ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/UseTheForce/DarkSide/mpole.F90
Revision: 1467
Committed: Sat Jul 17 15:33:03 2010 UTC (15 years ago) by gezelter
File size: 15179 byte(s)
Log Message:
well, it compiles, but still segfaults

File Contents

# Content
1 subroutine doMultipolePair(atom1, atom2, d, rij, r2, rcut, sw, &
2 vpair, pot, eFrame, f, t)
3
4 !***************************************************************
5 ! doMultipolePair evaluates the potential, forces, and torques
6 ! between point multipoles. It is based on the ewald2 real
7 ! space routine in the MDMULP code written by W. Smith and
8 ! available from the CCP5 website.
9 !
10 ! We're using the damped real space portion of the Ewald sum
11 ! as the entire interaction. Details on this portion of the
12 ! sum can be found in:
13 !
14 ! "Point Multipoles in the Ewald Summation (Revisited)," by
15 ! W. Smith, CCP5 Newsletter, 46, pp. 18-30 (1998).
16 !
17 !**************************************************************
18
19 integer, intent(in) :: atom1, atom2
20 real(kind=dp), intent(in) :: rij, r2, sw, rcut
21 real(kind=dp), intent(in), dimension(3) :: d
22 real(kind=dp), intent(inout) :: vpair
23
24 real( kind = dp ) :: pot
25 real( kind = dp ), dimension(9,nLocal) :: eFrame
26 real( kind = dp ), dimension(3,nLocal) :: f
27 real( kind = dp ), dimension(3,nLocal) :: t
28 logical :: i_is_Charge, i_is_Dipole, i_is_SplitDipole, i_is_Quadrupole
29 logical :: j_is_Charge, j_is_Dipole, j_is_SplitDipole, j_is_Quadrupole
30 integer :: me1, me2, id1, id2
31 real (kind=dp) :: q_i, q_j, mu_i, mu_j, d_i, d_j
32 real (kind=dp) :: qxx_i, qyy_i, qzz_i
33 real (kind=dp) :: qxx_j, qyy_j, qzz_j
34
35 real (kind=dp) :: epot, qii, alsq2, alsq2n, exp2a, ralpha
36 real (kind=dp), dimension(3) :: ftm, ttm_i, ttm_j
37 real (kind=dp), dimension(3) :: qir, qjr, qidj, qjdi, qiqjr, qjqir
38 real (kind=dp), dimension(3) :: dixdj, qixqj, dixr, djxr, rxqir, rxqjr
39 real (kind=dp), dimension(3) :: dixqjr, djxqir, rxqidj, rxqjdi, rxqijr
40 real (kind=dp), dimension(3) :: rxqjir, qjrxqir
41 real (kind=dp), dimension(6) :: bn
42 real (kind=dp), dimension(10) :: sc
43 real (kind=dp), dimension(9) :: gl
44
45 real(kind=dp) :: a1, a2, a3, a4, a5, p
46
47 DATA A1,A2,A3/0.254829592,-0.284496736,1.421413741/
48 DATA A4,A5,P/-1.453152027,1.061405429,0.3275911/
49
50 if (.not.summationMethodChecked) then
51 call checkSummationMethod()
52 endif
53
54 #ifdef IS_MPI
55 me1 = atid_Row(atom1)
56 me2 = atid_Col(atom2)
57 #else
58 me1 = atid(atom1)
59 me2 = atid(atom2)
60 #endif
61
62 ! logicals
63 i_is_Charge = ElectrostaticMap(me1)%is_Charge
64 i_is_Dipole = ElectrostaticMap(me1)%is_Dipole
65 i_is_Quadrupole = ElectrostaticMap(me1)%is_Quadrupole
66
67 j_is_Charge = ElectrostaticMap(me2)%is_Charge
68 j_is_Dipole = ElectrostaticMap(me2)%is_Dipole
69 j_is_Quadrupole = ElectrostaticMap(me2)%is_Quadrupole
70
71 if (i_is_Charge) then
72 q_i = ElectrostaticMap(me1)%charge
73 else
74 q_i = 0.0_dp
75 endif
76
77 if (j_is_Charge) then
78 q_j = ElectrostaticMap(me2)%charge
79 else
80 q_j = 0.0_dp
81 endif
82
83 if (i_is_Dipole) then
84 mu_i = ElectrostaticMap(me1)%dipole_moment
85 #ifdef IS_MPI
86 d_i(1) = eFrame_Row(3,atom1)
87 d_i(2) = eFrame_Row(6,atom1)
88 d_i(3) = eFrame_Row(9,atom1)
89 #else
90 d_i(1) = eFrame(3,atom1)
91 d_i(2) = eFrame(6,atom1)
92 d_i(3) = eFrame(9,atom1)
93 #endif
94 d_i = d_i * mu_i
95 else
96 d_i = 0.0_dp
97 endif
98
99 if (j_is_Dipole) then
100 mu_j = ElectrostaticMap(me2)%dipole_moment
101 #ifdef IS_MPI
102 d_j(1) = eFrame_Col(3,atom2)
103 d_j(2) = eFrame_Col(6,atom2)
104 d_j(3) = eFrame_Col(9,atom2)
105 #else
106 d_j(1) = eFrame(3,atom2)
107 d_j(2) = eFrame(6,atom2)
108 d_j(3) = eFrame(9,atom2)
109 #endif
110 d_j = d_j * mu_j
111 else
112 d_j = 0.0_dp
113 endif
114
115 if (i_is_Quadrupole) then
116 qxx_i = ElectrostaticMap(me1)%quadrupole_moments(1)
117 qyy_i = ElectrostaticMap(me1)%quadrupole_moments(2)
118 qzz_i = ElectrostaticMap(me1)%quadrupole_moments(3)
119 #ifdef IS_MPI
120 qpole_i(1) = qxx_i * eFrame_Row(1,atom1)
121 qpole_i(2) = qxx_i * eFrame_Row(4,atom1)
122 qpole_i(3) = qxx_i * eFrame_Row(7,atom1)
123 qpole_i(4) = qyy_i * eFrame_Row(2,atom1)
124 qpole_i(5) = qyy_i * eFrame_Row(5,atom1)
125 qpole_i(6) = qyy_i * eFrame_Row(8,atom1)
126 qpole_i(7) = qzz_i * eFrame_Row(3,atom1)
127 qpole_i(8) = qzz_i * eFrame_Row(6,atom1)
128 qpole_i(9) = qzz_i * eFrame_Row(9,atom1)
129 #else
130 qpole_i(1) = qxx_i * eFrame(1,atom1)
131 qpole_i(2) = qxx_i * eFrame(4,atom1)
132 qpole_i(3) = qxx_i * eFrame(7,atom1)
133 qpole_i(4) = qyy_i * eFrame(2,atom1)
134 qpole_i(5) = qyy_i * eFrame(5,atom1)
135 qpole_i(6) = qyy_i * eFrame(8,atom1)
136 qpole_i(7) = qzz_i * eFrame(3,atom1)
137 qpole_i(8) = qzz_i * eFrame(6,atom1)
138 qpole_i(9) = qzz_i * eFrame(9,atom1)
139 #endif
140 else
141 qpole_i = 0.0_dp
142 endif
143
144 if (j_is_Quadrupole) then
145 qxx_j = ElectrostaticMap(me2)%quadrupole_moments(1)
146 qyy_j = ElectrostaticMap(me2)%quadrupole_moments(2)
147 qzz_j = ElectrostaticMap(me2)%quadrupole_moments(3)
148 #ifdef IS_MPI
149 qpole_j(1) = qxx_j * eFrame_Col(1,atom2)
150 qpole_j(2) = qxx_j * eFrame_Col(4,atom2)
151 qpole_j(3) = qxx_j * eFrame_Col(7,atom2)
152 qpole_j(4) = qyy_j * eFrame_Col(2,atom2)
153 qpole_j(5) = qyy_j * eFrame_Col(5,atom2)
154 qpole_j(6) = qyy_j * eFrame_Col(8,atom2)
155 qpole_j(7) = qzz_j * eFrame_Col(3,atom2)
156 qpole_j(8) = qzz_j * eFrame_Col(6,atom2)
157 qpole_j(9) = qzz_j * eFrame_Col(9,atom2)
158 #else
159 qpole_j(1) = qxx_j * eFrame(1,atom2)
160 qpole_j(2) = qxx_j * eFrame(4,atom2)
161 qpole_j(3) = qxx_j * eFrame(7,atom2)
162 qpole_j(4) = qyy_j * eFrame(2,atom2)
163 qpole_j(5) = qyy_j * eFrame(5,atom2)
164 qpole_j(6) = qyy_j * eFrame(8,atom2)
165 qpole_j(7) = qzz_j * eFrame(3,atom2)
166 qpole_j(8) = qzz_j * eFrame(6,atom2)
167 qpole_j(9) = qzz_j * eFrame(9,atom2)
168 #endif
169 else
170 qpole_j = 0.0_dp
171 endif
172
173 !
174 ! INITIALISE TEMPORARY FORCE AND TORQUE ACCUMULATORS
175 !
176
177 ftm = 0.0
178 ttm_i = 0.0
179 ttm_j = 0.0
180
181 ri = 1.0_dp / rij
182 ri2 = ri * ri
183
184 !
185 ! CALCULATE BN FUNCTIONS
186 !
187 if (screeningMethod .eq. DAMPED) then
188 ! assemble the damping variables
189 call lookupUniformSpline1d(erfcSpline, rij, erfcVal, derfcVal)
190 else
191 dampingAlpha = 0.0_dp
192 erfcVal = 1.0_dp
193 endif
194
195 rrtpi = 1.0 / sqrt(pi)
196 alsq2 = 2.0 * dampingAlpha**2
197 ralpi = 0.0
198 if(dampingAlpha .gt. 0.0) ralpi = rrtpi / dampingAlpha
199
200 alphar = dampingAlpha * rij
201 t = 1.0 / (1.0 + p*alphar)
202 exp2a = exp(-alphar**2)
203 bn(1) = ((((a5*t+a4)*t+a3)*t+a2)*t+a1) * t * exp2a * ri
204 alsq2n = ralpi
205
206 do n = 1, 5
207 bfac = real(n+n-1, kind=dp)
208 alsq2n = alsq2*alsq2n
209 bn(n+1) = ri2 * (bfac*bn(n) + alsq2n*exp2a)
210 enddo
211
212 ralpha = dampingAlpha * rij
213 bn(0) = erfcVal * ri
214 alsq2 = 2.0d0 * dampingAlpha**2
215 alsq2n = 0.0d0
216 if (dampingAlpha .gt. 0.0_dp) alsq2n = 1.0_dp / (sqrtpi*dampingAlpha)
217 exp2a = exp(-ralpha**2)
218 do m = 1, 5
219 bfac = real(m+m-1, kind=dp)
220 alsq2n = alsq2 * alsq2n
221 bn(m) = (bfac*bn(m-1)+alsq2n*exp2a) / r2
222 end do
223
224 !
225 ! CONSTRUCT AUXILIARY VECTORS
226 !
227
228 dixdj(1) = d_i(2)*d_j(3) - d_i(3)*d_j(2)
229 dixdj(2) = d_i(3)*d_j(1) - d_i(1)*d_j(3)
230 dixdj(3) = d_i(1)*d_j(2) - d_i(2)*d_j(1)
231
232 dixr(1) = d_i(2)*d(3) - d_i(3)*d(2)
233 dixr(2) = d_i(3)*d(1) - d_i(1)*d(3)
234 dixr(3) = d_i(1)*d(2) - d_i(2)*d(1)
235
236 djxr(1) = d_j(2)*d(3) - d_j(3)*d(2)
237 djxr(2) = d_j(3)*d(1) - d_j(1)*d(3)
238 djxr(3) = d_j(1)*d(2) - d_j(2)*d(1)
239
240 qir(1) = qpole_i(1)*d(1) + qpole_i(4)*d(2) + qpole_i(7)*d(3)
241 qir(2) = qpole_i(2)*d(1) + qpole_i(5)*d(2) + qpole_i(8)*d(3)
242 qir(3) = qpole_i(3)*d(1) + qpole_i(6)*d(2) + qpole_i(9)*d(3)
243
244 qjr(1) = qpole_j(1)*d(1) + qpole_j(4)*d(2) + qpole_j(7)*d(3)
245 qjr(2) = qpole_j(2)*d(1) + qpole_j(5)*d(2) + qpole_j(8)*d(3)
246 qjr(3) = qpole_j(3)*d(1) + qpole_j(6)*d(2) + qpole_j(9)*d(3)
247
248 qiqjr(1) = qpole_i(1)*qjr(1) + qpole_i(4)*qjr(2) + qpole_i(7)*qjr(3)
249 qiqjr(2) = qpole_i(2)*qjr(1) + qpole_i(5)*qjr(2) + qpole_i(8)*qjr(3)
250 qiqjr(3) = qpole_i(3)*qjr(1) + qpole_i(6)*qjr(2) + qpole_i(9)*qjr(3)
251
252
253 qjqir(1) = qpole_j(1)*QIR(1) + qpole_j(4)*QIR(2) + qpole_j(7)*QIR(3)
254 qjqir(2) = qpole_j(2)*QIR(1) + qpole_j(5)*QIR(2) + qpole_j(8)*QIR(3)
255 qjqir(3) = qpole_j(3)*QIR(1) + qpole_j(6)*QIR(2) + qpole_j(9)*QIR(3)
256
257 qixqj(1) = qpole_i(2)*qpole_j(3) + qpole_i(5)*qpole_j(6) + &
258 qpole_i(8)*qpole_j(9) - qpole_i(3)*qpole_j(2) - &
259 qpole_i(6)*qpole_j(5) - qpole_i(9)*qpole_j(8)
260
261 qixqj(2) = qpole_i(3)*qpole_j(1) + qpole_i(6)*qpole_j(4) + &
262 qpole_i(9)*qpole_j(7) - qpole_i(1)*qpole_j(3) - &
263 qpole_i(4)*qpole_j(6) - qpole_i(7)*qpole_j(9)
264
265 qixqj(3) = qpole_i(1)*qpole_j(2) + qpole_i(4)*qpole_j(5) + &
266 qpole_i(7)*qpole_j(8) - qpole_i(2)*qpole_j(1) - &
267 qpole_i(5)*qpole_j(4) - qpole_i(8)*qpole_j(7)
268
269 rxqir(1) = d(2)*qir(3) - d(3)*qir(2)
270 rxqir(2) = d(3)*qir(1) - d(1)*qir(3)
271 rxqir(3) = d(1)*qir(2) - d(2)*qir(1)
272
273 rxqjr(1) = d(2)*qjr(3) - d(3)*qjr(2)
274 rxqjr(2) = d(3)*qjr(1) - d(1)*qjr(3)
275 rxqjr(3) = d(1)*qjr(2) - d(2)*qjr(1)
276
277 rxqijr(1) = d(2)*qiqjr(3) - d(3)*qiqjr(2)
278 rxqijr(2) = d(3)*qiqjr(1) - d(1)*qiqjr(3)
279 rxqijr(3) = d(1)*qiqjr(2) - d(2)*qiqjr(1)
280
281 rxqjir(1) = d(2)*qjqir(3) - d(3)*qjqir(2)
282 rxqjir(2) = d(3)*qjqir(1) - d(1)*qjqir(3)
283 rxqjir(3) = d(1)*qjqir(2) - d(2)*qjqir(1)
284
285 qjrxqir(1) = qjr(2)*qir(3) - qjr(3)*qir(2)
286 qjrxqir(2) = qjr(3)*qir(1) - qjr(1)*qir(3)
287 qjrxqir(3) = qjr(1)*qir(2) - qjr(2)*qir(1)
288
289 qidj(1) = qpole_i(1)*d_j(1) + qpole_i(4)*d_j(2) + qpole_i(7)*d_j(3)
290 qidj(2) = qpole_i(2)*d_j(1) + qpole_i(5)*d_j(2) + qpole_i(8)*d_j(3)
291 qidj(3) = qpole_i(3)*d_j(1) + qpole_i(6)*d_j(2) + qpole_i(9)*d_j(3)
292
293 qjdi(1) = qpole_j(1)*d_i(1) + qpole_j(4)*d_i(2) + qpole_j(7)*d_i(3)
294 qjdi(2) = qpole_j(2)*d_i(1) + qpole_j(5)*d_i(2) + qpole_j(8)*d_i(3)
295 qjdi(3) = qpole_j(3)*d_i(1) + qpole_j(6)*d_i(2) + qpole_j(9)*d_i(3)
296
297 dixqjr(1) = d_i(2)*qjr(3) - d_i(3)*qjr(2)
298 dixqjr(2) = d_i(3)*qjr(1) - d_i(1)*qjr(3)
299 dixqjr(3) = d_i(1)*qjr(2) - d_i(2)*qjr(1)
300
301 djxqir(1) = d_j(2)*qir(3) - d_j(3)*qir(2)
302 djxqir(2) = d_j(3)*qir(1) - d_j(1)*qir(3)
303 djxqir(3) = d_j(1)*qir(2) - d_j(2)*qir(1)
304
305 rxqidj(1) = d(2)*qidj(3) - d(3)*qidj(2)
306 rxqidj(2) = d(3)*qidj(1) - d(1)*qidj(3)
307 rxqidj(3) = d(1)*qidj(2) - d(2)*qidj(1)
308
309 rxqjdi(1) = d(2)*qjdi(3) - d(3)*qjdi(2)
310 rxqjdi(2) = d(3)*qjdi(1) - d(1)*qjdi(3)
311 rxqjdi(3) = d(1)*qjdi(2) - d(2)*qjdi(1)
312
313 !
314 ! CALCULATE SCALAR PRODUCTS
315 !
316
317 qii = qpole_i(1) + qpole_i(5) + qpole_i(9)
318
319 sc(1) = qpole_j(1) + qpole_j(5) + qpole_j(9)
320 sc(2) = d_i(1)*d_j(1) + d_i(2)*d_j(2) + d_i(3)*d_j(3)
321 sc(3) = d_i(1)*d(1) + d_i(2)*d(2) + d_i(3)*d(3)
322 sc(4) = d_j(1)*d(1) + d_j(2)*d(2) + d_j(3)*d(3)
323 sc(5) = qir(1)*d(1) + qir(2)*d(2) + qir(3)*d(3)
324 sc(6) = qjr(1)*d(1) + qjr(2)*d(2) + qjr(3)*d(3)
325 sc(7) = qir(1)*d_j(1) + qir(2)*d_j(2) + qir(3)*d_j(3)
326 sc(8) = qjr(1)*d_i(1) + qjr(2)*d_i(2) + qjr(3)*d_i(3)
327 sc(9) = qir(1)*qjr(1) + qir(2)*qjr(2) + qir(3)*qjr(3)
328 sc(10) = qpole_i(1)*qpole_j(1) + qpole_i(2)*qpole_j(2) + &
329 qpole_i(3)*qpole_j(3) + qpole_i(4)*qpole_j(4) + &
330 qpole_i(5)*qpole_j(5) + qpole_i(6)*qpole_j(6) + &
331 qpole_i(7)*qpole_j(7) + qpole_i(8)*qpole_j(8) + &
332 qpole_i(9)*qpole_j(9)
333
334 !
335 ! CALCULATE GL FUNCTIONS FOR POTENTIAL
336 !
337
338 gl(1) = q_i*q_j
339 gl(2) = q_j*sc(3) - q_i*sc(4)
340 gl(3) = q_i*sc(6) + q_j*sc(5) - sc(3)*sc(4)
341 gl(4) = sc(3)*sc(6) - sc(4)*sc(5)
342 gl(5) = sc(5)*sc(6)
343 gl(7) = sc(2) - q_j*qii - q_i*sc(1)
344 gl(8) = sc(4)*qii - sc(1)*sc(3) + 2.0*(sc(7) - sc(8))
345 gl(9) = 2.0*sc(10) + sc(1)*qii
346 gl(6) = -(sc(1)*sc(5) + sc(6)*qii + 4.0*sc(9))
347
348 !
349 ! CALCULATE POTENTIAL AND VIRIAL
350 !
351
352 epot = bn(1)*gl(1) + bn(2)*(gl(2) + gl(7)) + bn(3)*(gl(3) &
353 + gl(8) + gl(9)) + bn(4)*(gl(4) + gl(6)) + bn(5)*gl(5)
354
355 vpair = vpair + epot
356
357 #ifdef IS_MPI
358 pot_row(ELECTROSTATIC_POT,atom1) = pot_row(ELECTROSTATIC_POT,atom1) + &
359 0.5_dp*epot*sw
360 pot_col(ELECTROSTATIC_POT,atom2) = pot_col(ELECTROSTATIC_POT,atom2) + &
361 0.5_dp*epot*sw
362 #else
363 pot = pot + epot*sw
364 #endif
365
366 !
367 ! CALCULATE FORCE AND TORQUE COEFFICIENTS
368 !
369
370 gl(1) = bn(2)*gl(1) + bn(3)*(gl(2) + gl(7)) + bn(4)*(gl(3) &
371 + gl(8) + gl(9)) + bn(5)*(gl(4) + gl(6)) + bn(6)*gl(5)
372 gl(2) = -q_j*bn(2) + (sc(4) + sc(1))*bn(3) - sc(6)*bn(4)
373 gl(3) = q_i*bn(2) + (sc(3) - qii)*bn(3) + sc(5)*bn(4)
374 gl(4) = 2.0*bn(3)
375 gl(5) = 2.0*( - q_j*bn(3) + (sc(1) + sc(4))*bn(4) - sc(6)* bn(5))
376 gl(6) = 2.0*( - q_i*bn(3) + (qii - sc(3))*bn(4) - sc(5)*bn(5))
377 gl(7) = 4.0*bn(4)
378
379 !
380 ! CALCULATE FORCES BETWEEN MULTIPOLES I AND J
381 !
382
383 ftm(1) = gl(1)*d(1) + gl(2)*d_i(1) + gl(3)*d_j(1) + &
384 gl(4)*(qjdi(1) - qidj(1)) + gl(5)*qir(1) + &
385 gl(6)*qjr(1) + gl(7)*(qiqjr(1) + qjqir(1))
386 ftm(2) = gl(1)*d(2) + gl(2)*d_i(2) + gl(3)*d_j(2) + &
387 gl(4)*(qjdi(2) - qidj(2)) + gl(5)*qir(2) + &
388 gl(6)*qjr(2) + gl(7)*(qiqjr(2) + qjqir(2))
389 ftm(3) = gl(1)*d(3) + gl(2)*d_i(3) + gl(3)*d_j(3) + &
390 gl(4)*(qjdi(3) - qidj(3)) + gl(5)*qir(3) + &
391 gl(6)*qjr(3) + gl(7)*(qiqjr(3) + qjqir(3))
392
393 !
394 ! CALCULATE TORQUES BETWEEN MULTIPOLES I AND J
395 !
396
397 ttm_i(1) = - bn(2)*dixdj(1) + gl(2)*dixr(1) + gl(4)* &
398 (dixqjr(1) + djxqir(1) + rxqidj(1) - 2.0*qixqj(1)) - &
399 gl(5)*rxqir(1) - gl(7)*(rxqijr(1) + qjrxqir(1))
400 ttm_i(2) = - bn(2)*dixdj(2) + gl(2)*dixr(2) + gl(4)* &
401 (dixqjr(2) + djxqir(2) + rxqidj(2) - 2.0*qixqj(2)) - &
402 gl(5)*rxqir(2) - gl(7)*(rxqijr(2) + qjrxqir(2))
403 ttm_i(3) = - bn(2)*dixdj(3) + gl(2)*dixr(3) + gl(4)* &
404 (dixqjr(3) + djxqir(3) + rxqidj(3) - 2.0*qixqj(3)) - &
405 gl(5)*rxqir(3) - gl(7)*(rxqijr(3) + qjrxqir(3))
406 ttm_j(1) = bn(2)*dixdj(1) + gl(3)*djxr(1) - gl(4)* &
407 (dixqjr(1) + djxqir(1) + rxqjdi(1) - 2.0*qixqj(1)) - &
408 gl(6)*rxqjr(1) - gl(7)*(rxqjir(1) - qjrxqir(1))
409 ttm_j(2) = bn(2)*dixdj(2) + gl(3)*djxr(2) - gl(4)* &
410 (dixqjr(2) + djxqir(2) + rxqjdi(2) - 2.0*qixqj(2)) - &
411 gl(6)*rxqjr(2) - gl(7)*(rxqjir(2) - qjrxqir(2))
412 ttm_j(3) = bn(2)*dixdj(3) + gl(3)*djxr(3) - gl(4)* &
413 (dixqjr(3) + djxqir(3) + rxqjdi(3) - 2.0*qixqj(3)) - &
414 gl(6)*rxqjr(3) - gl(7)*(rxqjir(3) - qjrxqir(3))
415
416 ftm = ftm*sw
417 ttm_i = ttm_i*sw
418 ttm_j = ttm_j*sw
419
420 #ifdef IS_MPI
421 f_Row(1,atom1) = f_Row(1,atom1) + ftm(1)
422 f_Row(2,atom1) = f_Row(2,atom1) + ftm(2)
423 f_Row(3,atom1) = f_Row(3,atom1) + ftm(3)
424
425 f_Col(1,atom2) = f_Col(1,atom2) - ftm(1)
426 f_Col(2,atom2) = f_Col(2,atom2) - ftm(2)
427 f_Col(3,atom2) = f_Col(3,atom2) - ftm(3)
428
429 t_Row(1,atom1) = t_Row(1,atom1) + ttm_i(1)
430 t_Row(2,atom1) = t_Row(2,atom1) + ttm_i(2)
431 t_Row(3,atom1) = t_Row(3,atom1) + ttm_i(3)
432
433 t_Col(1,atom2) = t_Col(1,atom2) + ttm_j(1)
434 t_Col(2,atom2) = t_Col(2,atom2) + ttm_j(2)
435 t_Col(3,atom2) = t_Col(3,atom2) + ttm_j(3)
436 #else
437 f(1,atom1) = f(1,atom1) + ftm(1)
438 f(2,atom1) = f(2,atom1) + ftm(2)
439 f(3,atom1) = f(3,atom1) + ftm(3)
440
441 f(1,atom2) = f(1,atom2) - ftm(1)
442 f(2,atom2) = f(2,atom2) - ftm(2)
443 f(3,atom2) = f(3,atom2) - ftm(3)
444
445 t(1,atom1) = t(1,atom1) + ttm_i(1)
446 t(2,atom1) = t(2,atom1) + ttm_i(2)
447 t(3,atom1) = t(3,atom1) + ttm_i(3)
448
449 t(1,atom2) = t(1,atom2) + ttm_j(1)
450 t(2,atom2) = t(2,atom2) + ttm_j(2)
451 t(3,atom2) = t(3,atom2) + ttm_j(3)
452 #endif
453
454 #ifdef IS_MPI
455 id1 = AtomRowToGlobal(atom1)
456 id2 = AtomColToGlobal(atom2)
457 #else
458 id1 = atom1
459 id2 = atom2
460 #endif
461
462 if (molMembershipList(id1) .ne. molMembershipList(id2)) then
463
464 f1(1) = f1(1) + ftm(1)
465 f1(2) = f1(2) + ftm(2)
466 f1(3) = f1(3) + ftm(3)
467
468 endif
469
470 return
471
472 end subroutine domultipolepair

Properties

Name Value
svn:keywords Author Id Revision Date