::vector<std::string> keys; |
168 |
keys.push_back(at1); |
169 |
keys.push_back(at2); |
170 |
keys.push_back(at3); |
171 |
|
172 |
//try exact match first |
173 |
BendType* bendType = bendTypeCont_.find(keys); |
174 |
if (bendType) { |
175 |
return bendType; |
176 |
} else { |
177 |
|
178 |
AtomType* atype1; |
179 |
AtomType* atype2; |
180 |
AtomType* atype3; |
181 |
std::vector<std::string> at1key; |
182 |
at1key.push_back(at1); |
183 |
atype1 = atomTypeCont_.find(at1key); |
184 |
|
185 |
std::vector<std::string> at2key; |
186 |
at2key.push_back(at2); |
187 |
atype2 = atomTypeCont_.find(at2key); |
188 |
|
189 |
std::vector<std::string> at3key; |
190 |
at3key.push_back(at3); |
191 |
atype3 = atomTypeCont_.find(at3key); |
192 |
|
193 |
// query atom types for their chains of responsibility |
194 |
std::vector<AtomType*> at1Chain = atype1->allYourBase(); |
195 |
std::vector<AtomType*> at2Chain = atype2->allYourBase(); |
196 |
std::vector<AtomType*> at3Chain = atype3->allYourBase(); |
197 |
|
198 |
std::vector<AtomType*>::iterator i; |
199 |
std::vector<AtomType*>::iterator j; |
200 |
std::vector<AtomType*>::iterator k; |
201 |
|
202 |
int ii = 0; |
203 |
int jj = 0; |
204 |
int kk = 0; |
205 |
int IKscore; |
206 |
|
207 |
std::vector<tuple3<int, int, std::vector<std::string> > > foundBends; |
208 |
|
209 |
for (j = at2Chain.begin(); j != at2Chain.end(); j++) { |
210 |
ii = 0; |
211 |
for (i = at1Chain.begin(); i != at1Chain.end(); i++) { |
212 |
kk = 0; |
213 |
for (k = at3Chain.begin(); k != at3Chain.end(); k++) { |
214 |
|
215 |
IKscore = ii + kk; |
216 |
|
217 |
std::vector<std::string> myKeys; |
218 |
myKeys.push_back((*i)->getName()); |
219 |
myKeys.push_back((*j)->getName()); |
220 |
myKeys.push_back((*k)->getName()); |
221 |
|
222 |
BendType* bendType = bendTypeCont_.find(myKeys); |
223 |
if (bendType) { |
224 |
foundBends.push_back( make_tuple3(jj, IKscore, myKeys) ); |
225 |
} |
226 |
kk++; |
227 |
} |
228 |
ii++; |
229 |
} |
230 |
jj++; |
231 |
} |
232 |
|
233 |
if (foundBends.size() > 0) { |
234 |
std::sort(foundBends.begin(), foundBends.end()); |
235 |
int jscore = foundBends[0].first; |
236 |
int ikscore = foundBends[0].second; |
237 |
std::vector<std::string> theKeys = foundBends[0].third; |
238 |
|
239 |
BendType* bestType = bendTypeCont_.find(theKeys); |
240 |
return bestType; |
241 |
} else { |
242 |
//if no exact match found, try wild card match |
243 |
return bendTypeCont_.find(keys, wildCardAtomTypeName_); |
244 |
} |
245 |
} |
246 |
} |
247 |
|
248 |
TorsionType* ForceField::getTorsionType(const std::string &at1, |
249 |
const std::string &at2, |
250 |
const std::string &at3, |
251 |
const std::string &at4) { |
252 |
std::vector<std::string> keys; |
253 |
keys.push_back(at1); |
254 |
keys.push_back(at2); |
255 |
keys.push_back(at3); |
256 |
keys.push_back(at4); |
257 |
|
258 |
|
259 |
//try exact match first |
260 |
TorsionType* torsionType = torsionTypeCont_.find(keys); |
261 |
if (torsionType) { |
262 |
return torsionType; |
263 |
} else { |
264 |
|
265 |
AtomType* atype1; |
266 |
AtomType* atype2; |
267 |
AtomType* atype3; |
268 |
AtomType* atype4; |
269 |
std::vector<std::string> at1key; |
270 |
at1key.push_back(at1); |
271 |
atype1 = atomTypeCont_.find(at1key); |
272 |
|
273 |
std::vector<std::string> at2key; |
274 |
at2key.push_back(at2); |
275 |
atype2 = atomTypeCont_.find(at2key); |
276 |
|
277 |
std::vector<std::string> at3key; |
278 |
at3key.push_back(at3); |
279 |
atype3 = atomTypeCont_.find(at3key); |
280 |
|
281 |
std::vector<std::string> at4key; |
282 |
at4key.push_back(at4); |
283 |
atype4 = atomTypeCont_.find(at4key); |
284 |
|
285 |
// query atom types for their chains of responsibility |
286 |
std::vector<AtomType*> at1Chain = atype1->allYourBase(); |
287 |
std::vector<AtomType*> at2Chain = atype2->allYourBase(); |
288 |
std::vector<AtomType*> at3Chain = atype3->allYourBase(); |
289 |
std::vector<AtomType*> at4Chain = atype4->allYourBase(); |
290 |
|
291 |
std::vector<AtomType*>::iterator i; |
292 |
std::vector<AtomType*>::iterator j; |
293 |
std::vector<AtomType*>::iterator k; |
294 |
std::vector<AtomType*>::iterator l; |
295 |
|
296 |
int ii = 0; |
297 |
int jj = 0; |
298 |
int kk = 0; |
299 |
int ll = 0; |
300 |
int ILscore; |
301 |
int JKscore; |
302 |
|
303 |
std::vector<tuple3<int, int, std::vector<std::string> > > foundTorsions; |
304 |
|
305 |
for (j = at2Chain.begin(); j != at2Chain.end(); j++) { |
306 |
kk = 0; |
307 |
for (k = at3Chain.begin(); k != at3Chain.end(); k++) { |
308 |
ii = 0; |
309 |
for (i = at1Chain.begin(); i != at1Chain.end(); i++) { |
310 |
ll = 0; |
311 |
for (l = at4Chain.begin(); l != at4Chain.end(); l++) { |
312 |
|
313 |
ILscore = ii + ll; |
314 |
JKscore = jj + kk; |
315 |
|
316 |
std::vector<std::string> myKeys; |
317 |
myKeys.push_back((*i)->getName()); |
318 |
myKeys.push_back((*j)->getName()); |
319 |
myKeys.push_back((*k)->getName()); |
320 |
myKeys.push_back((*l)->getName()); |
321 |
|
322 |
TorsionType* torsionType = torsionTypeCont_.find(myKeys); |
323 |
if (torsionType) { |
324 |
foundTorsions.push_back( make_tuple3(JKscore, ILscore, myKeys) ); |
325 |
} |
326 |
ll++; |
327 |
} |
328 |
ii++; |
329 |
} |
330 |
kk++; |
331 |
} |
332 |
jj++; |
333 |
} |
334 |
|
335 |
if (foundTorsions.size() > 0) { |
336 |
std::sort(foundTorsions.begin(), foundTorsions.end()); |
337 |
int jkscore = foundTorsions[0].first; |
338 |
int ilscore = foundTorsions[0].second; |
339 |
std::vector<std::string> theKeys = foundTorsions[0].third; |
340 |
|
341 |
TorsionType* bestType = torsionTypeCont_.find(theKeys); |
342 |
return bestType; |
343 |
} else { |
344 |
//if no exact match found, try wild card match |
345 |
return torsionTypeCont_.find(keys, wildCardAtomTypeName_); |
346 |
} |
347 |
} |
348 |
} |
349 |
|
350 |
InversionType* ForceField::getInversionType(const std::string &at1, |
351 |
const std::string &at2, |
352 |
const std::string &at3, |
353 |
const std::string &at4) { |
354 |
std::vector<std::string> keys; |
355 |
keys.push_back(at1); |
356 |
keys.push_back(at2); |
357 |
keys.push_back(at3); |
358 |
keys.push_back(at4); |
359 |
|
360 |
//try exact match first |
361 |
InversionType* inversionType = inversionTypeCont_.permutedFindSkippingFirstElement(keys); |
362 |
if (inversionType) { |
363 |
return inversionType; |
364 |
} else { |
365 |
|
366 |
AtomType* atype1; |
367 |
AtomType* atype2; |
368 |
AtomType* atype3; |
369 |
AtomType* atype4; |
370 |
std::vector<std::string> at1key; |
371 |
at1key.push_back(at1); |
372 |
atype1 = atomTypeCont_.find(at1key); |
373 |
|
374 |
std::vector<std::string> at2key; |
375 |
at2key.push_back(at2); |
376 |
atype2 = atomTypeCont_.find(at2key); |
377 |
|
378 |
std::vector<std::string> at3key; |
379 |
at3key.push_back(at3); |
380 |
atype3 = atomTypeCont_.find(at3key); |
381 |
|
382 |
std::vector<std::string> at4key; |
383 |
at4key.push_back(at4); |
384 |
atype4 = atomTypeCont_.find(at4key); |
385 |
|
386 |
// query atom types for their chains of responsibility |
387 |
std::vector<AtomType*> at1Chain = atype1->allYourBase(); |
388 |
std::vector<AtomType*> at2Chain = atype2->allYourBase(); |
389 |
std::vector<AtomType*> at3Chain = atype3->allYourBase(); |
390 |
std::vector<AtomType*> at4Chain = atype4->allYourBase(); |
391 |
|
392 |
std::vector<AtomType*>::iterator i; |
393 |
std::vector<AtomType*>::iterator j; |
394 |
std::vector<AtomType*>::iterator k; |
395 |
std::vector<AtomType*>::iterator l; |
396 |
|
397 |
int ii = 0; |
398 |
int jj = 0; |
399 |
int kk = 0; |
400 |
int ll = 0; |
401 |
int Iscore; |
402 |
int JKLscore; |
403 |
|
404 |
std::vector<tuple3<int, int, std::vector<std::string> > > foundInversions; |
405 |
|
406 |
for (j = at2Chain.begin(); j != at2Chain.end(); j++) { |
407 |
kk = 0; |
408 |
for (k = at3Chain.begin(); k != at3Chain.end(); k++) { |
409 |
ii = 0; |
410 |
for (i = at1Chain.begin(); i != at1Chain.end(); i++) { |
411 |
ll = 0; |
412 |
for (l = at4Chain.begin(); l != at4Chain.end(); l++) { |
413 |
|
414 |
Iscore = ii; |
415 |
JKLscore = jj + kk + ll; |
416 |
|
417 |
std::vector<std::string> myKeys; |
418 |
myKeys.push_back((*i)->getName()); |
419 |
myKeys.push_back((*j)->getName()); |
420 |
myKeys.push_back((*k)->getName()); |
421 |
myKeys.push_back((*l)->getName()); |
422 |
|
423 |
InversionType* inversionType = inversionTypeCont_.permutedFindSkippingFirstElement(myKeys); |
424 |
if (inversionType) { |
425 |
foundInversions.push_back( make_tuple3(Iscore, JKLscore, myKeys) ); |
426 |
} |
427 |
ll++; |
428 |
} |
429 |
ii++; |
430 |
} |
431 |
kk++; |
432 |
} |
433 |
jj++; |
434 |
} |
435 |
|
436 |
if (foundInversions.size() > 0) { |
437 |
std::sort(foundInversions.begin(), foundInversions.end()); |
438 |
int iscore = foundInversions[0].first; |
439 |
int jklscore = foundInversions[0].second; |
440 |
std::vector<std::string> theKeys = foundInversions[0].third; |
441 |
|
442 |
InversionType* bestType = inversionTypeCont_.permutedFindSkippingFirstElement(theKeys); |
443 |
return bestType; |
444 |
} else { |
445 |
//if no exact match found, try wild card match |
446 |
return inversionTypeCont_.find(keys, wildCardAtomTypeName_); |
447 |
} |
448 |
} |
449 |
} |
450 |
|
451 |
NonBondedInteractionType* ForceField::getNonBondedInteractionType(const std::string &at1, const std::string &at2) { |
452 |
|
453 |
std::vector<std::string> keys; |
454 |
keys.push_back(at1); |
455 |
keys.push_back(at2); |
456 |
|
457 |
//try exact match first |
458 |
NonBondedInteractionType* nbiType = nonBondedInteractionTypeCont_.find(keys); |
459 |
if (nbiType) { |
460 |
return nbiType; |
461 |
} else { |
462 |
AtomType* atype1; |
463 |
AtomType* atype2; |
464 |
std::vector<std::string> at1key; |
465 |
at1key.push_back(at1); |
466 |
atype1 = atomTypeCont_.find(at1key); |
467 |
|
468 |
std::vector<std::string> at2key; |
469 |
at2key.push_back(at2); |
470 |
atype2 = atomTypeCont_.find(at2key); |
471 |
|
472 |
// query atom types for their chains of responsibility |
473 |
std::vector<AtomType*> at1Chain = atype1->allYourBase(); |
474 |
std::vector<AtomType*> at2Chain = atype2->allYourBase(); |
475 |
|
476 |
std::vector<AtomType*>::iterator i; |
477 |
std::vector<AtomType*>::iterator j; |
478 |
|
479 |
int ii = 0; |
480 |
int jj = 0; |
481 |
int nbiTypeScore; |
482 |
|
483 |
std::vector<std::pair<int, std::vector<std::string> > > foundNBI; |
484 |
|
485 |
for (i = at1Chain.begin(); i != at1Chain.end(); i++) { |
486 |
jj = 0; |
487 |
for (j = at2Chain.begin(); j != at2Chain.end(); j++) { |
488 |
|
489 |
nbiTypeScore = ii + jj; |
490 |
|
491 |
std::vector<std::string> myKeys; |
492 |
myKeys.push_back((*i)->getName()); |
493 |
myKeys.push_back((*j)->getName()); |
494 |
|
495 |
NonBondedInteractionType* nbiType = nonBondedInteractionTypeCont_.find(myKeys); |
496 |
if (nbiType) { |
497 |
foundNBI.push_back(std::make_pair(nbiTypeScore, myKeys)); |
498 |
} |
499 |
jj++; |
500 |
} |
501 |
ii++; |
502 |
} |
503 |
|
504 |
|
505 |
if (foundNBI.size() > 0) { |
506 |
// sort the foundNBI by the score: |
507 |
std::sort(foundNBI.begin(), foundNBI.end()); |
508 |
|
509 |
int bestScore = foundNBI[0].first; |
510 |
std::vector<std::string> theKeys = foundNBI[0].second; |
511 |
|
512 |
NonBondedInteractionType* bestType = nonBondedInteractionTypeCont_.find(theKeys); |
513 |
return bestType; |
514 |
} else { |
515 |
//if no exact match found, try wild card match |
516 |
return nonBondedInteractionTypeCont_.find(keys, wildCardAtomTypeName_); |
517 |
} |
518 |
} |
519 |
} |
520 |
|
521 |
BondType* ForceField::getExactBondType(const std::string &at1, |
522 |
const std::string &at2){ |
523 |
std::vector<std::string> keys; |
524 |
keys.push_back(at1); |
525 |
keys.push_back(at2); |
526 |
return bondTypeCont_.find(keys); |
527 |
} |
528 |
|
529 |
BendType* ForceField::getExactBendType(const std::string &at1, |
530 |
const std::string &at2, |
531 |
const std::string &at3){ |
532 |
std::vector<std::string> keys; |
533 |
keys.push_back(at1); |
534 |
keys.push_back(at2); |
535 |
keys.push_back(at3); |
536 |
return bendTypeCont_.find(keys); |
537 |
} |
538 |
|
539 |
TorsionType* ForceField::getExactTorsionType(const std::string &at1, |
540 |
const std::string &at2, |
541 |
const std::string &at3, |
542 |
const std::string &at4){ |
543 |
std::vector<std::string> keys; |
544 |
keys.push_back(at1); |
545 |
keys.push_back(at2); |
546 |
keys.push_back(at3); |
547 |
keys.push_back(at4); |
548 |
return torsionTypeCont_.find(keys); |
549 |
} |
550 |
|
551 |
InversionType* ForceField::getExactInversionType(const std::string &at1, |
552 |
const std::string &at2, |
553 |
const std::string &at3, |
554 |
const std::string &at4){ |
555 |
std::vector<std::string> keys; |
556 |
keys.push_back(at1); |
557 |
keys.push_back(at2); |
558 |
keys.push_back(at3); |
559 |
keys.push_back(at4); |
560 |
return inversionTypeCont_.find(keys); |
561 |
} |
562 |
|
563 |
NonBondedInteractionType* ForceField::getExactNonBondedInteractionType(const std::string &at1, const std::string &at2){ |
564 |
std::vector<std::string> keys; |
565 |
keys.push_back(at1); |
566 |
keys.push_back(at2); |
567 |
return nonBondedInteractionTypeCont_.find(keys); |
568 |
} |
569 |
|
570 |
|
571 |
bool ForceField::addAtomType(const std::string &at, AtomType* atomType) { |
572 |
std::vector<std::string> keys; |
573 |
keys.push_back(at); |
574 |
atypeIdentToName[atomType->getIdent()] = at; |
575 |
return atomTypeCont_.add(keys, atomType); |
576 |
} |
577 |
|
578 |
bool ForceField::replaceAtomType(const std::string &at, AtomType* atomType) { |
579 |
std::vector<std::string> keys; |
580 |
keys.push_back(at); |
581 |
atypeIdentToName[atomType->getIdent()] = at; |
582 |
return atomTypeCont_.replace(keys, atomType); |
583 |
} |
584 |
|
585 |
bool ForceField::addBondType(const std::string &at1, const std::string &at2, |
586 |
BondType* bondType) { |
587 |
std::vector<std::string> keys; |
588 |
keys.push_back(at1); |
589 |
keys.push_back(at2); |
590 |
return bondTypeCont_.add(keys, bondType); |
591 |
} |
592 |
|
593 |
bool ForceField::addBendType(const std::string &at1, const std::string &at2, |
594 |
const std::string &at3, BendType* bendType) { |
595 |
std::vector<std::string> keys; |
596 |
keys.push_back(at1); |
597 |
keys.push_back(at2); |
598 |
keys.push_back(at3); |
599 |
return bendTypeCont_.add(keys, bendType); |
600 |
} |
601 |
|
602 |
bool ForceField::addTorsionType(const std::string &at1, |
603 |
const std::string &at2, |
604 |
const std::string &at3, |
605 |
const std::string &at4, |
606 |
TorsionType* torsionType) { |
607 |
std::vector<std::string> keys; |
608 |
keys.push_back(at1); |
609 |
keys.push_back(at2); |
610 |
keys.push_back(at3); |
611 |
keys.push_back(at4); |
612 |
return torsionTypeCont_.add(keys, torsionType); |
613 |
} |
614 |
|
615 |
bool ForceField::addInversionType(const std::string &at1, |
616 |
const std::string &at2, |
617 |
const std::string &at3, |
618 |
const std::string &at4, |
619 |
InversionType* inversionType) { |
620 |
std::vector<std::string> keys; |
621 |
keys.push_back(at1); |
622 |
keys.push_back(at2); |
623 |
keys.push_back(at3); |
624 |
keys.push_back(at4); |
625 |
return inversionTypeCont_.add(keys, inversionType); |
626 |
} |
627 |
|
628 |
bool ForceField::addNonBondedInteractionType(const std::string &at1, |
629 |
const std::string &at2, |
630 |
NonBondedInteractionType* nbiType) { |
631 |
std::vector<std::string> keys; |
632 |
keys.push_back(at1); |
633 |
keys.push_back(at2); |
634 |
return nonBondedInteractionTypeCont_.add(keys, nbiType); |
635 |
} |
636 |
|
637 |
RealType ForceField::getRcutFromAtomType(AtomType* at) { |
638 |
/**@todo */ |
639 |
GenericData* data; |
640 |
RealType rcut = 0.0; |
641 |
|
642 |
if (at->isLennardJones()) { |
643 |
data = at->getPropertyByName("LennardJones"); |
644 |
if (data != NULL) { |
645 |
LJParamGenericData* ljData = dynamic_cast<LJParamGenericData*>(data); |
646 |
|
647 |
if (ljData != NULL) { |
648 |
LJParam ljParam = ljData->getData(); |
649 |
|
650 |
//by default use 2.5*sigma as cutoff radius |
651 |
rcut = 2.5 * ljParam.sigma; |
652 |
|
653 |
} else { |
654 |
sprintf( painCave.errMsg, |
655 |
"Can not cast GenericData to LJParam\n"); |
656 |
painCave.severity = OPENMD_ERROR; |
657 |
painCave.isFatal = 1; |
658 |
simError(); |
659 |
} |
660 |
} else { |
661 |
sprintf( painCave.errMsg, "Can not find Parameters for LennardJones\n"); |
662 |
painCave.severity = OPENMD_ERROR; |
663 |
painCave.isFatal = 1; |
664 |
simError(); |
665 |
} |
666 |
} |
667 |
return rcut; |
668 |
} |
669 |
|
670 |
|
671 |
ifstrstream* ForceField::openForceFieldFile(const std::string& filename) { |
672 |
std::string forceFieldFilename(filename); |
673 |
ifstrstream* ffStream = new ifstrstream(); |
674 |
|
675 |
//try to open the force filed file in current directory first |
676 |
ffStream->open(forceFieldFilename.c_str()); |
677 |
if(!ffStream->is_open()){ |
678 |
|
679 |
forceFieldFilename = ffPath_ + "/" + forceFieldFilename; |
680 |
ffStream->open( forceFieldFilename.c_str() ); |
681 |
|
682 |
//if current directory does not contain the force field file, |
683 |
//try to open it in the path |
684 |
if(!ffStream->is_open()){ |
685 |
|
686 |
sprintf( painCave.errMsg, |
687 |
"Error opening the force field parameter file:\n" |
688 |
"\t%s\n" |
689 |
"\tHave you tried setting the FORCE_PARAM_PATH environment " |
690 |
"variable?\n", |
691 |
forceFieldFilename.c_str() ); |
692 |
painCave.severity = OPENMD_ERROR; |
693 |
painCave.isFatal = 1; |
694 |
simError(); |
695 |
} |
696 |
} |
697 |
return ffStream; |
698 |
} |
699 |
|
700 |
} //end namespace OpenMD |