1 |
/* |
2 |
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
* |
4 |
* The University of Notre Dame grants you ("Licensee") a |
5 |
* non-exclusive, royalty free, license to use, modify and |
6 |
* redistribute this software in source and binary code form, provided |
7 |
* that the following conditions are met: |
8 |
* |
9 |
* 1. Redistributions of source code must retain the above copyright |
10 |
* notice, this list of conditions and the following disclaimer. |
11 |
* |
12 |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
* notice, this list of conditions and the following disclaimer in the |
14 |
* documentation and/or other materials provided with the |
15 |
* distribution. |
16 |
* |
17 |
* This software is provided "AS IS," without a warranty of any |
18 |
* kind. All express or implied conditions, representations and |
19 |
* warranties, including any implied warranty of merchantability, |
20 |
* fitness for a particular purpose or non-infringement, are hereby |
21 |
* excluded. The University of Notre Dame and its licensors shall not |
22 |
* be liable for any damages suffered by licensee as a result of |
23 |
* using, modifying or distributing the software or its |
24 |
* derivatives. In no event will the University of Notre Dame or its |
25 |
* licensors be liable for any lost revenue, profit or data, or for |
26 |
* direct, indirect, special, consequential, incidental or punitive |
27 |
* damages, however caused and regardless of the theory of liability, |
28 |
* arising out of the use of or inability to use software, even if the |
29 |
* University of Notre Dame has been advised of the possibility of |
30 |
* such damages. |
31 |
* |
32 |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
* research, please cite the appropriate papers when you publish your |
34 |
* work. Good starting points are: |
35 |
* |
36 |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 |
* [4] Vardeman & Gezelter, in progress (2009). |
40 |
*/ |
41 |
|
42 |
/** |
43 |
* @file ForceField.cpp |
44 |
* @author tlin |
45 |
* @date 11/04/2004 |
46 |
* @time 22:51am |
47 |
* @version 1.0 |
48 |
*/ |
49 |
|
50 |
#include <algorithm> |
51 |
#include "UseTheForce/ForceField.hpp" |
52 |
#include "utils/simError.h" |
53 |
#include "utils/Tuple.hpp" |
54 |
namespace OpenMD { |
55 |
|
56 |
ForceField::ForceField() { |
57 |
|
58 |
char* tempPath; |
59 |
tempPath = getenv("FORCE_PARAM_PATH"); |
60 |
|
61 |
if (tempPath == NULL) { |
62 |
//convert a macro from compiler to a string in c++ |
63 |
STR_DEFINE(ffPath_, FRC_PATH ); |
64 |
} else { |
65 |
ffPath_ = tempPath; |
66 |
} |
67 |
} |
68 |
|
69 |
AtomType* ForceField::getAtomType(const std::string &at) { |
70 |
std::vector<std::string> keys; |
71 |
keys.push_back(at); |
72 |
return atomTypeCont_.find(keys); |
73 |
} |
74 |
|
75 |
BondType* ForceField::getBondType(const std::string &at1, |
76 |
const std::string &at2) { |
77 |
std::vector<std::string> keys; |
78 |
keys.push_back(at1); |
79 |
keys.push_back(at2); |
80 |
|
81 |
//try exact match first |
82 |
BondType* bondType = bondTypeCont_.find(keys); |
83 |
if (bondType) { |
84 |
return bondType; |
85 |
} else { |
86 |
AtomType* atype1; |
87 |
AtomType* atype2; |
88 |
std::vector<std::string> at1key; |
89 |
at1key.push_back(at1); |
90 |
atype1 = atomTypeCont_.find(at1key); |
91 |
|
92 |
std::vector<std::string> at2key; |
93 |
at2key.push_back(at2); |
94 |
atype2 = atomTypeCont_.find(at2key); |
95 |
|
96 |
// query atom types for their chains of responsibility |
97 |
std::vector<AtomType*> at1Chain = atype1->allYourBase(); |
98 |
std::vector<AtomType*> at2Chain = atype2->allYourBase(); |
99 |
|
100 |
std::vector<AtomType*>::iterator i; |
101 |
std::vector<AtomType*>::iterator j; |
102 |
|
103 |
int ii = 0; |
104 |
int jj = 0; |
105 |
int bondTypeScore; |
106 |
|
107 |
std::vector<std::pair<int, std::vector<std::string> > > foundBonds; |
108 |
|
109 |
for (i = at1Chain.begin(); i != at1Chain.end(); i++) { |
110 |
jj = 0; |
111 |
for (j = at2Chain.begin(); j != at2Chain.end(); j++) { |
112 |
|
113 |
bondTypeScore = ii + jj; |
114 |
|
115 |
std::vector<std::string> myKeys; |
116 |
myKeys.push_back((*i)->getName()); |
117 |
myKeys.push_back((*j)->getName()); |
118 |
|
119 |
BondType* bondType = bondTypeCont_.find(myKeys); |
120 |
if (bondType) { |
121 |
foundBonds.push_back(std::make_pair(bondTypeScore, myKeys)); |
122 |
} |
123 |
jj++; |
124 |
} |
125 |
ii++; |
126 |
} |
127 |
|
128 |
|
129 |
if (foundBonds.size() > 0) { |
130 |
// sort the foundBonds by the score: |
131 |
std::sort(foundBonds.begin(), foundBonds.end()); |
132 |
|
133 |
int bestScore = foundBonds[0].first; |
134 |
std::vector<std::string> theKeys = foundBonds[0].second; |
135 |
|
136 |
BondType* bestType = bondTypeCont_.find(theKeys); |
137 |
|
138 |
return bestType; |
139 |
} else { |
140 |
//if no exact match found, try wild card match |
141 |
return bondTypeCont_.find(keys, wildCardAtomTypeName_); |
142 |
} |
143 |
} |
144 |
} |
145 |
|
146 |
BendType* ForceField::getBendType(const std::string &at1, |
147 |
const std::string &at2, |
148 |
const std::string &at3) { |
149 |
std::vector<std::string> keys; |
150 |
keys.push_back(at1); |
151 |
keys.push_back(at2); |
152 |
keys.push_back(at3); |
153 |
|
154 |
//try exact match first |
155 |
BendType* bendType = bendTypeCont_.find(keys); |
156 |
if (bendType) { |
157 |
return bendType; |
158 |
} else { |
159 |
|
160 |
AtomType* atype1; |
161 |
AtomType* atype2; |
162 |
AtomType* atype3; |
163 |
std::vector<std::string> at1key; |
164 |
at1key.push_back(at1); |
165 |
atype1 = atomTypeCont_.find(at1key); |
166 |
|
167 |
std::vector<std::string> at2key; |
168 |
at2key.push_back(at2); |
169 |
atype2 = atomTypeCont_.find(at2key); |
170 |
|
171 |
std::vector<std::string> at3key; |
172 |
at3key.push_back(at3); |
173 |
atype3 = atomTypeCont_.find(at3key); |
174 |
|
175 |
// query atom types for their chains of responsibility |
176 |
std::vector<AtomType*> at1Chain = atype1->allYourBase(); |
177 |
std::vector<AtomType*> at2Chain = atype2->allYourBase(); |
178 |
std::vector<AtomType*> at3Chain = atype3->allYourBase(); |
179 |
|
180 |
std::vector<AtomType*>::iterator i; |
181 |
std::vector<AtomType*>::iterator j; |
182 |
std::vector<AtomType*>::iterator k; |
183 |
|
184 |
int ii = 0; |
185 |
int jj = 0; |
186 |
int kk = 0; |
187 |
int IKscore; |
188 |
|
189 |
std::vector<tuple3<int, int, std::vector<std::string> > > foundBends; |
190 |
|
191 |
for (j = at2Chain.begin(); j != at2Chain.end(); j++) { |
192 |
ii = 0; |
193 |
for (i = at1Chain.begin(); i != at1Chain.end(); i++) { |
194 |
kk = 0; |
195 |
for (k = at3Chain.begin(); k != at3Chain.end(); k++) { |
196 |
|
197 |
IKscore = ii + kk; |
198 |
|
199 |
std::vector<std::string> myKeys; |
200 |
myKeys.push_back((*i)->getName()); |
201 |
myKeys.push_back((*j)->getName()); |
202 |
myKeys.push_back((*k)->getName()); |
203 |
|
204 |
BendType* bendType = bendTypeCont_.find(myKeys); |
205 |
if (bendType) { |
206 |
foundBends.push_back( make_tuple3(jj, IKscore, myKeys) ); |
207 |
} |
208 |
kk++; |
209 |
} |
210 |
ii++; |
211 |
} |
212 |
jj++; |
213 |
} |
214 |
|
215 |
if (foundBends.size() > 0) { |
216 |
std::sort(foundBends.begin(), foundBends.end()); |
217 |
int jscore = foundBends[0].first; |
218 |
int ikscore = foundBends[0].second; |
219 |
std::vector<std::string> theKeys = foundBends[0].third; |
220 |
|
221 |
BendType* bestType = bendTypeCont_.find(theKeys); |
222 |
return bestType; |
223 |
} else { |
224 |
//if no exact match found, try wild card match |
225 |
return bendTypeCont_.find(keys, wildCardAtomTypeName_); |
226 |
} |
227 |
} |
228 |
} |
229 |
|
230 |
TorsionType* ForceField::getTorsionType(const std::string &at1, |
231 |
const std::string &at2, |
232 |
const std::string &at3, |
233 |
const std::string &at4) { |
234 |
std::vector<std::string> keys; |
235 |
keys.push_back(at1); |
236 |
keys.push_back(at2); |
237 |
keys.push_back(at3); |
238 |
keys.push_back(at4); |
239 |
|
240 |
|
241 |
//try exact match first |
242 |
TorsionType* torsionType = torsionTypeCont_.find(keys); |
243 |
if (torsionType) { |
244 |
return torsionType; |
245 |
} else { |
246 |
|
247 |
AtomType* atype1; |
248 |
AtomType* atype2; |
249 |
AtomType* atype3; |
250 |
AtomType* atype4; |
251 |
std::vector<std::string> at1key; |
252 |
at1key.push_back(at1); |
253 |
atype1 = atomTypeCont_.find(at1key); |
254 |
|
255 |
std::vector<std::string> at2key; |
256 |
at2key.push_back(at2); |
257 |
atype2 = atomTypeCont_.find(at2key); |
258 |
|
259 |
std::vector<std::string> at3key; |
260 |
at3key.push_back(at3); |
261 |
atype3 = atomTypeCont_.find(at3key); |
262 |
|
263 |
std::vector<std::string> at4key; |
264 |
at4key.push_back(at4); |
265 |
atype4 = atomTypeCont_.find(at4key); |
266 |
|
267 |
// query atom types for their chains of responsibility |
268 |
std::vector<AtomType*> at1Chain = atype1->allYourBase(); |
269 |
std::vector<AtomType*> at2Chain = atype2->allYourBase(); |
270 |
std::vector<AtomType*> at3Chain = atype3->allYourBase(); |
271 |
std::vector<AtomType*> at4Chain = atype4->allYourBase(); |
272 |
|
273 |
std::vector<AtomType*>::iterator i; |
274 |
std::vector<AtomType*>::iterator j; |
275 |
std::vector<AtomType*>::iterator k; |
276 |
std::vector<AtomType*>::iterator l; |
277 |
|
278 |
int ii = 0; |
279 |
int jj = 0; |
280 |
int kk = 0; |
281 |
int ll = 0; |
282 |
int ILscore; |
283 |
int JKscore; |
284 |
|
285 |
std::vector<tuple3<int, int, std::vector<std::string> > > foundTorsions; |
286 |
|
287 |
for (j = at2Chain.begin(); j != at2Chain.end(); j++) { |
288 |
kk = 0; |
289 |
for (k = at3Chain.begin(); k != at3Chain.end(); k++) { |
290 |
ii = 0; |
291 |
for (i = at1Chain.begin(); i != at1Chain.end(); i++) { |
292 |
ll = 0; |
293 |
for (l = at4Chain.begin(); l != at4Chain.end(); l++) { |
294 |
|
295 |
ILscore = ii + ll; |
296 |
JKscore = jj + kk; |
297 |
|
298 |
std::vector<std::string> myKeys; |
299 |
myKeys.push_back((*i)->getName()); |
300 |
myKeys.push_back((*j)->getName()); |
301 |
myKeys.push_back((*k)->getName()); |
302 |
myKeys.push_back((*l)->getName()); |
303 |
|
304 |
TorsionType* torsionType = torsionTypeCont_.find(myKeys); |
305 |
if (torsionType) { |
306 |
foundTorsions.push_back( make_tuple3(JKscore, ILscore, myKeys) ); |
307 |
} |
308 |
ll++; |
309 |
} |
310 |
ii++; |
311 |
} |
312 |
kk++; |
313 |
} |
314 |
jj++; |
315 |
} |
316 |
|
317 |
if (foundTorsions.size() > 0) { |
318 |
std::sort(foundTorsions.begin(), foundTorsions.end()); |
319 |
int jkscore = foundTorsions[0].first; |
320 |
int ilscore = foundTorsions[0].second; |
321 |
std::vector<std::string> theKeys = foundTorsions[0].third; |
322 |
|
323 |
TorsionType* bestType = torsionTypeCont_.find(theKeys); |
324 |
return bestType; |
325 |
} else { |
326 |
//if no exact match found, try wild card match |
327 |
return torsionTypeCont_.find(keys, wildCardAtomTypeName_); |
328 |
} |
329 |
} |
330 |
} |
331 |
|
332 |
InversionType* ForceField::getInversionType(const std::string &at1, |
333 |
const std::string &at2, |
334 |
const std::string &at3, |
335 |
const std::string &at4) { |
336 |
std::vector<std::string> keys; |
337 |
keys.push_back(at1); |
338 |
keys.push_back(at2); |
339 |
keys.push_back(at3); |
340 |
keys.push_back(at4); |
341 |
|
342 |
//try exact match first |
343 |
InversionType* inversionType = inversionTypeCont_.permutedFindSkippingFirstElement(keys); |
344 |
if (inversionType) { |
345 |
return inversionType; |
346 |
} else { |
347 |
|
348 |
AtomType* atype1; |
349 |
AtomType* atype2; |
350 |
AtomType* atype3; |
351 |
AtomType* atype4; |
352 |
std::vector<std::string> at1key; |
353 |
at1key.push_back(at1); |
354 |
atype1 = atomTypeCont_.find(at1key); |
355 |
|
356 |
std::vector<std::string> at2key; |
357 |
at2key.push_back(at2); |
358 |
atype2 = atomTypeCont_.find(at2key); |
359 |
|
360 |
std::vector<std::string> at3key; |
361 |
at3key.push_back(at3); |
362 |
atype3 = atomTypeCont_.find(at3key); |
363 |
|
364 |
std::vector<std::string> at4key; |
365 |
at4key.push_back(at4); |
366 |
atype4 = atomTypeCont_.find(at4key); |
367 |
|
368 |
// query atom types for their chains of responsibility |
369 |
std::vector<AtomType*> at1Chain = atype1->allYourBase(); |
370 |
std::vector<AtomType*> at2Chain = atype2->allYourBase(); |
371 |
std::vector<AtomType*> at3Chain = atype3->allYourBase(); |
372 |
std::vector<AtomType*> at4Chain = atype4->allYourBase(); |
373 |
|
374 |
std::vector<AtomType*>::iterator i; |
375 |
std::vector<AtomType*>::iterator j; |
376 |
std::vector<AtomType*>::iterator k; |
377 |
std::vector<AtomType*>::iterator l; |
378 |
|
379 |
int ii = 0; |
380 |
int jj = 0; |
381 |
int kk = 0; |
382 |
int ll = 0; |
383 |
int Iscore; |
384 |
int JKLscore; |
385 |
|
386 |
std::vector<tuple3<int, int, std::vector<std::string> > > foundInversions; |
387 |
|
388 |
for (j = at2Chain.begin(); j != at2Chain.end(); j++) { |
389 |
kk = 0; |
390 |
for (k = at3Chain.begin(); k != at3Chain.end(); k++) { |
391 |
ii = 0; |
392 |
for (i = at1Chain.begin(); i != at1Chain.end(); i++) { |
393 |
ll = 0; |
394 |
for (l = at4Chain.begin(); l != at4Chain.end(); l++) { |
395 |
|
396 |
Iscore = ii; |
397 |
JKLscore = jj + kk + ll; |
398 |
|
399 |
std::vector<std::string> myKeys; |
400 |
myKeys.push_back((*i)->getName()); |
401 |
myKeys.push_back((*j)->getName()); |
402 |
myKeys.push_back((*k)->getName()); |
403 |
myKeys.push_back((*l)->getName()); |
404 |
|
405 |
InversionType* inversionType = inversionTypeCont_.permutedFindSkippingFirstElement(myKeys); |
406 |
if (inversionType) { |
407 |
foundInversions.push_back( make_tuple3(Iscore, JKLscore, myKeys) ); |
408 |
} |
409 |
ll++; |
410 |
} |
411 |
ii++; |
412 |
} |
413 |
kk++; |
414 |
} |
415 |
jj++; |
416 |
} |
417 |
|
418 |
if (foundInversions.size() > 0) { |
419 |
std::sort(foundInversions.begin(), foundInversions.end()); |
420 |
int iscore = foundInversions[0].first; |
421 |
int jklscore = foundInversions[0].second; |
422 |
std::vector<std::string> theKeys = foundInversions[0].third; |
423 |
|
424 |
InversionType* bestType = inversionTypeCont_.permutedFindSkippingFirstElement(theKeys); |
425 |
return bestType; |
426 |
} else { |
427 |
//if no exact match found, try wild card match |
428 |
return inversionTypeCont_.find(keys, wildCardAtomTypeName_); |
429 |
} |
430 |
} |
431 |
} |
432 |
|
433 |
NonBondedInteractionType* ForceField::getNonBondedInteractionType(const std::string &at1, const std::string &at2) { |
434 |
std::vector<std::string> keys; |
435 |
keys.push_back(at1); |
436 |
keys.push_back(at2); |
437 |
|
438 |
//try exact match first |
439 |
NonBondedInteractionType* nbiType = nonBondedInteractionTypeCont_.find(keys); |
440 |
if (nbiType) { |
441 |
return nbiType; |
442 |
} else { |
443 |
//if no exact match found, try wild card match |
444 |
return nonBondedInteractionTypeCont_.find(keys, wildCardAtomTypeName_); |
445 |
} |
446 |
} |
447 |
|
448 |
BondType* ForceField::getExactBondType(const std::string &at1, |
449 |
const std::string &at2){ |
450 |
std::vector<std::string> keys; |
451 |
keys.push_back(at1); |
452 |
keys.push_back(at2); |
453 |
return bondTypeCont_.find(keys); |
454 |
} |
455 |
|
456 |
BendType* ForceField::getExactBendType(const std::string &at1, |
457 |
const std::string &at2, |
458 |
const std::string &at3){ |
459 |
std::vector<std::string> keys; |
460 |
keys.push_back(at1); |
461 |
keys.push_back(at2); |
462 |
keys.push_back(at3); |
463 |
return bendTypeCont_.find(keys); |
464 |
} |
465 |
|
466 |
TorsionType* ForceField::getExactTorsionType(const std::string &at1, |
467 |
const std::string &at2, |
468 |
const std::string &at3, |
469 |
const std::string &at4){ |
470 |
std::vector<std::string> keys; |
471 |
keys.push_back(at1); |
472 |
keys.push_back(at2); |
473 |
keys.push_back(at3); |
474 |
keys.push_back(at4); |
475 |
return torsionTypeCont_.find(keys); |
476 |
} |
477 |
|
478 |
InversionType* ForceField::getExactInversionType(const std::string &at1, |
479 |
const std::string &at2, |
480 |
const std::string &at3, |
481 |
const std::string &at4){ |
482 |
std::vector<std::string> keys; |
483 |
keys.push_back(at1); |
484 |
keys.push_back(at2); |
485 |
keys.push_back(at3); |
486 |
keys.push_back(at4); |
487 |
return inversionTypeCont_.find(keys); |
488 |
} |
489 |
|
490 |
NonBondedInteractionType* ForceField::getExactNonBondedInteractionType(const std::string &at1, const std::string &at2){ |
491 |
std::vector<std::string> keys; |
492 |
keys.push_back(at1); |
493 |
keys.push_back(at2); |
494 |
return nonBondedInteractionTypeCont_.find(keys); |
495 |
} |
496 |
|
497 |
|
498 |
bool ForceField::addAtomType(const std::string &at, AtomType* atomType) { |
499 |
std::vector<std::string> keys; |
500 |
keys.push_back(at); |
501 |
return atomTypeCont_.add(keys, atomType); |
502 |
} |
503 |
|
504 |
bool ForceField::replaceAtomType(const std::string &at, AtomType* atomType) { |
505 |
std::vector<std::string> keys; |
506 |
keys.push_back(at); |
507 |
return atomTypeCont_.replace(keys, atomType); |
508 |
} |
509 |
|
510 |
bool ForceField::addBondType(const std::string &at1, const std::string &at2, |
511 |
BondType* bondType) { |
512 |
std::vector<std::string> keys; |
513 |
keys.push_back(at1); |
514 |
keys.push_back(at2); |
515 |
return bondTypeCont_.add(keys, bondType); |
516 |
} |
517 |
|
518 |
bool ForceField::addBendType(const std::string &at1, const std::string &at2, |
519 |
const std::string &at3, BendType* bendType) { |
520 |
std::vector<std::string> keys; |
521 |
keys.push_back(at1); |
522 |
keys.push_back(at2); |
523 |
keys.push_back(at3); |
524 |
return bendTypeCont_.add(keys, bendType); |
525 |
} |
526 |
|
527 |
bool ForceField::addTorsionType(const std::string &at1, |
528 |
const std::string &at2, |
529 |
const std::string &at3, |
530 |
const std::string &at4, |
531 |
TorsionType* torsionType) { |
532 |
std::vector<std::string> keys; |
533 |
keys.push_back(at1); |
534 |
keys.push_back(at2); |
535 |
keys.push_back(at3); |
536 |
keys.push_back(at4); |
537 |
return torsionTypeCont_.add(keys, torsionType); |
538 |
} |
539 |
|
540 |
bool ForceField::addInversionType(const std::string &at1, |
541 |
const std::string &at2, |
542 |
const std::string &at3, |
543 |
const std::string &at4, |
544 |
InversionType* inversionType) { |
545 |
std::vector<std::string> keys; |
546 |
keys.push_back(at1); |
547 |
keys.push_back(at2); |
548 |
keys.push_back(at3); |
549 |
keys.push_back(at4); |
550 |
return inversionTypeCont_.add(keys, inversionType); |
551 |
} |
552 |
|
553 |
bool ForceField::addNonBondedInteractionType(const std::string &at1, |
554 |
const std::string &at2, |
555 |
NonBondedInteractionType* nbiType) { |
556 |
std::vector<std::string> keys; |
557 |
keys.push_back(at1); |
558 |
keys.push_back(at2); |
559 |
return nonBondedInteractionTypeCont_.add(keys, nbiType); |
560 |
} |
561 |
|
562 |
RealType ForceField::getRcutFromAtomType(AtomType* at) { |
563 |
/**@todo */ |
564 |
GenericData* data; |
565 |
RealType rcut = 0.0; |
566 |
|
567 |
if (at->isLennardJones()) { |
568 |
data = at->getPropertyByName("LennardJones"); |
569 |
if (data != NULL) { |
570 |
LJParamGenericData* ljData = dynamic_cast<LJParamGenericData*>(data); |
571 |
|
572 |
if (ljData != NULL) { |
573 |
LJParam ljParam = ljData->getData(); |
574 |
|
575 |
//by default use 2.5*sigma as cutoff radius |
576 |
rcut = 2.5 * ljParam.sigma; |
577 |
|
578 |
} else { |
579 |
sprintf( painCave.errMsg, |
580 |
"Can not cast GenericData to LJParam\n"); |
581 |
painCave.severity = OPENMD_ERROR; |
582 |
painCave.isFatal = 1; |
583 |
simError(); |
584 |
} |
585 |
} else { |
586 |
sprintf( painCave.errMsg, "Can not find Parameters for LennardJones\n"); |
587 |
painCave.severity = OPENMD_ERROR; |
588 |
painCave.isFatal = 1; |
589 |
simError(); |
590 |
} |
591 |
} |
592 |
return rcut; |
593 |
} |
594 |
|
595 |
|
596 |
ifstrstream* ForceField::openForceFieldFile(const std::string& filename) { |
597 |
std::string forceFieldFilename(filename); |
598 |
ifstrstream* ffStream = new ifstrstream(); |
599 |
|
600 |
//try to open the force filed file in current directory first |
601 |
ffStream->open(forceFieldFilename.c_str()); |
602 |
if(!ffStream->is_open()){ |
603 |
|
604 |
forceFieldFilename = ffPath_ + "/" + forceFieldFilename; |
605 |
ffStream->open( forceFieldFilename.c_str() ); |
606 |
|
607 |
//if current directory does not contain the force field file, |
608 |
//try to open it in the path |
609 |
if(!ffStream->is_open()){ |
610 |
|
611 |
sprintf( painCave.errMsg, |
612 |
"Error opening the force field parameter file:\n" |
613 |
"\t%s\n" |
614 |
"\tHave you tried setting the FORCE_PARAM_PATH environment " |
615 |
"variable?\n", |
616 |
forceFieldFilename.c_str() ); |
617 |
painCave.severity = OPENMD_ERROR; |
618 |
painCave.isFatal = 1; |
619 |
simError(); |
620 |
} |
621 |
} |
622 |
return ffStream; |
623 |
} |
624 |
|
625 |
} //end namespace OpenMD |