1 |
/* |
2 |
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
* |
4 |
* The University of Notre Dame grants you ("Licensee") a |
5 |
* non-exclusive, royalty free, license to use, modify and |
6 |
* redistribute this software in source and binary code form, provided |
7 |
* that the following conditions are met: |
8 |
* |
9 |
* 1. Redistributions of source code must retain the above copyright |
10 |
* notice, this list of conditions and the following disclaimer. |
11 |
* |
12 |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
* notice, this list of conditions and the following disclaimer in the |
14 |
* documentation and/or other materials provided with the |
15 |
* distribution. |
16 |
* |
17 |
* This software is provided "AS IS," without a warranty of any |
18 |
* kind. All express or implied conditions, representations and |
19 |
* warranties, including any implied warranty of merchantability, |
20 |
* fitness for a particular purpose or non-infringement, are hereby |
21 |
* excluded. The University of Notre Dame and its licensors shall not |
22 |
* be liable for any damages suffered by licensee as a result of |
23 |
* using, modifying or distributing the software or its |
24 |
* derivatives. In no event will the University of Notre Dame or its |
25 |
* licensors be liable for any lost revenue, profit or data, or for |
26 |
* direct, indirect, special, consequential, incidental or punitive |
27 |
* damages, however caused and regardless of the theory of liability, |
28 |
* arising out of the use of or inability to use software, even if the |
29 |
* University of Notre Dame has been advised of the possibility of |
30 |
* such damages. |
31 |
* |
32 |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
* research, please cite the appropriate papers when you publish your |
34 |
* work. Good starting points are: |
35 |
* |
36 |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 |
* [4] Vardeman & Gezelter, in progress (2009). |
40 |
*/ |
41 |
|
42 |
/** |
43 |
* @file ForceField.cpp |
44 |
* @author tlin |
45 |
* @date 11/04/2004 |
46 |
* @time 22:51am |
47 |
* @version 1.0 |
48 |
*/ |
49 |
|
50 |
#include <algorithm> |
51 |
#include "UseTheForce/ForceField.hpp" |
52 |
#include "utils/simError.h" |
53 |
#include "utils/Tuple.hpp" |
54 |
namespace OpenMD { |
55 |
|
56 |
ForceField::ForceField() { |
57 |
|
58 |
char* tempPath; |
59 |
tempPath = getenv("FORCE_PARAM_PATH"); |
60 |
|
61 |
if (tempPath == NULL) { |
62 |
//convert a macro from compiler to a string in c++ |
63 |
STR_DEFINE(ffPath_, FRC_PATH ); |
64 |
} else { |
65 |
ffPath_ = tempPath; |
66 |
} |
67 |
} |
68 |
|
69 |
/** |
70 |
* getAtomType by string |
71 |
* |
72 |
* finds the requested atom type in this force field using the string |
73 |
* name of the atom type. |
74 |
*/ |
75 |
AtomType* ForceField::getAtomType(const std::string &at) { |
76 |
std::vector<std::string> keys; |
77 |
keys.push_back(at); |
78 |
return atomTypeCont_.find(keys); |
79 |
} |
80 |
|
81 |
/** |
82 |
* getAtomType by ident |
83 |
* |
84 |
* finds the requested atom type in this force field using the |
85 |
* integer ident instead of the string name of the atom type. |
86 |
*/ |
87 |
AtomType* ForceField::getAtomType(int ident) { |
88 |
std::string at = atypeIdentToName.find(ident)->second; |
89 |
return getAtomType(at); |
90 |
} |
91 |
|
92 |
BondType* ForceField::getBondType(const std::string &at1, |
93 |
const std::string &at2) { |
94 |
std::vector<std::string> keys; |
95 |
keys.push_back(at1); |
96 |
keys.push_back(at2); |
97 |
|
98 |
//try exact match first |
99 |
BondType* bondType = bondTypeCont_.find(keys); |
100 |
if (bondType) { |
101 |
return bondType; |
102 |
} else { |
103 |
AtomType* atype1; |
104 |
AtomType* atype2; |
105 |
std::vector<std::string> at1key; |
106 |
at1key.push_back(at1); |
107 |
atype1 = atomTypeCont_.find(at1key); |
108 |
|
109 |
std::vector<std::string> at2key; |
110 |
at2key.push_back(at2); |
111 |
atype2 = atomTypeCont_.find(at2key); |
112 |
|
113 |
// query atom types for their chains of responsibility |
114 |
std::vector<AtomType*> at1Chain = atype1->allYourBase(); |
115 |
std::vector<AtomType*> at2Chain = atype2->allYourBase(); |
116 |
|
117 |
std::vector<AtomType*>::iterator i; |
118 |
std::vector<AtomType*>::iterator j; |
119 |
|
120 |
int ii = 0; |
121 |
int jj = 0; |
122 |
int bondTypeScore; |
123 |
|
124 |
std::vector<std::pair<int, std::vector<std::string> > > foundBonds; |
125 |
|
126 |
for (i = at1Chain.begin(); i != at1Chain.end(); i++) { |
127 |
jj = 0; |
128 |
for (j = at2Chain.begin(); j != at2Chain.end(); j++) { |
129 |
|
130 |
bondTypeScore = ii + jj; |
131 |
|
132 |
std::vector<std::string> myKeys; |
133 |
myKeys.push_back((*i)->getName()); |
134 |
myKeys.push_back((*j)->getName()); |
135 |
|
136 |
BondType* bondType = bondTypeCont_.find(myKeys); |
137 |
if (bondType) { |
138 |
foundBonds.push_back(std::make_pair(bondTypeScore, myKeys)); |
139 |
} |
140 |
jj++; |
141 |
} |
142 |
ii++; |
143 |
} |
144 |
|
145 |
|
146 |
if (foundBonds.size() > 0) { |
147 |
// sort the foundBonds by the score: |
148 |
std::sort(foundBonds.begin(), foundBonds.end()); |
149 |
|
150 |
int bestScore = foundBonds[0].first; |
151 |
std::vector<std::string> theKeys = foundBonds[0].second; |
152 |
|
153 |
BondType* bestType = bondTypeCont_.find(theKeys); |
154 |
|
155 |
return bestType; |
156 |
} else { |
157 |
//if no exact match found, try wild card match |
158 |
return bondTypeCont_.find(keys, wildCardAtomTypeName_); |
159 |
} |
160 |
} |
161 |
} |
162 |
|
163 |
BendType* ForceField::getBendType(const std::string &at1, |
164 |
const std::string &at2, |
165 |
const std::string &at3) { |
166 |
std::vector<std::string> keys; |
167 |
keys.push_back(at1); |
168 |
keys.push_back(at2); |
169 |
keys.push_back(at3); |
170 |
|
171 |
//try exact match first |
172 |
BendType* bendType = bendTypeCont_.find(keys); |
173 |
if (bendType) { |
174 |
return bendType; |
175 |
} else { |
176 |
|
177 |
AtomType* atype1; |
178 |
AtomType* atype2; |
179 |
AtomType* atype3; |
180 |
std::vector<std::string> at1key; |
181 |
at1key.push_back(at1); |
182 |
atype1 = atomTypeCont_.find(at1key); |
183 |
|
184 |
std::vector<std::string> at2key; |
185 |
at2key.push_back(at2); |
186 |
atype2 = atomTypeCont_.find(at2key); |
187 |
|
188 |
std::vector<std::string> at3key; |
189 |
at3key.push_back(at3); |
190 |
atype3 = atomTypeCont_.find(at3key); |
191 |
|
192 |
// query atom types for their chains of responsibility |
193 |
std::vector<AtomType*> at1Chain = atype1->allYourBase(); |
194 |
std::vector<AtomType*> at2Chain = atype2->allYourBase(); |
195 |
std::vector<AtomType*> at3Chain = atype3->allYourBase(); |
196 |
|
197 |
std::vector<AtomType*>::iterator i; |
198 |
std::vector<AtomType*>::iterator j; |
199 |
std::vector<AtomType*>::iterator k; |
200 |
|
201 |
int ii = 0; |
202 |
int jj = 0; |
203 |
int kk = 0; |
204 |
int IKscore; |
205 |
|
206 |
std::vector<tuple3<int, int, std::vector<std::string> > > foundBends; |
207 |
|
208 |
for (j = at2Chain.begin(); j != at2Chain.end(); j++) { |
209 |
ii = 0; |
210 |
for (i = at1Chain.begin(); i != at1Chain.end(); i++) { |
211 |
kk = 0; |
212 |
for (k = at3Chain.begin(); k != at3Chain.end(); k++) { |
213 |
|
214 |
IKscore = ii + kk; |
215 |
|
216 |
std::vector<std::string> myKeys; |
217 |
myKeys.push_back((*i)->getName()); |
218 |
myKeys.push_back((*j)->getName()); |
219 |
myKeys.push_back((*k)->getName()); |
220 |
|
221 |
BendType* bendType = bendTypeCont_.find(myKeys); |
222 |
if (bendType) { |
223 |
foundBends.push_back( make_tuple3(jj, IKscore, myKeys) ); |
224 |
} |
225 |
kk++; |
226 |
} |
227 |
ii++; |
228 |
} |
229 |
jj++; |
230 |
} |
231 |
|
232 |
if (foundBends.size() > 0) { |
233 |
std::sort(foundBends.begin(), foundBends.end()); |
234 |
int jscore = foundBends[0].first; |
235 |
int ikscore = foundBends[0].second; |
236 |
std::vector<std::string> theKeys = foundBends[0].third; |
237 |
|
238 |
BendType* bestType = bendTypeCont_.find(theKeys); |
239 |
return bestType; |
240 |
} else { |
241 |
//if no exact match found, try wild card match |
242 |
return bendTypeCont_.find(keys, wildCardAtomTypeName_); |
243 |
} |
244 |
} |
245 |
} |
246 |
|
247 |
TorsionType* ForceField::getTorsionType(const std::string &at1, |
248 |
const std::string &at2, |
249 |
const std::string &at3, |
250 |
const std::string &at4) { |
251 |
std::vector<std::string> keys; |
252 |
keys.push_back(at1); |
253 |
keys.push_back(at2); |
254 |
keys.push_back(at3); |
255 |
keys.push_back(at4); |
256 |
|
257 |
|
258 |
//try exact match first |
259 |
TorsionType* torsionType = torsionTypeCont_.find(keys); |
260 |
if (torsionType) { |
261 |
return torsionType; |
262 |
} else { |
263 |
|
264 |
AtomType* atype1; |
265 |
AtomType* atype2; |
266 |
AtomType* atype3; |
267 |
AtomType* atype4; |
268 |
std::vector<std::string> at1key; |
269 |
at1key.push_back(at1); |
270 |
atype1 = atomTypeCont_.find(at1key); |
271 |
|
272 |
std::vector<std::string> at2key; |
273 |
at2key.push_back(at2); |
274 |
atype2 = atomTypeCont_.find(at2key); |
275 |
|
276 |
std::vector<std::string> at3key; |
277 |
at3key.push_back(at3); |
278 |
atype3 = atomTypeCont_.find(at3key); |
279 |
|
280 |
std::vector<std::string> at4key; |
281 |
at4key.push_back(at4); |
282 |
atype4 = atomTypeCont_.find(at4key); |
283 |
|
284 |
// query atom types for their chains of responsibility |
285 |
std::vector<AtomType*> at1Chain = atype1->allYourBase(); |
286 |
std::vector<AtomType*> at2Chain = atype2->allYourBase(); |
287 |
std::vector<AtomType*> at3Chain = atype3->allYourBase(); |
288 |
std::vector<AtomType*> at4Chain = atype4->allYourBase(); |
289 |
|
290 |
std::vector<AtomType*>::iterator i; |
291 |
std::vector<AtomType*>::iterator j; |
292 |
std::vector<AtomType*>::iterator k; |
293 |
std::vector<AtomType*>::iterator l; |
294 |
|
295 |
int ii = 0; |
296 |
int jj = 0; |
297 |
int kk = 0; |
298 |
int ll = 0; |
299 |
int ILscore; |
300 |
int JKscore; |
301 |
|
302 |
std::vector<tuple3<int, int, std::vector<std::string> > > foundTorsions; |
303 |
|
304 |
for (j = at2Chain.begin(); j != at2Chain.end(); j++) { |
305 |
kk = 0; |
306 |
for (k = at3Chain.begin(); k != at3Chain.end(); k++) { |
307 |
ii = 0; |
308 |
for (i = at1Chain.begin(); i != at1Chain.end(); i++) { |
309 |
ll = 0; |
310 |
for (l = at4Chain.begin(); l != at4Chain.end(); l++) { |
311 |
|
312 |
ILscore = ii + ll; |
313 |
JKscore = jj + kk; |
314 |
|
315 |
std::vector<std::string> myKeys; |
316 |
myKeys.push_back((*i)->getName()); |
317 |
myKeys.push_back((*j)->getName()); |
318 |
myKeys.push_back((*k)->getName()); |
319 |
myKeys.push_back((*l)->getName()); |
320 |
|
321 |
TorsionType* torsionType = torsionTypeCont_.find(myKeys); |
322 |
if (torsionType) { |
323 |
foundTorsions.push_back( make_tuple3(JKscore, ILscore, myKeys) ); |
324 |
} |
325 |
ll++; |
326 |
} |
327 |
ii++; |
328 |
} |
329 |
kk++; |
330 |
} |
331 |
jj++; |
332 |
} |
333 |
|
334 |
if (foundTorsions.size() > 0) { |
335 |
std::sort(foundTorsions.begin(), foundTorsions.end()); |
336 |
int jkscore = foundTorsions[0].first; |
337 |
int ilscore = foundTorsions[0].second; |
338 |
std::vector<std::string> theKeys = foundTorsions[0].third; |
339 |
|
340 |
TorsionType* bestType = torsionTypeCont_.find(theKeys); |
341 |
return bestType; |
342 |
} else { |
343 |
//if no exact match found, try wild card match |
344 |
return torsionTypeCont_.find(keys, wildCardAtomTypeName_); |
345 |
} |
346 |
} |
347 |
} |
348 |
|
349 |
InversionType* ForceField::getInversionType(const std::string &at1, |
350 |
const std::string &at2, |
351 |
const std::string &at3, |
352 |
const std::string &at4) { |
353 |
std::vector<std::string> keys; |
354 |
keys.push_back(at1); |
355 |
keys.push_back(at2); |
356 |
keys.push_back(at3); |
357 |
keys.push_back(at4); |
358 |
|
359 |
//try exact match first |
360 |
InversionType* inversionType = inversionTypeCont_.permutedFindSkippingFirstElement(keys); |
361 |
if (inversionType) { |
362 |
return inversionType; |
363 |
} else { |
364 |
|
365 |
AtomType* atype1; |
366 |
AtomType* atype2; |
367 |
AtomType* atype3; |
368 |
AtomType* atype4; |
369 |
std::vector<std::string> at1key; |
370 |
at1key.push_back(at1); |
371 |
atype1 = atomTypeCont_.find(at1key); |
372 |
|
373 |
std::vector<std::string> at2key; |
374 |
at2key.push_back(at2); |
375 |
atype2 = atomTypeCont_.find(at2key); |
376 |
|
377 |
std::vector<std::string> at3key; |
378 |
at3key.push_back(at3); |
379 |
atype3 = atomTypeCont_.find(at3key); |
380 |
|
381 |
std::vector<std::string> at4key; |
382 |
at4key.push_back(at4); |
383 |
atype4 = atomTypeCont_.find(at4key); |
384 |
|
385 |
// query atom types for their chains of responsibility |
386 |
std::vector<AtomType*> at1Chain = atype1->allYourBase(); |
387 |
std::vector<AtomType*> at2Chain = atype2->allYourBase(); |
388 |
std::vector<AtomType*> at3Chain = atype3->allYourBase(); |
389 |
std::vector<AtomType*> at4Chain = atype4->allYourBase(); |
390 |
|
391 |
std::vector<AtomType*>::iterator i; |
392 |
std::vector<AtomType*>::iterator j; |
393 |
std::vector<AtomType*>::iterator k; |
394 |
std::vector<AtomType*>::iterator l; |
395 |
|
396 |
int ii = 0; |
397 |
int jj = 0; |
398 |
int kk = 0; |
399 |
int ll = 0; |
400 |
int Iscore; |
401 |
int JKLscore; |
402 |
|
403 |
std::vector<tuple3<int, int, std::vector<std::string> > > foundInversions; |
404 |
|
405 |
for (j = at2Chain.begin(); j != at2Chain.end(); j++) { |
406 |
kk = 0; |
407 |
for (k = at3Chain.begin(); k != at3Chain.end(); k++) { |
408 |
ii = 0; |
409 |
for (i = at1Chain.begin(); i != at1Chain.end(); i++) { |
410 |
ll = 0; |
411 |
for (l = at4Chain.begin(); l != at4Chain.end(); l++) { |
412 |
|
413 |
Iscore = ii; |
414 |
JKLscore = jj + kk + ll; |
415 |
|
416 |
std::vector<std::string> myKeys; |
417 |
myKeys.push_back((*i)->getName()); |
418 |
myKeys.push_back((*j)->getName()); |
419 |
myKeys.push_back((*k)->getName()); |
420 |
myKeys.push_back((*l)->getName()); |
421 |
|
422 |
InversionType* inversionType = inversionTypeCont_.permutedFindSkippingFirstElement(myKeys); |
423 |
if (inversionType) { |
424 |
foundInversions.push_back( make_tuple3(Iscore, JKLscore, myKeys) ); |
425 |
} |
426 |
ll++; |
427 |
} |
428 |
ii++; |
429 |
} |
430 |
kk++; |
431 |
} |
432 |
jj++; |
433 |
} |
434 |
|
435 |
if (foundInversions.size() > 0) { |
436 |
std::sort(foundInversions.begin(), foundInversions.end()); |
437 |
int iscore = foundInversions[0].first; |
438 |
int jklscore = foundInversions[0].second; |
439 |
std::vector<std::string> theKeys = foundInversions[0].third; |
440 |
|
441 |
InversionType* bestType = inversionTypeCont_.permutedFindSkippingFirstElement(theKeys); |
442 |
return bestType; |
443 |
} else { |
444 |
//if no exact match found, try wild card match |
445 |
return inversionTypeCont_.find(keys, wildCardAtomTypeName_); |
446 |
} |
447 |
} |
448 |
} |
449 |
|
450 |
NonBondedInteractionType* ForceField::getNonBondedInteractionType(const std::string &at1, const std::string &at2) { |
451 |
|
452 |
std::vector<std::string> keys; |
453 |
keys.push_back(at1); |
454 |
keys.push_back(at2); |
455 |
|
456 |
//try exact match first |
457 |
NonBondedInteractionType* nbiType = nonBondedInteractionTypeCont_.find(keys); |
458 |
if (nbiType) { |
459 |
return nbiType; |
460 |
} else { |
461 |
AtomType* atype1; |
462 |
AtomType* atype2; |
463 |
std::vector<std::string> at1key; |
464 |
at1key.push_back(at1); |
465 |
atype1 = atomTypeCont_.find(at1key); |
466 |
|
467 |
std::vector<std::string> at2key; |
468 |
at2key.push_back(at2); |
469 |
atype2 = atomTypeCont_.find(at2key); |
470 |
|
471 |
// query atom types for their chains of responsibility |
472 |
std::vector<AtomType*> at1Chain = atype1->allYourBase(); |
473 |
std::vector<AtomType*> at2Chain = atype2->allYourBase(); |
474 |
|
475 |
std::vector<AtomType*>::iterator i; |
476 |
std::vector<AtomType*>::iterator j; |
477 |
|
478 |
int ii = 0; |
479 |
int jj = 0; |
480 |
int nbiTypeScore; |
481 |
|
482 |
std::vector<std::pair<int, std::vector<std::string> > > foundNBI; |
483 |
|
484 |
for (i = at1Chain.begin(); i != at1Chain.end(); i++) { |
485 |
jj = 0; |
486 |
for (j = at2Chain.begin(); j != at2Chain.end(); j++) { |
487 |
|
488 |
nbiTypeScore = ii + jj; |
489 |
|
490 |
std::vector<std::string> myKeys; |
491 |
myKeys.push_back((*i)->getName()); |
492 |
myKeys.push_back((*j)->getName()); |
493 |
|
494 |
NonBondedInteractionType* nbiType = nonBondedInteractionTypeCont_.find(myKeys); |
495 |
if (nbiType) { |
496 |
foundNBI.push_back(std::make_pair(nbiTypeScore, myKeys)); |
497 |
} |
498 |
jj++; |
499 |
} |
500 |
ii++; |
501 |
} |
502 |
|
503 |
|
504 |
if (foundNBI.size() > 0) { |
505 |
// sort the foundNBI by the score: |
506 |
std::sort(foundNBI.begin(), foundNBI.end()); |
507 |
|
508 |
int bestScore = foundNBI[0].first; |
509 |
std::vector<std::string> theKeys = foundNBI[0].second; |
510 |
|
511 |
NonBondedInteractionType* bestType = nonBondedInteractionTypeCont_.find(theKeys); |
512 |
return bestType; |
513 |
} else { |
514 |
//if no exact match found, try wild card match |
515 |
return nonBondedInteractionTypeCont_.find(keys, wildCardAtomTypeName_); |
516 |
} |
517 |
} |
518 |
} |
519 |
|
520 |
BondType* ForceField::getExactBondType(const std::string &at1, |
521 |
const std::string &at2){ |
522 |
std::vector<std::string> keys; |
523 |
keys.push_back(at1); |
524 |
keys.push_back(at2); |
525 |
return bondTypeCont_.find(keys); |
526 |
} |
527 |
|
528 |
BendType* ForceField::getExactBendType(const std::string &at1, |
529 |
const std::string &at2, |
530 |
const std::string &at3){ |
531 |
std::vector<std::string> keys; |
532 |
keys.push_back(at1); |
533 |
keys.push_back(at2); |
534 |
keys.push_back(at3); |
535 |
return bendTypeCont_.find(keys); |
536 |
} |
537 |
|
538 |
TorsionType* ForceField::getExactTorsionType(const std::string &at1, |
539 |
const std::string &at2, |
540 |
const std::string &at3, |
541 |
const std::string &at4){ |
542 |
std::vector<std::string> keys; |
543 |
keys.push_back(at1); |
544 |
keys.push_back(at2); |
545 |
keys.push_back(at3); |
546 |
keys.push_back(at4); |
547 |
return torsionTypeCont_.find(keys); |
548 |
} |
549 |
|
550 |
InversionType* ForceField::getExactInversionType(const std::string &at1, |
551 |
const std::string &at2, |
552 |
const std::string &at3, |
553 |
const std::string &at4){ |
554 |
std::vector<std::string> keys; |
555 |
keys.push_back(at1); |
556 |
keys.push_back(at2); |
557 |
keys.push_back(at3); |
558 |
keys.push_back(at4); |
559 |
return inversionTypeCont_.find(keys); |
560 |
} |
561 |
|
562 |
NonBondedInteractionType* ForceField::getExactNonBondedInteractionType(const std::string &at1, const std::string &at2){ |
563 |
std::vector<std::string> keys; |
564 |
keys.push_back(at1); |
565 |
keys.push_back(at2); |
566 |
return nonBondedInteractionTypeCont_.find(keys); |
567 |
} |
568 |
|
569 |
|
570 |
bool ForceField::addAtomType(const std::string &at, AtomType* atomType) { |
571 |
std::vector<std::string> keys; |
572 |
keys.push_back(at); |
573 |
atypeIdentToName[atomType->getIdent()] = at; |
574 |
return atomTypeCont_.add(keys, atomType); |
575 |
} |
576 |
|
577 |
bool ForceField::replaceAtomType(const std::string &at, AtomType* atomType) { |
578 |
std::vector<std::string> keys; |
579 |
keys.push_back(at); |
580 |
atypeIdentToName[atomType->getIdent()] = at; |
581 |
return atomTypeCont_.replace(keys, atomType); |
582 |
} |
583 |
|
584 |
bool ForceField::addBondType(const std::string &at1, const std::string &at2, |
585 |
BondType* bondType) { |
586 |
std::vector<std::string> keys; |
587 |
keys.push_back(at1); |
588 |
keys.push_back(at2); |
589 |
return bondTypeCont_.add(keys, bondType); |
590 |
} |
591 |
|
592 |
bool ForceField::addBendType(const std::string &at1, const std::string &at2, |
593 |
const std::string &at3, BendType* bendType) { |
594 |
std::vector<std::string> keys; |
595 |
keys.push_back(at1); |
596 |
keys.push_back(at2); |
597 |
keys.push_back(at3); |
598 |
return bendTypeCont_.add(keys, bendType); |
599 |
} |
600 |
|
601 |
bool ForceField::addTorsionType(const std::string &at1, |
602 |
const std::string &at2, |
603 |
const std::string &at3, |
604 |
const std::string &at4, |
605 |
TorsionType* torsionType) { |
606 |
std::vector<std::string> keys; |
607 |
keys.push_back(at1); |
608 |
keys.push_back(at2); |
609 |
keys.push_back(at3); |
610 |
keys.push_back(at4); |
611 |
return torsionTypeCont_.add(keys, torsionType); |
612 |
} |
613 |
|
614 |
bool ForceField::addInversionType(const std::string &at1, |
615 |
const std::string &at2, |
616 |
const std::string &at3, |
617 |
const std::string &at4, |
618 |
InversionType* inversionType) { |
619 |
std::vector<std::string> keys; |
620 |
keys.push_back(at1); |
621 |
keys.push_back(at2); |
622 |
keys.push_back(at3); |
623 |
keys.push_back(at4); |
624 |
return inversionTypeCont_.add(keys, inversionType); |
625 |
} |
626 |
|
627 |
bool ForceField::addNonBondedInteractionType(const std::string &at1, |
628 |
const std::string &at2, |
629 |
NonBondedInteractionType* nbiType) { |
630 |
std::vector<std::string> keys; |
631 |
keys.push_back(at1); |
632 |
keys.push_back(at2); |
633 |
return nonBondedInteractionTypeCont_.add(keys, nbiType); |
634 |
} |
635 |
|
636 |
RealType ForceField::getRcutFromAtomType(AtomType* at) { |
637 |
/**@todo */ |
638 |
GenericData* data; |
639 |
RealType rcut = 0.0; |
640 |
|
641 |
if (at->isLennardJones()) { |
642 |
data = at->getPropertyByName("LennardJones"); |
643 |
if (data != NULL) { |
644 |
LJParamGenericData* ljData = dynamic_cast<LJParamGenericData*>(data); |
645 |
|
646 |
if (ljData != NULL) { |
647 |
LJParam ljParam = ljData->getData(); |
648 |
|
649 |
//by default use 2.5*sigma as cutoff radius |
650 |
rcut = 2.5 * ljParam.sigma; |
651 |
|
652 |
} else { |
653 |
sprintf( painCave.errMsg, |
654 |
"Can not cast GenericData to LJParam\n"); |
655 |
painCave.severity = OPENMD_ERROR; |
656 |
painCave.isFatal = 1; |
657 |
simError(); |
658 |
} |
659 |
} else { |
660 |
sprintf( painCave.errMsg, "Can not find Parameters for LennardJones\n"); |
661 |
painCave.severity = OPENMD_ERROR; |
662 |
painCave.isFatal = 1; |
663 |
simError(); |
664 |
} |
665 |
} |
666 |
return rcut; |
667 |
} |
668 |
|
669 |
|
670 |
ifstrstream* ForceField::openForceFieldFile(const std::string& filename) { |
671 |
std::string forceFieldFilename(filename); |
672 |
ifstrstream* ffStream = new ifstrstream(); |
673 |
|
674 |
//try to open the force filed file in current directory first |
675 |
ffStream->open(forceFieldFilename.c_str()); |
676 |
if(!ffStream->is_open()){ |
677 |
|
678 |
forceFieldFilename = ffPath_ + "/" + forceFieldFilename; |
679 |
ffStream->open( forceFieldFilename.c_str() ); |
680 |
|
681 |
//if current directory does not contain the force field file, |
682 |
//try to open it in the path |
683 |
if(!ffStream->is_open()){ |
684 |
|
685 |
sprintf( painCave.errMsg, |
686 |
"Error opening the force field parameter file:\n" |
687 |
"\t%s\n" |
688 |
"\tHave you tried setting the FORCE_PARAM_PATH environment " |
689 |
"variable?\n", |
690 |
forceFieldFilename.c_str() ); |
691 |
painCave.severity = OPENMD_ERROR; |
692 |
painCave.isFatal = 1; |
693 |
simError(); |
694 |
} |
695 |
} |
696 |
return ffStream; |
697 |
} |
698 |
|
699 |
} //end namespace OpenMD |