1 |
!! |
2 |
!! Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
!! |
4 |
!! The University of Notre Dame grants you ("Licensee") a |
5 |
!! non-exclusive, royalty free, license to use, modify and |
6 |
!! redistribute this software in source and binary code form, provided |
7 |
!! that the following conditions are met: |
8 |
!! |
9 |
!! 1. Redistributions of source code must retain the above copyright |
10 |
!! notice, this list of conditions and the following disclaimer. |
11 |
!! |
12 |
!! 2. Redistributions in binary form must reproduce the above copyright |
13 |
!! notice, this list of conditions and the following disclaimer in the |
14 |
!! documentation and/or other materials provided with the |
15 |
!! distribution. |
16 |
!! |
17 |
!! This software is provided "AS IS," without a warranty of any |
18 |
!! kind. All express or implied conditions, representations and |
19 |
!! warranties, including any implied warranty of merchantability, |
20 |
!! fitness for a particular purpose or non-infringement, are hereby |
21 |
!! excluded. The University of Notre Dame and its licensors shall not |
22 |
!! be liable for any damages suffered by licensee as a result of |
23 |
!! using, modifying or distributing the software or its |
24 |
!! derivatives. In no event will the University of Notre Dame or its |
25 |
!! licensors be liable for any lost revenue, profit or data, or for |
26 |
!! direct, indirect, special, consequential, incidental or punitive |
27 |
!! damages, however caused and regardless of the theory of liability, |
28 |
!! arising out of the use of or inability to use software, even if the |
29 |
!! University of Notre Dame has been advised of the possibility of |
30 |
!! such damages. |
31 |
!! |
32 |
!! SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
!! research, please cite the appropriate papers when you publish your |
34 |
!! work. Good starting points are: |
35 |
!! |
36 |
!! [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
!! [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
!! [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 |
!! [4] Vardeman & Gezelter, in progress (2009). |
40 |
!! |
41 |
|
42 |
module electrostatic_module |
43 |
|
44 |
use force_globals |
45 |
use definitions |
46 |
use atype_module |
47 |
use vector_class |
48 |
use simulation |
49 |
use status |
50 |
use interpolation |
51 |
implicit none |
52 |
|
53 |
PRIVATE |
54 |
|
55 |
|
56 |
#define __FORTRAN90 |
57 |
#include "UseTheForce/DarkSide/fInteractionMap.h" |
58 |
#include "UseTheForce/DarkSide/fElectrostaticSummationMethod.h" |
59 |
#include "UseTheForce/DarkSide/fElectrostaticScreeningMethod.h" |
60 |
|
61 |
|
62 |
!! these prefactors convert the multipole interactions into kcal / mol |
63 |
!! all were computed assuming distances are measured in angstroms |
64 |
!! Charge-Charge, assuming charges are measured in electrons |
65 |
real(kind=dp), parameter :: pre11 = 332.0637778_dp |
66 |
!! Charge-Dipole, assuming charges are measured in electrons, and |
67 |
!! dipoles are measured in debyes |
68 |
real(kind=dp), parameter :: pre12 = 69.13373_dp |
69 |
!! Dipole-Dipole, assuming dipoles are measured in debyes |
70 |
real(kind=dp), parameter :: pre22 = 14.39325_dp |
71 |
!! Charge-Quadrupole, assuming charges are measured in electrons, and |
72 |
!! quadrupoles are measured in 10^-26 esu cm^2 |
73 |
!! This unit is also known affectionately as an esu centi-barn. |
74 |
real(kind=dp), parameter :: pre14 = 69.13373_dp |
75 |
|
76 |
real(kind=dp), parameter :: zero = 0.0_dp |
77 |
|
78 |
!! conversions for the simulation box dipole moment |
79 |
real(kind=dp), parameter :: chargeToC = 1.60217733e-19_dp |
80 |
real(kind=dp), parameter :: angstromToM = 1.0e-10_dp |
81 |
real(kind=dp), parameter :: debyeToCm = 3.33564095198e-30_dp |
82 |
|
83 |
!! number of points for electrostatic splines |
84 |
integer, parameter :: np = 100 |
85 |
|
86 |
!! variables to handle different summation methods for long-range |
87 |
!! electrostatics: |
88 |
integer, save :: summationMethod = NONE |
89 |
integer, save :: screeningMethod = UNDAMPED |
90 |
logical, save :: summationMethodChecked = .false. |
91 |
real(kind=DP), save :: defaultCutoff = 0.0_DP |
92 |
real(kind=DP), save :: defaultCutoff2 = 0.0_DP |
93 |
logical, save :: haveDefaultCutoff = .false. |
94 |
real(kind=DP), save :: dampingAlpha = 0.0_DP |
95 |
real(kind=DP), save :: alpha2 = 0.0_DP |
96 |
real(kind=DP), save :: alpha4 = 0.0_DP |
97 |
real(kind=DP), save :: alpha6 = 0.0_DP |
98 |
real(kind=DP), save :: alpha8 = 0.0_DP |
99 |
logical, save :: haveDampingAlpha = .false. |
100 |
real(kind=DP), save :: dielectric = 1.0_DP |
101 |
logical, save :: haveDielectric = .false. |
102 |
real(kind=DP), save :: constEXP = 0.0_DP |
103 |
real(kind=dp), save :: rcuti = 0.0_DP |
104 |
real(kind=dp), save :: rcuti2 = 0.0_DP |
105 |
real(kind=dp), save :: rcuti3 = 0.0_DP |
106 |
real(kind=dp), save :: rcuti4 = 0.0_DP |
107 |
real(kind=dp), save :: alphaPi = 0.0_DP |
108 |
real(kind=dp), save :: invRootPi = 0.0_DP |
109 |
real(kind=dp), save :: rrf = 1.0_DP |
110 |
real(kind=dp), save :: rt = 1.0_DP |
111 |
real(kind=dp), save :: rrfsq = 1.0_DP |
112 |
real(kind=dp), save :: preRF = 0.0_DP |
113 |
real(kind=dp), save :: preRF2 = 0.0_DP |
114 |
real(kind=dp), save :: erfcVal = 1.0_DP |
115 |
real(kind=dp), save :: derfcVal = 0.0_DP |
116 |
type(cubicSpline), save :: erfcSpline |
117 |
logical, save :: haveElectroSpline = .false. |
118 |
real(kind=dp), save :: c1 = 1.0_DP |
119 |
real(kind=dp), save :: c2 = 1.0_DP |
120 |
real(kind=dp), save :: c3 = 0.0_DP |
121 |
real(kind=dp), save :: c4 = 0.0_DP |
122 |
real(kind=dp), save :: c5 = 0.0_DP |
123 |
real(kind=dp), save :: c6 = 0.0_DP |
124 |
real(kind=dp), save :: c1c = 1.0_DP |
125 |
real(kind=dp), save :: c2c = 1.0_DP |
126 |
real(kind=dp), save :: c3c = 0.0_DP |
127 |
real(kind=dp), save :: c4c = 0.0_DP |
128 |
real(kind=dp), save :: c5c = 0.0_DP |
129 |
real(kind=dp), save :: c6c = 0.0_DP |
130 |
real(kind=dp), save :: one_third = 1.0_DP / 3.0_DP |
131 |
|
132 |
#if defined(__IFC) || defined(__PGI) |
133 |
! error function for ifc version > 7. |
134 |
real(kind=dp), external :: erfc |
135 |
#endif |
136 |
|
137 |
public :: setElectrostaticSummationMethod |
138 |
public :: setScreeningMethod |
139 |
public :: setElectrostaticCutoffRadius |
140 |
public :: setDampingAlpha |
141 |
public :: setReactionFieldDielectric |
142 |
public :: buildElectroSpline |
143 |
public :: newElectrostaticType |
144 |
public :: setCharge |
145 |
public :: setDipoleMoment |
146 |
public :: setSplitDipoleDistance |
147 |
public :: setQuadrupoleMoments |
148 |
public :: doElectrostaticPair |
149 |
public :: getCharge |
150 |
public :: getDipoleMoment |
151 |
public :: destroyElectrostaticTypes |
152 |
public :: self_self |
153 |
public :: rf_self_excludes |
154 |
public :: accumulate_box_dipole |
155 |
|
156 |
type :: Electrostatic |
157 |
integer :: c_ident |
158 |
logical :: is_Charge = .false. |
159 |
logical :: is_Dipole = .false. |
160 |
logical :: is_SplitDipole = .false. |
161 |
logical :: is_Quadrupole = .false. |
162 |
logical :: is_Tap = .false. |
163 |
real(kind=DP) :: charge = 0.0_DP |
164 |
real(kind=DP) :: dipole_moment = 0.0_DP |
165 |
real(kind=DP) :: split_dipole_distance = 0.0_DP |
166 |
real(kind=DP), dimension(3) :: quadrupole_moments = 0.0_DP |
167 |
end type Electrostatic |
168 |
|
169 |
type(Electrostatic), dimension(:), allocatable :: ElectrostaticMap |
170 |
|
171 |
logical, save :: hasElectrostaticMap |
172 |
|
173 |
contains |
174 |
|
175 |
subroutine setElectrostaticSummationMethod(the_ESM) |
176 |
integer, intent(in) :: the_ESM |
177 |
|
178 |
if ((the_ESM .le. 0) .or. (the_ESM .gt. REACTION_FIELD)) then |
179 |
call handleError("setElectrostaticSummationMethod", "Unsupported Summation Method") |
180 |
endif |
181 |
|
182 |
summationMethod = the_ESM |
183 |
|
184 |
end subroutine setElectrostaticSummationMethod |
185 |
|
186 |
subroutine setScreeningMethod(the_SM) |
187 |
integer, intent(in) :: the_SM |
188 |
screeningMethod = the_SM |
189 |
end subroutine setScreeningMethod |
190 |
|
191 |
subroutine setElectrostaticCutoffRadius(thisRcut, thisRsw) |
192 |
real(kind=dp), intent(in) :: thisRcut |
193 |
real(kind=dp), intent(in) :: thisRsw |
194 |
defaultCutoff = thisRcut |
195 |
defaultCutoff2 = defaultCutoff*defaultCutoff |
196 |
rrf = defaultCutoff |
197 |
rt = thisRsw |
198 |
haveDefaultCutoff = .true. |
199 |
end subroutine setElectrostaticCutoffRadius |
200 |
|
201 |
subroutine setDampingAlpha(thisAlpha) |
202 |
real(kind=dp), intent(in) :: thisAlpha |
203 |
dampingAlpha = thisAlpha |
204 |
alpha2 = dampingAlpha*dampingAlpha |
205 |
alpha4 = alpha2*alpha2 |
206 |
alpha6 = alpha4*alpha2 |
207 |
alpha8 = alpha4*alpha4 |
208 |
haveDampingAlpha = .true. |
209 |
end subroutine setDampingAlpha |
210 |
|
211 |
subroutine setReactionFieldDielectric(thisDielectric) |
212 |
real(kind=dp), intent(in) :: thisDielectric |
213 |
dielectric = thisDielectric |
214 |
haveDielectric = .true. |
215 |
end subroutine setReactionFieldDielectric |
216 |
|
217 |
subroutine buildElectroSpline() |
218 |
real( kind = dp ), dimension(np) :: xvals, yvals |
219 |
real( kind = dp ) :: dx, rmin, rval |
220 |
integer :: i |
221 |
|
222 |
rmin = 0.0_dp |
223 |
|
224 |
dx = (defaultCutoff-rmin) / dble(np-1) |
225 |
|
226 |
do i = 1, np |
227 |
rval = rmin + dble(i-1)*dx |
228 |
xvals(i) = rval |
229 |
yvals(i) = erfc(dampingAlpha*rval) |
230 |
enddo |
231 |
|
232 |
call newSpline(erfcSpline, xvals, yvals, .true.) |
233 |
|
234 |
haveElectroSpline = .true. |
235 |
end subroutine buildElectroSpline |
236 |
|
237 |
subroutine newElectrostaticType(c_ident, is_Charge, is_Dipole, & |
238 |
is_SplitDipole, is_Quadrupole, is_Tap, status) |
239 |
|
240 |
integer, intent(in) :: c_ident |
241 |
logical, intent(in) :: is_Charge |
242 |
logical, intent(in) :: is_Dipole |
243 |
logical, intent(in) :: is_SplitDipole |
244 |
logical, intent(in) :: is_Quadrupole |
245 |
logical, intent(in) :: is_Tap |
246 |
integer, intent(out) :: status |
247 |
integer :: nAtypes, myATID, i, j |
248 |
|
249 |
status = 0 |
250 |
myATID = getFirstMatchingElement(atypes, "c_ident", c_ident) |
251 |
|
252 |
!! Be simple-minded and assume that we need an ElectrostaticMap that |
253 |
!! is the same size as the total number of atom types |
254 |
|
255 |
if (.not.allocated(ElectrostaticMap)) then |
256 |
|
257 |
nAtypes = getSize(atypes) |
258 |
|
259 |
if (nAtypes == 0) then |
260 |
status = -1 |
261 |
return |
262 |
end if |
263 |
|
264 |
allocate(ElectrostaticMap(nAtypes)) |
265 |
|
266 |
end if |
267 |
|
268 |
if (myATID .gt. size(ElectrostaticMap)) then |
269 |
status = -1 |
270 |
return |
271 |
endif |
272 |
|
273 |
! set the values for ElectrostaticMap for this atom type: |
274 |
|
275 |
ElectrostaticMap(myATID)%c_ident = c_ident |
276 |
ElectrostaticMap(myATID)%is_Charge = is_Charge |
277 |
ElectrostaticMap(myATID)%is_Dipole = is_Dipole |
278 |
ElectrostaticMap(myATID)%is_SplitDipole = is_SplitDipole |
279 |
ElectrostaticMap(myATID)%is_Quadrupole = is_Quadrupole |
280 |
ElectrostaticMap(myATID)%is_Tap = is_Tap |
281 |
|
282 |
hasElectrostaticMap = .true. |
283 |
|
284 |
end subroutine newElectrostaticType |
285 |
|
286 |
subroutine setCharge(c_ident, charge, status) |
287 |
integer, intent(in) :: c_ident |
288 |
real(kind=dp), intent(in) :: charge |
289 |
integer, intent(out) :: status |
290 |
integer :: myATID |
291 |
|
292 |
status = 0 |
293 |
myATID = getFirstMatchingElement(atypes, "c_ident", c_ident) |
294 |
|
295 |
if (.not.hasElectrostaticMap) then |
296 |
call handleError("electrostatic", "no ElectrostaticMap was present before first call of setCharge!") |
297 |
status = -1 |
298 |
return |
299 |
end if |
300 |
|
301 |
if (myATID .gt. size(ElectrostaticMap)) then |
302 |
call handleError("electrostatic", "ElectrostaticMap was found to be too small during setCharge!") |
303 |
status = -1 |
304 |
return |
305 |
endif |
306 |
|
307 |
if (.not.ElectrostaticMap(myATID)%is_Charge) then |
308 |
call handleError("electrostatic", "Attempt to setCharge of an atom type that is not a charge!") |
309 |
status = -1 |
310 |
return |
311 |
endif |
312 |
|
313 |
ElectrostaticMap(myATID)%charge = charge |
314 |
end subroutine setCharge |
315 |
|
316 |
subroutine setDipoleMoment(c_ident, dipole_moment, status) |
317 |
integer, intent(in) :: c_ident |
318 |
real(kind=dp), intent(in) :: dipole_moment |
319 |
integer, intent(out) :: status |
320 |
integer :: myATID |
321 |
|
322 |
status = 0 |
323 |
myATID = getFirstMatchingElement(atypes, "c_ident", c_ident) |
324 |
|
325 |
if (.not.hasElectrostaticMap) then |
326 |
call handleError("electrostatic", "no ElectrostaticMap was present before first call of setDipoleMoment!") |
327 |
status = -1 |
328 |
return |
329 |
end if |
330 |
|
331 |
if (myATID .gt. size(ElectrostaticMap)) then |
332 |
call handleError("electrostatic", "ElectrostaticMap was found to be too small during setDipoleMoment!") |
333 |
status = -1 |
334 |
return |
335 |
endif |
336 |
|
337 |
if (.not.ElectrostaticMap(myATID)%is_Dipole) then |
338 |
call handleError("electrostatic", "Attempt to setDipoleMoment of an atom type that is not a dipole!") |
339 |
status = -1 |
340 |
return |
341 |
endif |
342 |
|
343 |
ElectrostaticMap(myATID)%dipole_moment = dipole_moment |
344 |
end subroutine setDipoleMoment |
345 |
|
346 |
subroutine setSplitDipoleDistance(c_ident, split_dipole_distance, status) |
347 |
integer, intent(in) :: c_ident |
348 |
real(kind=dp), intent(in) :: split_dipole_distance |
349 |
integer, intent(out) :: status |
350 |
integer :: myATID |
351 |
|
352 |
status = 0 |
353 |
myATID = getFirstMatchingElement(atypes, "c_ident", c_ident) |
354 |
|
355 |
if (.not.hasElectrostaticMap) then |
356 |
call handleError("electrostatic", "no ElectrostaticMap was present before first call of setSplitDipoleDistance!") |
357 |
status = -1 |
358 |
return |
359 |
end if |
360 |
|
361 |
if (myATID .gt. size(ElectrostaticMap)) then |
362 |
call handleError("electrostatic", "ElectrostaticMap was found to be too small during setSplitDipoleDistance!") |
363 |
status = -1 |
364 |
return |
365 |
endif |
366 |
|
367 |
if (.not.ElectrostaticMap(myATID)%is_SplitDipole) then |
368 |
call handleError("electrostatic", "Attempt to setSplitDipoleDistance of an atom type that is not a splitDipole!") |
369 |
status = -1 |
370 |
return |
371 |
endif |
372 |
|
373 |
ElectrostaticMap(myATID)%split_dipole_distance = split_dipole_distance |
374 |
end subroutine setSplitDipoleDistance |
375 |
|
376 |
subroutine setQuadrupoleMoments(c_ident, quadrupole_moments, status) |
377 |
integer, intent(in) :: c_ident |
378 |
real(kind=dp), intent(in), dimension(3) :: quadrupole_moments |
379 |
integer, intent(out) :: status |
380 |
integer :: myATID, i, j |
381 |
|
382 |
status = 0 |
383 |
myATID = getFirstMatchingElement(atypes, "c_ident", c_ident) |
384 |
|
385 |
if (.not.hasElectrostaticMap) then |
386 |
call handleError("electrostatic", "no ElectrostaticMap was present before first call of setQuadrupoleMoments!") |
387 |
status = -1 |
388 |
return |
389 |
end if |
390 |
|
391 |
if (myATID .gt. size(ElectrostaticMap)) then |
392 |
call handleError("electrostatic", "ElectrostaticMap was found to be too small during setQuadrupoleMoments!") |
393 |
status = -1 |
394 |
return |
395 |
endif |
396 |
|
397 |
if (.not.ElectrostaticMap(myATID)%is_Quadrupole) then |
398 |
call handleError("electrostatic", "Attempt to setQuadrupoleMoments of an atom type that is not a quadrupole!") |
399 |
status = -1 |
400 |
return |
401 |
endif |
402 |
|
403 |
do i = 1, 3 |
404 |
ElectrostaticMap(myATID)%quadrupole_moments(i) = & |
405 |
quadrupole_moments(i) |
406 |
enddo |
407 |
|
408 |
end subroutine setQuadrupoleMoments |
409 |
|
410 |
|
411 |
function getCharge(atid) result (c) |
412 |
integer, intent(in) :: atid |
413 |
integer :: localError |
414 |
real(kind=dp) :: c |
415 |
|
416 |
if (.not.hasElectrostaticMap) then |
417 |
call handleError("electrostatic", "no ElectrostaticMap was present before first call of getCharge!") |
418 |
return |
419 |
end if |
420 |
|
421 |
if (.not.ElectrostaticMap(atid)%is_Charge) then |
422 |
call handleError("electrostatic", "getCharge was called for an atom type that isn't a charge!") |
423 |
return |
424 |
endif |
425 |
|
426 |
c = ElectrostaticMap(atid)%charge |
427 |
end function getCharge |
428 |
|
429 |
function getDipoleMoment(atid) result (dm) |
430 |
integer, intent(in) :: atid |
431 |
integer :: localError |
432 |
real(kind=dp) :: dm |
433 |
|
434 |
if (.not.hasElectrostaticMap) then |
435 |
call handleError("electrostatic", "no ElectrostaticMap was present before first call of getDipoleMoment!") |
436 |
return |
437 |
end if |
438 |
|
439 |
if (.not.ElectrostaticMap(atid)%is_Dipole) then |
440 |
call handleError("electrostatic", "getDipoleMoment was called for an atom type that isn't a dipole!") |
441 |
return |
442 |
endif |
443 |
|
444 |
dm = ElectrostaticMap(atid)%dipole_moment |
445 |
end function getDipoleMoment |
446 |
|
447 |
subroutine checkSummationMethod() |
448 |
|
449 |
if (.not.haveDefaultCutoff) then |
450 |
call handleError("checkSummationMethod", "no Default Cutoff set!") |
451 |
endif |
452 |
|
453 |
rcuti = 1.0_dp / defaultCutoff |
454 |
rcuti2 = rcuti*rcuti |
455 |
rcuti3 = rcuti2*rcuti |
456 |
rcuti4 = rcuti2*rcuti2 |
457 |
|
458 |
if (screeningMethod .eq. DAMPED) then |
459 |
if (.not.haveDampingAlpha) then |
460 |
call handleError("checkSummationMethod", "no Damping Alpha set!") |
461 |
endif |
462 |
|
463 |
if (.not.haveDefaultCutoff) then |
464 |
call handleError("checkSummationMethod", "no Default Cutoff set!") |
465 |
endif |
466 |
|
467 |
constEXP = exp(-alpha2*defaultCutoff2) |
468 |
invRootPi = 0.56418958354775628695_dp |
469 |
alphaPi = 2.0_dp*dampingAlpha*invRootPi |
470 |
|
471 |
c1c = erfc(dampingAlpha*defaultCutoff) * rcuti |
472 |
c2c = alphaPi*constEXP*rcuti + c1c*rcuti |
473 |
c3c = 2.0_dp*alphaPi*alpha2 + 3.0_dp*c2c*rcuti |
474 |
c4c = 4.0_dp*alphaPi*alpha4 + 5.0_dp*c3c*rcuti2 |
475 |
c5c = 8.0_dp*alphaPi*alpha6 + 7.0_dp*c4c*rcuti2 |
476 |
c6c = 16.0_dp*alphaPi*alpha8 + 9.0_dp*c5c*rcuti2 |
477 |
else |
478 |
c1c = rcuti |
479 |
c2c = c1c*rcuti |
480 |
c3c = 3.0_dp*c2c*rcuti |
481 |
c4c = 5.0_dp*c3c*rcuti2 |
482 |
c5c = 7.0_dp*c4c*rcuti2 |
483 |
c6c = 9.0_dp*c5c*rcuti2 |
484 |
endif |
485 |
|
486 |
if (summationMethod .eq. REACTION_FIELD) then |
487 |
if (haveDielectric) then |
488 |
defaultCutoff2 = defaultCutoff*defaultCutoff |
489 |
preRF = (dielectric-1.0_dp) / & |
490 |
((2.0_dp*dielectric+1.0_dp)*defaultCutoff2*defaultCutoff) |
491 |
preRF2 = 2.0_dp*preRF |
492 |
else |
493 |
call handleError("checkSummationMethod", "Dielectric not set") |
494 |
endif |
495 |
|
496 |
endif |
497 |
|
498 |
if (.not.haveElectroSpline) then |
499 |
call buildElectroSpline() |
500 |
end if |
501 |
|
502 |
summationMethodChecked = .true. |
503 |
end subroutine checkSummationMethod |
504 |
|
505 |
|
506 |
subroutine doElectrostaticPair(me1, me2, d, rij, r2, rcut, sw, & |
507 |
electroMult, vpair, pot, eF1, eF2, f1, t1, t2) |
508 |
|
509 |
integer, intent(in) :: me1, me2 |
510 |
integer :: localError |
511 |
|
512 |
real(kind=dp), intent(in) :: rij, r2, sw, rcut, electroMult |
513 |
real(kind=dp), intent(in), dimension(3) :: d |
514 |
real(kind=dp), intent(inout) :: vpair |
515 |
|
516 |
real( kind = dp ) :: pot |
517 |
real( kind = dp ), dimension(9) :: eF1, eF2 ! eFrame = electroFrame |
518 |
real( kind = dp ), dimension(3) :: f1 |
519 |
real( kind = dp ), dimension(3,nLocal) :: felec |
520 |
real( kind = dp ), dimension(3) :: t1, t2 |
521 |
|
522 |
real (kind = dp), dimension(3) :: ux_i, uy_i, uz_i |
523 |
real (kind = dp), dimension(3) :: ux_j, uy_j, uz_j |
524 |
real (kind = dp), dimension(3) :: dudux_i, duduy_i, duduz_i |
525 |
real (kind = dp), dimension(3) :: dudux_j, duduy_j, duduz_j |
526 |
|
527 |
logical :: i_is_Charge, i_is_Dipole, i_is_SplitDipole, i_is_Quadrupole |
528 |
logical :: j_is_Charge, j_is_Dipole, j_is_SplitDipole, j_is_Quadrupole |
529 |
logical :: i_is_Tap, j_is_Tap |
530 |
integer :: id1, id2 |
531 |
real (kind=dp) :: q_i, q_j, mu_i, mu_j, d_i, d_j |
532 |
real (kind=dp) :: qxx_i, qyy_i, qzz_i |
533 |
real (kind=dp) :: qxx_j, qyy_j, qzz_j |
534 |
real (kind=dp) :: cx_i, cy_i, cz_i |
535 |
real (kind=dp) :: cx_j, cy_j, cz_j |
536 |
real (kind=dp) :: cx2, cy2, cz2 |
537 |
real (kind=dp) :: ct_i, ct_j, ct_ij, a0, a1 |
538 |
real (kind=dp) :: riji, ri, ri2, ri3, ri4 |
539 |
real (kind=dp) :: pref, vterm, epot, dudr, vterm1, vterm2 |
540 |
real (kind=dp) :: xhat, yhat, zhat |
541 |
real (kind=dp) :: dudx, dudy, dudz |
542 |
real (kind=dp) :: scale, sc2, bigR |
543 |
real (kind=dp) :: varEXP |
544 |
real (kind=dp) :: pot_term |
545 |
real (kind=dp) :: preVal, rfVal |
546 |
real (kind=dp) :: c2ri, c3ri, c4rij |
547 |
real (kind=dp) :: cti3, ctj3, ctidotj |
548 |
real (kind=dp) :: preSw, preSwSc |
549 |
real (kind=dp) :: xhatdot2, yhatdot2, zhatdot2 |
550 |
real (kind=dp) :: xhatc4, yhatc4, zhatc4 |
551 |
|
552 |
if (.not.summationMethodChecked) then |
553 |
call checkSummationMethod() |
554 |
endif |
555 |
|
556 |
!! some variables we'll need independent of electrostatic type: |
557 |
|
558 |
riji = 1.0_dp / rij |
559 |
|
560 |
xhat = d(1) * riji |
561 |
yhat = d(2) * riji |
562 |
zhat = d(3) * riji |
563 |
|
564 |
!! logicals |
565 |
i_is_Charge = ElectrostaticMap(me1)%is_Charge |
566 |
i_is_Dipole = ElectrostaticMap(me1)%is_Dipole |
567 |
i_is_SplitDipole = ElectrostaticMap(me1)%is_SplitDipole |
568 |
i_is_Quadrupole = ElectrostaticMap(me1)%is_Quadrupole |
569 |
i_is_Tap = ElectrostaticMap(me1)%is_Tap |
570 |
|
571 |
j_is_Charge = ElectrostaticMap(me2)%is_Charge |
572 |
j_is_Dipole = ElectrostaticMap(me2)%is_Dipole |
573 |
j_is_SplitDipole = ElectrostaticMap(me2)%is_SplitDipole |
574 |
j_is_Quadrupole = ElectrostaticMap(me2)%is_Quadrupole |
575 |
j_is_Tap = ElectrostaticMap(me2)%is_Tap |
576 |
|
577 |
if (i_is_Charge) then |
578 |
q_i = ElectrostaticMap(me1)%charge |
579 |
endif |
580 |
|
581 |
if (i_is_Dipole) then |
582 |
mu_i = ElectrostaticMap(me1)%dipole_moment |
583 |
|
584 |
uz_i(1) = eF1(3) |
585 |
uz_i(2) = eF1(6) |
586 |
uz_i(3) = eF1(9) |
587 |
|
588 |
ct_i = uz_i(1)*xhat + uz_i(2)*yhat + uz_i(3)*zhat |
589 |
|
590 |
if (i_is_SplitDipole) then |
591 |
d_i = ElectrostaticMap(me1)%split_dipole_distance |
592 |
endif |
593 |
duduz_i = zero |
594 |
endif |
595 |
|
596 |
if (i_is_Quadrupole) then |
597 |
qxx_i = ElectrostaticMap(me1)%quadrupole_moments(1) |
598 |
qyy_i = ElectrostaticMap(me1)%quadrupole_moments(2) |
599 |
qzz_i = ElectrostaticMap(me1)%quadrupole_moments(3) |
600 |
|
601 |
ux_i(1) = eF1(1) |
602 |
ux_i(2) = eF1(4) |
603 |
ux_i(3) = eF1(7) |
604 |
uy_i(1) = eF1(2) |
605 |
uy_i(2) = eF1(5) |
606 |
uy_i(3) = eF1(8) |
607 |
uz_i(1) = eF1(3) |
608 |
uz_i(2) = eF1(6) |
609 |
uz_i(3) = eF1(9) |
610 |
|
611 |
cx_i = ux_i(1)*xhat + ux_i(2)*yhat + ux_i(3)*zhat |
612 |
cy_i = uy_i(1)*xhat + uy_i(2)*yhat + uy_i(3)*zhat |
613 |
cz_i = uz_i(1)*xhat + uz_i(2)*yhat + uz_i(3)*zhat |
614 |
dudux_i = zero |
615 |
duduy_i = zero |
616 |
duduz_i = zero |
617 |
endif |
618 |
|
619 |
if (j_is_Charge) then |
620 |
q_j = ElectrostaticMap(me2)%charge |
621 |
endif |
622 |
|
623 |
if (j_is_Dipole) then |
624 |
mu_j = ElectrostaticMap(me2)%dipole_moment |
625 |
|
626 |
uz_j(1) = eF2(3) |
627 |
uz_j(2) = eF2(6) |
628 |
uz_j(3) = eF2(9) |
629 |
|
630 |
ct_j = uz_j(1)*xhat + uz_j(2)*yhat + uz_j(3)*zhat |
631 |
|
632 |
if (j_is_SplitDipole) then |
633 |
d_j = ElectrostaticMap(me2)%split_dipole_distance |
634 |
endif |
635 |
duduz_j = zero |
636 |
endif |
637 |
|
638 |
if (j_is_Quadrupole) then |
639 |
qxx_j = ElectrostaticMap(me2)%quadrupole_moments(1) |
640 |
qyy_j = ElectrostaticMap(me2)%quadrupole_moments(2) |
641 |
qzz_j = ElectrostaticMap(me2)%quadrupole_moments(3) |
642 |
|
643 |
ux_j(1) = eF2(1) |
644 |
ux_j(2) = eF2(4) |
645 |
ux_j(3) = eF2(7) |
646 |
uy_j(1) = eF2(2) |
647 |
uy_j(2) = eF2(5) |
648 |
uy_j(3) = eF2(8) |
649 |
uz_j(1) = eF2(3) |
650 |
uz_j(2) = eF2(6) |
651 |
uz_j(3) = eF2(9) |
652 |
|
653 |
cx_j = ux_j(1)*xhat + ux_j(2)*yhat + ux_j(3)*zhat |
654 |
cy_j = uy_j(1)*xhat + uy_j(2)*yhat + uy_j(3)*zhat |
655 |
cz_j = uz_j(1)*xhat + uz_j(2)*yhat + uz_j(3)*zhat |
656 |
dudux_j = zero |
657 |
duduy_j = zero |
658 |
duduz_j = zero |
659 |
endif |
660 |
|
661 |
epot = zero |
662 |
dudx = zero |
663 |
dudy = zero |
664 |
dudz = zero |
665 |
|
666 |
if (i_is_Charge) then |
667 |
|
668 |
if (j_is_Charge) then |
669 |
if (screeningMethod .eq. DAMPED) then |
670 |
! assemble the damping variables |
671 |
call lookupUniformSpline1d(erfcSpline, rij, erfcVal, derfcVal) |
672 |
c1 = erfcVal*riji |
673 |
c2 = (-derfcVal + c1)*riji |
674 |
else |
675 |
c1 = riji |
676 |
c2 = c1*riji |
677 |
endif |
678 |
|
679 |
preVal = electroMult * pre11 * q_i * q_j |
680 |
|
681 |
if (summationMethod .eq. SHIFTED_POTENTIAL) then |
682 |
vterm = preVal * (c1 - c1c) |
683 |
|
684 |
dudr = -sw * preVal * c2 |
685 |
|
686 |
elseif (summationMethod .eq. SHIFTED_FORCE) then |
687 |
vterm = preVal * ( c1 - c1c + c2c*(rij - defaultCutoff) ) |
688 |
|
689 |
dudr = sw * preVal * (c2c - c2) |
690 |
|
691 |
elseif (summationMethod .eq. REACTION_FIELD) then |
692 |
rfVal = electroMult * preRF*rij*rij |
693 |
vterm = preVal * ( riji + rfVal ) |
694 |
|
695 |
dudr = sw * preVal * ( 2.0_dp*rfVal - riji )*riji |
696 |
|
697 |
else |
698 |
vterm = preVal * riji*erfcVal |
699 |
|
700 |
dudr = - sw * preVal * c2 |
701 |
|
702 |
endif |
703 |
|
704 |
vpair = vpair + vterm |
705 |
epot = epot + sw*vterm |
706 |
|
707 |
dudx = dudx + dudr * xhat |
708 |
dudy = dudy + dudr * yhat |
709 |
dudz = dudz + dudr * zhat |
710 |
|
711 |
endif |
712 |
|
713 |
if (j_is_Dipole) then |
714 |
! pref is used by all the possible methods |
715 |
pref = electroMult * pre12 * q_i * mu_j |
716 |
preSw = sw*pref |
717 |
|
718 |
if (summationMethod .eq. REACTION_FIELD) then |
719 |
ri2 = riji * riji |
720 |
ri3 = ri2 * riji |
721 |
|
722 |
vterm = - pref * ct_j * ( ri2 - preRF2*rij ) |
723 |
vpair = vpair + vterm |
724 |
epot = epot + sw*vterm |
725 |
|
726 |
dudx = dudx - preSw*( ri3*(uz_j(1) - 3.0_dp*ct_j*xhat) - & |
727 |
preRF2*uz_j(1) ) |
728 |
dudy = dudy - preSw*( ri3*(uz_j(2) - 3.0_dp*ct_j*yhat) - & |
729 |
preRF2*uz_j(2) ) |
730 |
dudz = dudz - preSw*( ri3*(uz_j(3) - 3.0_dp*ct_j*zhat) - & |
731 |
preRF2*uz_j(3) ) |
732 |
duduz_j(1) = duduz_j(1) - preSw * xhat * ( ri2 - preRF2*rij ) |
733 |
duduz_j(2) = duduz_j(2) - preSw * yhat * ( ri2 - preRF2*rij ) |
734 |
duduz_j(3) = duduz_j(3) - preSw * zhat * ( ri2 - preRF2*rij ) |
735 |
|
736 |
else |
737 |
! determine the inverse r used if we have split dipoles |
738 |
if (j_is_SplitDipole) then |
739 |
BigR = sqrt(r2 + 0.25_dp * d_j * d_j) |
740 |
ri = 1.0_dp / BigR |
741 |
scale = rij * ri |
742 |
else |
743 |
ri = riji |
744 |
scale = 1.0_dp |
745 |
endif |
746 |
|
747 |
sc2 = scale * scale |
748 |
|
749 |
if (screeningMethod .eq. DAMPED) then |
750 |
! assemble the damping variables |
751 |
call lookupUniformSpline1d(erfcSpline, rij, erfcVal, derfcVal) |
752 |
c1 = erfcVal*ri |
753 |
c2 = (-derfcVal + c1)*ri |
754 |
c3 = -2.0_dp*derfcVal*alpha2 + 3.0_dp*c2*ri |
755 |
else |
756 |
c1 = ri |
757 |
c2 = c1*ri |
758 |
c3 = 3.0_dp*c2*ri |
759 |
endif |
760 |
|
761 |
c2ri = c2*ri |
762 |
|
763 |
! calculate the potential |
764 |
pot_term = scale * c2 |
765 |
vterm = -pref * ct_j * pot_term |
766 |
vpair = vpair + vterm |
767 |
epot = epot + sw*vterm |
768 |
|
769 |
! calculate derivatives for forces and torques |
770 |
dudx = dudx - preSw*( uz_j(1)*c2ri - ct_j*xhat*sc2*c3 ) |
771 |
dudy = dudy - preSw*( uz_j(2)*c2ri - ct_j*yhat*sc2*c3 ) |
772 |
dudz = dudz - preSw*( uz_j(3)*c2ri - ct_j*zhat*sc2*c3 ) |
773 |
|
774 |
duduz_j(1) = duduz_j(1) - preSw * pot_term * xhat |
775 |
duduz_j(2) = duduz_j(2) - preSw * pot_term * yhat |
776 |
duduz_j(3) = duduz_j(3) - preSw * pot_term * zhat |
777 |
|
778 |
endif |
779 |
endif |
780 |
|
781 |
if (j_is_Quadrupole) then |
782 |
! first precalculate some necessary variables |
783 |
cx2 = cx_j * cx_j |
784 |
cy2 = cy_j * cy_j |
785 |
cz2 = cz_j * cz_j |
786 |
pref = electroMult * pre14 * q_i * one_third |
787 |
|
788 |
if (screeningMethod .eq. DAMPED) then |
789 |
! assemble the damping variables |
790 |
call lookupUniformSpline1d(erfcSpline, rij, erfcVal, derfcVal) |
791 |
c1 = erfcVal*riji |
792 |
c2 = (-derfcVal + c1)*riji |
793 |
c3 = -2.0_dp*derfcVal*alpha2 + 3.0_dp*c2*riji |
794 |
c4 = -4.0_dp*derfcVal*alpha4 + 5.0_dp*c3*riji*riji |
795 |
else |
796 |
c1 = riji |
797 |
c2 = c1*riji |
798 |
c3 = 3.0_dp*c2*riji |
799 |
c4 = 5.0_dp*c3*riji*riji |
800 |
endif |
801 |
|
802 |
! precompute variables for convenience |
803 |
preSw = sw*pref |
804 |
c2ri = c2*riji |
805 |
c3ri = c3*riji |
806 |
c4rij = c4*rij |
807 |
xhatdot2 = 2.0_dp*xhat*c3 |
808 |
yhatdot2 = 2.0_dp*yhat*c3 |
809 |
zhatdot2 = 2.0_dp*zhat*c3 |
810 |
xhatc4 = xhat*c4rij |
811 |
yhatc4 = yhat*c4rij |
812 |
zhatc4 = zhat*c4rij |
813 |
|
814 |
! calculate the potential |
815 |
pot_term = ( qxx_j*(cx2*c3 - c2ri) + qyy_j*(cy2*c3 - c2ri) + & |
816 |
qzz_j*(cz2*c3 - c2ri) ) |
817 |
vterm = pref * pot_term |
818 |
vpair = vpair + vterm |
819 |
epot = epot + sw*vterm |
820 |
|
821 |
! calculate derivatives for the forces and torques |
822 |
dudx = dudx - preSw * ( & |
823 |
qxx_j*(cx2*xhatc4 - (2.0_dp*cx_j*ux_j(1) + xhat)*c3ri) + & |
824 |
qyy_j*(cy2*xhatc4 - (2.0_dp*cy_j*uy_j(1) + xhat)*c3ri) + & |
825 |
qzz_j*(cz2*xhatc4 - (2.0_dp*cz_j*uz_j(1) + xhat)*c3ri) ) |
826 |
dudy = dudy - preSw * ( & |
827 |
qxx_j*(cx2*yhatc4 - (2.0_dp*cx_j*ux_j(2) + yhat)*c3ri) + & |
828 |
qyy_j*(cy2*yhatc4 - (2.0_dp*cy_j*uy_j(2) + yhat)*c3ri) + & |
829 |
qzz_j*(cz2*yhatc4 - (2.0_dp*cz_j*uz_j(2) + yhat)*c3ri) ) |
830 |
dudz = dudz - preSw * ( & |
831 |
qxx_j*(cx2*zhatc4 - (2.0_dp*cx_j*ux_j(3) + zhat)*c3ri) + & |
832 |
qyy_j*(cy2*zhatc4 - (2.0_dp*cy_j*uy_j(3) + zhat)*c3ri) + & |
833 |
qzz_j*(cz2*zhatc4 - (2.0_dp*cz_j*uz_j(3) + zhat)*c3ri) ) |
834 |
|
835 |
dudux_j(1) = dudux_j(1) + preSw*(qxx_j*cx_j*xhatdot2) |
836 |
dudux_j(2) = dudux_j(2) + preSw*(qxx_j*cx_j*yhatdot2) |
837 |
dudux_j(3) = dudux_j(3) + preSw*(qxx_j*cx_j*zhatdot2) |
838 |
|
839 |
duduy_j(1) = duduy_j(1) + preSw*(qyy_j*cy_j*xhatdot2) |
840 |
duduy_j(2) = duduy_j(2) + preSw*(qyy_j*cy_j*yhatdot2) |
841 |
duduy_j(3) = duduy_j(3) + preSw*(qyy_j*cy_j*zhatdot2) |
842 |
|
843 |
duduz_j(1) = duduz_j(1) + preSw*(qzz_j*cz_j*xhatdot2) |
844 |
duduz_j(2) = duduz_j(2) + preSw*(qzz_j*cz_j*yhatdot2) |
845 |
duduz_j(3) = duduz_j(3) + preSw*(qzz_j*cz_j*zhatdot2) |
846 |
|
847 |
|
848 |
endif |
849 |
endif |
850 |
|
851 |
if (i_is_Dipole) then |
852 |
|
853 |
if (j_is_Charge) then |
854 |
! variables used by all the methods |
855 |
pref = electroMult * pre12 * q_j * mu_i |
856 |
preSw = sw*pref |
857 |
|
858 |
if (summationMethod .eq. REACTION_FIELD) then |
859 |
|
860 |
ri2 = riji * riji |
861 |
ri3 = ri2 * riji |
862 |
|
863 |
vterm = pref * ct_i * ( ri2 - preRF2*rij ) |
864 |
vpair = vpair + vterm |
865 |
epot = epot + sw*vterm |
866 |
|
867 |
dudx = dudx + preSw * ( ri3*(uz_i(1) - 3.0_dp*ct_i*xhat) - & |
868 |
preRF2*uz_i(1) ) |
869 |
dudy = dudy + preSw * ( ri3*(uz_i(2) - 3.0_dp*ct_i*yhat) - & |
870 |
preRF2*uz_i(2) ) |
871 |
dudz = dudz + preSw * ( ri3*(uz_i(3) - 3.0_dp*ct_i*zhat) - & |
872 |
preRF2*uz_i(3) ) |
873 |
|
874 |
duduz_i(1) = duduz_i(1) + preSw * xhat * ( ri2 - preRF2*rij ) |
875 |
duduz_i(2) = duduz_i(2) + preSw * yhat * ( ri2 - preRF2*rij ) |
876 |
duduz_i(3) = duduz_i(3) + preSw * zhat * ( ri2 - preRF2*rij ) |
877 |
|
878 |
else |
879 |
! determine inverse r if we are using split dipoles |
880 |
if (i_is_SplitDipole) then |
881 |
BigR = sqrt(r2 + 0.25_dp * d_i * d_i) |
882 |
ri = 1.0_dp / BigR |
883 |
scale = rij * ri |
884 |
else |
885 |
ri = riji |
886 |
scale = 1.0_dp |
887 |
endif |
888 |
|
889 |
sc2 = scale * scale |
890 |
|
891 |
if (screeningMethod .eq. DAMPED) then |
892 |
! assemble the damping variables |
893 |
call lookupUniformSpline1d(erfcSpline, rij, erfcVal, derfcVal) |
894 |
c1 = erfcVal*ri |
895 |
c2 = (-derfcVal + c1)*ri |
896 |
c3 = -2.0_dp*derfcVal*alpha2 + 3.0_dp*c2*ri |
897 |
else |
898 |
c1 = ri |
899 |
c2 = c1*ri |
900 |
c3 = 3.0_dp*c2*ri |
901 |
endif |
902 |
|
903 |
c2ri = c2*ri |
904 |
|
905 |
! calculate the potential |
906 |
pot_term = c2 * scale |
907 |
vterm = pref * ct_i * pot_term |
908 |
vpair = vpair + vterm |
909 |
epot = epot + sw*vterm |
910 |
|
911 |
! calculate derivatives for the forces and torques |
912 |
dudx = dudx + preSw * ( uz_i(1)*c2ri - ct_i*xhat*sc2*c3 ) |
913 |
dudy = dudy + preSw * ( uz_i(2)*c2ri - ct_i*yhat*sc2*c3 ) |
914 |
dudz = dudz + preSw * ( uz_i(3)*c2ri - ct_i*zhat*sc2*c3 ) |
915 |
|
916 |
duduz_i(1) = duduz_i(1) + preSw * pot_term * xhat |
917 |
duduz_i(2) = duduz_i(2) + preSw * pot_term * yhat |
918 |
duduz_i(3) = duduz_i(3) + preSw * pot_term * zhat |
919 |
|
920 |
endif |
921 |
endif |
922 |
|
923 |
if (j_is_Dipole) then |
924 |
! variables used by all methods |
925 |
ct_ij = uz_i(1)*uz_j(1) + uz_i(2)*uz_j(2) + uz_i(3)*uz_j(3) |
926 |
pref = electroMult * pre22 * mu_i * mu_j |
927 |
preSw = sw*pref |
928 |
|
929 |
if (summationMethod .eq. REACTION_FIELD) then |
930 |
ri2 = riji * riji |
931 |
ri3 = ri2 * riji |
932 |
ri4 = ri2 * ri2 |
933 |
|
934 |
vterm = pref*( ri3*(ct_ij - 3.0_dp * ct_i * ct_j) - & |
935 |
preRF2*ct_ij ) |
936 |
vpair = vpair + vterm |
937 |
epot = epot + sw*vterm |
938 |
|
939 |
a1 = 5.0_dp * ct_i * ct_j - ct_ij |
940 |
|
941 |
dudx = dudx + preSw*3.0_dp*ri4*(a1*xhat-ct_i*uz_j(1)-ct_j*uz_i(1)) |
942 |
dudy = dudy + preSw*3.0_dp*ri4*(a1*yhat-ct_i*uz_j(2)-ct_j*uz_i(2)) |
943 |
dudz = dudz + preSw*3.0_dp*ri4*(a1*zhat-ct_i*uz_j(3)-ct_j*uz_i(3)) |
944 |
|
945 |
duduz_i(1) = duduz_i(1) + preSw*(ri3*(uz_j(1)-3.0_dp*ct_j*xhat) & |
946 |
- preRF2*uz_j(1)) |
947 |
duduz_i(2) = duduz_i(2) + preSw*(ri3*(uz_j(2)-3.0_dp*ct_j*yhat) & |
948 |
- preRF2*uz_j(2)) |
949 |
duduz_i(3) = duduz_i(3) + preSw*(ri3*(uz_j(3)-3.0_dp*ct_j*zhat) & |
950 |
- preRF2*uz_j(3)) |
951 |
duduz_j(1) = duduz_j(1) + preSw*(ri3*(uz_i(1)-3.0_dp*ct_i*xhat) & |
952 |
- preRF2*uz_i(1)) |
953 |
duduz_j(2) = duduz_j(2) + preSw*(ri3*(uz_i(2)-3.0_dp*ct_i*yhat) & |
954 |
- preRF2*uz_i(2)) |
955 |
duduz_j(3) = duduz_j(3) + preSw*(ri3*(uz_i(3)-3.0_dp*ct_i*zhat) & |
956 |
- preRF2*uz_i(3)) |
957 |
|
958 |
else |
959 |
if (i_is_SplitDipole) then |
960 |
if (j_is_SplitDipole) then |
961 |
BigR = sqrt(r2 + 0.25_dp * d_i * d_i + 0.25_dp * d_j * d_j) |
962 |
else |
963 |
BigR = sqrt(r2 + 0.25_dp * d_i * d_i) |
964 |
endif |
965 |
ri = 1.0_dp / BigR |
966 |
scale = rij * ri |
967 |
else |
968 |
if (j_is_SplitDipole) then |
969 |
BigR = sqrt(r2 + 0.25_dp * d_j * d_j) |
970 |
ri = 1.0_dp / BigR |
971 |
scale = rij * ri |
972 |
else |
973 |
ri = riji |
974 |
scale = 1.0_dp |
975 |
endif |
976 |
endif |
977 |
|
978 |
if (screeningMethod .eq. DAMPED) then |
979 |
! assemble the damping variables |
980 |
call lookupUniformSpline1d(erfcSpline, rij, erfcVal, derfcVal) |
981 |
c1 = erfcVal*ri |
982 |
c2 = (-derfcVal + c1)*ri |
983 |
c3 = -2.0_dp*derfcVal*alpha2 + 3.0_dp*c2*ri |
984 |
c4 = -4.0_dp*derfcVal*alpha4 + 5.0_dp*c3*ri*ri |
985 |
else |
986 |
c1 = ri |
987 |
c2 = c1*ri |
988 |
c3 = 3.0_dp*c2*ri |
989 |
c4 = 5.0_dp*c3*ri*ri |
990 |
endif |
991 |
|
992 |
! precompute variables for convenience |
993 |
sc2 = scale * scale |
994 |
cti3 = ct_i*sc2*c3 |
995 |
ctj3 = ct_j*sc2*c3 |
996 |
ctidotj = ct_i * ct_j * sc2 |
997 |
preSwSc = preSw*scale |
998 |
c2ri = c2*ri |
999 |
c3ri = c3*ri |
1000 |
c4rij = c4*rij |
1001 |
|
1002 |
|
1003 |
! calculate the potential |
1004 |
pot_term = (ct_ij*c2ri - ctidotj*c3) |
1005 |
vterm = pref * pot_term |
1006 |
vpair = vpair + vterm |
1007 |
epot = epot + sw*vterm |
1008 |
|
1009 |
! calculate derivatives for the forces and torques |
1010 |
dudx = dudx + preSwSc * ( ctidotj*xhat*c4rij - & |
1011 |
(ct_i*uz_j(1) + ct_j*uz_i(1) + ct_ij*xhat)*c3ri ) |
1012 |
dudy = dudy + preSwSc * ( ctidotj*yhat*c4rij - & |
1013 |
(ct_i*uz_j(2) + ct_j*uz_i(2) + ct_ij*yhat)*c3ri ) |
1014 |
dudz = dudz + preSwSc * ( ctidotj*zhat*c4rij - & |
1015 |
(ct_i*uz_j(3) + ct_j*uz_i(3) + ct_ij*zhat)*c3ri ) |
1016 |
|
1017 |
duduz_i(1) = duduz_i(1) + preSw * ( uz_j(1)*c2ri - ctj3*xhat ) |
1018 |
duduz_i(2) = duduz_i(2) + preSw * ( uz_j(2)*c2ri - ctj3*yhat ) |
1019 |
duduz_i(3) = duduz_i(3) + preSw * ( uz_j(3)*c2ri - ctj3*zhat ) |
1020 |
|
1021 |
duduz_j(1) = duduz_j(1) + preSw * ( uz_i(1)*c2ri - cti3*xhat ) |
1022 |
duduz_j(2) = duduz_j(2) + preSw * ( uz_i(2)*c2ri - cti3*yhat ) |
1023 |
duduz_j(3) = duduz_j(3) + preSw * ( uz_i(3)*c2ri - cti3*zhat ) |
1024 |
|
1025 |
endif |
1026 |
endif |
1027 |
endif |
1028 |
|
1029 |
if (i_is_Quadrupole) then |
1030 |
if (j_is_Charge) then |
1031 |
! precompute some necessary variables |
1032 |
cx2 = cx_i * cx_i |
1033 |
cy2 = cy_i * cy_i |
1034 |
cz2 = cz_i * cz_i |
1035 |
pref = electroMult * pre14 * q_j * one_third |
1036 |
|
1037 |
if (screeningMethod .eq. DAMPED) then |
1038 |
! assemble the damping variables |
1039 |
call lookupUniformSpline1d(erfcSpline, rij, erfcVal, derfcVal) |
1040 |
c1 = erfcVal*riji |
1041 |
c2 = (-derfcVal + c1)*riji |
1042 |
c3 = -2.0_dp*derfcVal*alpha2 + 3.0_dp*c2*riji |
1043 |
c4 = -4.0_dp*derfcVal*alpha4 + 5.0_dp*c3*riji*riji |
1044 |
else |
1045 |
c1 = riji |
1046 |
c2 = c1*riji |
1047 |
c3 = 3.0_dp*c2*riji |
1048 |
c4 = 5.0_dp*c3*riji*riji |
1049 |
endif |
1050 |
|
1051 |
! precompute some variables for convenience |
1052 |
preSw = sw*pref |
1053 |
c2ri = c2*riji |
1054 |
c3ri = c3*riji |
1055 |
c4rij = c4*rij |
1056 |
xhatdot2 = 2.0_dp*xhat*c3 |
1057 |
yhatdot2 = 2.0_dp*yhat*c3 |
1058 |
zhatdot2 = 2.0_dp*zhat*c3 |
1059 |
xhatc4 = xhat*c4rij |
1060 |
yhatc4 = yhat*c4rij |
1061 |
zhatc4 = zhat*c4rij |
1062 |
|
1063 |
! calculate the potential |
1064 |
pot_term = ( qxx_i * (cx2*c3 - c2ri) + qyy_i * (cy2*c3 - c2ri) + & |
1065 |
qzz_i * (cz2*c3 - c2ri) ) |
1066 |
|
1067 |
vterm = pref * pot_term |
1068 |
vpair = vpair + vterm |
1069 |
epot = epot + sw*vterm |
1070 |
|
1071 |
! calculate the derivatives for the forces and torques |
1072 |
dudx = dudx - preSw * ( & |
1073 |
qxx_i*(cx2*xhatc4 - (2.0_dp*cx_i*ux_i(1) + xhat)*c3ri) + & |
1074 |
qyy_i*(cy2*xhatc4 - (2.0_dp*cy_i*uy_i(1) + xhat)*c3ri) + & |
1075 |
qzz_i*(cz2*xhatc4 - (2.0_dp*cz_i*uz_i(1) + xhat)*c3ri) ) |
1076 |
dudy = dudy - preSw * ( & |
1077 |
qxx_i*(cx2*yhatc4 - (2.0_dp*cx_i*ux_i(2) + yhat)*c3ri) + & |
1078 |
qyy_i*(cy2*yhatc4 - (2.0_dp*cy_i*uy_i(2) + yhat)*c3ri) + & |
1079 |
qzz_i*(cz2*yhatc4 - (2.0_dp*cz_i*uz_i(2) + yhat)*c3ri) ) |
1080 |
dudz = dudz - preSw * ( & |
1081 |
qxx_i*(cx2*zhatc4 - (2.0_dp*cx_i*ux_i(3) + zhat)*c3ri) + & |
1082 |
qyy_i*(cy2*zhatc4 - (2.0_dp*cy_i*uy_i(3) + zhat)*c3ri) + & |
1083 |
qzz_i*(cz2*zhatc4 - (2.0_dp*cz_i*uz_i(3) + zhat)*c3ri) ) |
1084 |
|
1085 |
dudux_i(1) = dudux_i(1) + preSw*(qxx_i*cx_i*xhatdot2) |
1086 |
dudux_i(2) = dudux_i(2) + preSw*(qxx_i*cx_i*yhatdot2) |
1087 |
dudux_i(3) = dudux_i(3) + preSw*(qxx_i*cx_i*zhatdot2) |
1088 |
|
1089 |
duduy_i(1) = duduy_i(1) + preSw*(qyy_i*cy_i*xhatdot2) |
1090 |
duduy_i(2) = duduy_i(2) + preSw*(qyy_i*cy_i*yhatdot2) |
1091 |
duduy_i(3) = duduy_i(3) + preSw*(qyy_i*cy_i*zhatdot2) |
1092 |
|
1093 |
duduz_i(1) = duduz_i(1) + preSw*(qzz_i*cz_i*xhatdot2) |
1094 |
duduz_i(2) = duduz_i(2) + preSw*(qzz_i*cz_i*yhatdot2) |
1095 |
duduz_i(3) = duduz_i(3) + preSw*(qzz_i*cz_i*zhatdot2) |
1096 |
endif |
1097 |
endif |
1098 |
|
1099 |
pot = pot + epot |
1100 |
|
1101 |
f1(1) = f1(1) + dudx |
1102 |
f1(2) = f1(2) + dudy |
1103 |
f1(3) = f1(3) + dudz |
1104 |
|
1105 |
if (i_is_Dipole .or. i_is_Quadrupole) then |
1106 |
t1(1) = t1(1) - uz_i(2)*duduz_i(3) + uz_i(3)*duduz_i(2) |
1107 |
t1(2) = t1(2) - uz_i(3)*duduz_i(1) + uz_i(1)*duduz_i(3) |
1108 |
t1(3) = t1(3) - uz_i(1)*duduz_i(2) + uz_i(2)*duduz_i(1) |
1109 |
endif |
1110 |
if (i_is_Quadrupole) then |
1111 |
t1(1) = t1(1) - ux_i(2)*dudux_i(3) + ux_i(3)*dudux_i(2) |
1112 |
t1(2) = t1(2) - ux_i(3)*dudux_i(1) + ux_i(1)*dudux_i(3) |
1113 |
t1(3) = t1(3) - ux_i(1)*dudux_i(2) + ux_i(2)*dudux_i(1) |
1114 |
|
1115 |
t1(1) = t1(1) - uy_i(2)*duduy_i(3) + uy_i(3)*duduy_i(2) |
1116 |
t1(2) = t1(2) - uy_i(3)*duduy_i(1) + uy_i(1)*duduy_i(3) |
1117 |
t1(3) = t1(3) - uy_i(1)*duduy_i(2) + uy_i(2)*duduy_i(1) |
1118 |
endif |
1119 |
|
1120 |
if (j_is_Dipole .or. j_is_Quadrupole) then |
1121 |
t2(1) = t2(1) - uz_j(2)*duduz_j(3) + uz_j(3)*duduz_j(2) |
1122 |
t2(2) = t2(2) - uz_j(3)*duduz_j(1) + uz_j(1)*duduz_j(3) |
1123 |
t2(3) = t2(3) - uz_j(1)*duduz_j(2) + uz_j(2)*duduz_j(1) |
1124 |
endif |
1125 |
if (j_is_Quadrupole) then |
1126 |
t2(1) = t2(1) - ux_j(2)*dudux_j(3) + ux_j(3)*dudux_j(2) |
1127 |
t2(2) = t2(2) - ux_j(3)*dudux_j(1) + ux_j(1)*dudux_j(3) |
1128 |
t2(3) = t2(3) - ux_j(1)*dudux_j(2) + ux_j(2)*dudux_j(1) |
1129 |
|
1130 |
t2(1) = t2(1) - uy_j(2)*duduy_j(3) + uy_j(3)*duduy_j(2) |
1131 |
t2(2) = t2(2) - uy_j(3)*duduy_j(1) + uy_j(1)*duduy_j(3) |
1132 |
t2(3) = t2(3) - uy_j(1)*duduy_j(2) + uy_j(2)*duduy_j(1) |
1133 |
endif |
1134 |
|
1135 |
return |
1136 |
end subroutine doElectrostaticPair |
1137 |
|
1138 |
subroutine destroyElectrostaticTypes() |
1139 |
|
1140 |
if(allocated(ElectrostaticMap)) deallocate(ElectrostaticMap) |
1141 |
|
1142 |
end subroutine destroyElectrostaticTypes |
1143 |
|
1144 |
subroutine self_self(atom1, eFrame, skch, mypot, t) |
1145 |
integer, intent(in) :: atom1 |
1146 |
integer :: atid1 |
1147 |
real(kind=dp), dimension(9,nLocal) :: eFrame |
1148 |
real(kind=dp), dimension(3,nLocal) :: t |
1149 |
real(kind=dp) :: mu1, chg1, c1e |
1150 |
real(kind=dp) :: preVal, epot, mypot, skch |
1151 |
real(kind=dp) :: eix, eiy, eiz, self |
1152 |
|
1153 |
! this is a local only array, so we use the local atom type id's: |
1154 |
atid1 = atid(atom1) |
1155 |
|
1156 |
if (.not.summationMethodChecked) then |
1157 |
call checkSummationMethod() |
1158 |
endif |
1159 |
|
1160 |
if (summationMethod .eq. REACTION_FIELD) then |
1161 |
if (ElectrostaticMap(atid1)%is_Dipole) then |
1162 |
mu1 = getDipoleMoment(atid1) |
1163 |
|
1164 |
preVal = pre22 * preRF2 * mu1*mu1 |
1165 |
mypot = mypot - 0.5_dp*preVal |
1166 |
|
1167 |
! The self-correction term adds into the reaction field vector |
1168 |
|
1169 |
eix = preVal * eFrame(3,atom1) |
1170 |
eiy = preVal * eFrame(6,atom1) |
1171 |
eiz = preVal * eFrame(9,atom1) |
1172 |
|
1173 |
! once again, this is self-self, so only the local arrays are needed |
1174 |
! even for MPI jobs: |
1175 |
|
1176 |
t(1,atom1)=t(1,atom1) - eFrame(6,atom1)*eiz + & |
1177 |
eFrame(9,atom1)*eiy |
1178 |
t(2,atom1)=t(2,atom1) - eFrame(9,atom1)*eix + & |
1179 |
eFrame(3,atom1)*eiz |
1180 |
t(3,atom1)=t(3,atom1) - eFrame(3,atom1)*eiy + & |
1181 |
eFrame(6,atom1)*eix |
1182 |
|
1183 |
endif |
1184 |
|
1185 |
elseif ( (summationMethod .eq. SHIFTED_FORCE) .or. & |
1186 |
(summationMethod .eq. SHIFTED_POTENTIAL) ) then |
1187 |
if (ElectrostaticMap(atid1)%is_Charge) then |
1188 |
chg1 = getCharge(atid1) |
1189 |
if (screeningMethod .eq. DAMPED) then |
1190 |
self = - 0.5_dp * (c1c+alphaPi) * chg1 * (chg1+skch) * pre11 |
1191 |
else |
1192 |
self = - 0.5_dp * rcuti * chg1 * (chg1+skch) * pre11 |
1193 |
endif |
1194 |
|
1195 |
mypot = mypot + self |
1196 |
endif |
1197 |
endif |
1198 |
|
1199 |
|
1200 |
|
1201 |
return |
1202 |
end subroutine self_self |
1203 |
|
1204 |
subroutine rf_self_excludes(atom1, atom2, sw, electroMult, eFrame, d, & |
1205 |
rij, vpair, myPot, f, t) |
1206 |
integer, intent(in) :: atom1 |
1207 |
integer, intent(in) :: atom2 |
1208 |
logical :: i_is_Charge, j_is_Charge |
1209 |
logical :: i_is_Dipole, j_is_Dipole |
1210 |
integer :: atid1 |
1211 |
integer :: atid2 |
1212 |
real(kind=dp), intent(in) :: rij |
1213 |
real(kind=dp), intent(in) :: sw, electroMult |
1214 |
real(kind=dp), intent(in), dimension(3) :: d |
1215 |
real(kind=dp), intent(inout) :: vpair |
1216 |
real(kind=dp), dimension(9,nLocal) :: eFrame |
1217 |
real(kind=dp), dimension(3,nLocal) :: f |
1218 |
real(kind=dp), dimension(3,nLocal) :: t |
1219 |
real (kind = dp), dimension(3) :: duduz_i |
1220 |
real (kind = dp), dimension(3) :: duduz_j |
1221 |
real (kind = dp), dimension(3) :: uz_i |
1222 |
real (kind = dp), dimension(3) :: uz_j |
1223 |
real(kind=dp) :: q_i, q_j, mu_i, mu_j |
1224 |
real(kind=dp) :: xhat, yhat, zhat |
1225 |
real(kind=dp) :: ct_i, ct_j |
1226 |
real(kind=dp) :: ri2, ri3, riji, vterm |
1227 |
real(kind=dp) :: pref, preVal, rfVal, myPot |
1228 |
real(kind=dp) :: dudx, dudy, dudz, dudr |
1229 |
|
1230 |
if (.not.summationMethodChecked) then |
1231 |
call checkSummationMethod() |
1232 |
endif |
1233 |
|
1234 |
dudx = zero |
1235 |
dudy = zero |
1236 |
dudz = zero |
1237 |
|
1238 |
riji = 1.0_dp/rij |
1239 |
|
1240 |
xhat = d(1) * riji |
1241 |
yhat = d(2) * riji |
1242 |
zhat = d(3) * riji |
1243 |
|
1244 |
! this is a local only array, so we use the local atom type id's: |
1245 |
atid1 = atid(atom1) |
1246 |
atid2 = atid(atom2) |
1247 |
i_is_Charge = ElectrostaticMap(atid1)%is_Charge |
1248 |
j_is_Charge = ElectrostaticMap(atid2)%is_Charge |
1249 |
i_is_Dipole = ElectrostaticMap(atid1)%is_Dipole |
1250 |
j_is_Dipole = ElectrostaticMap(atid2)%is_Dipole |
1251 |
|
1252 |
if (i_is_Charge.and.j_is_Charge) then |
1253 |
q_i = ElectrostaticMap(atid1)%charge |
1254 |
q_j = ElectrostaticMap(atid2)%charge |
1255 |
|
1256 |
preVal = electroMult * pre11 * q_i * q_j |
1257 |
rfVal = preRF*rij*rij |
1258 |
vterm = preVal * rfVal |
1259 |
|
1260 |
myPot = myPot + sw*vterm |
1261 |
|
1262 |
dudr = sw*preVal * 2.0_dp*rfVal*riji |
1263 |
|
1264 |
dudx = dudx + dudr * xhat |
1265 |
dudy = dudy + dudr * yhat |
1266 |
dudz = dudz + dudr * zhat |
1267 |
|
1268 |
elseif (i_is_Charge.and.j_is_Dipole) then |
1269 |
q_i = ElectrostaticMap(atid1)%charge |
1270 |
mu_j = ElectrostaticMap(atid2)%dipole_moment |
1271 |
uz_j(1) = eFrame(3,atom2) |
1272 |
uz_j(2) = eFrame(6,atom2) |
1273 |
uz_j(3) = eFrame(9,atom2) |
1274 |
ct_j = uz_j(1)*xhat + uz_j(2)*yhat + uz_j(3)*zhat |
1275 |
|
1276 |
ri2 = riji * riji |
1277 |
ri3 = ri2 * riji |
1278 |
|
1279 |
pref = electroMult * pre12 * q_i * mu_j |
1280 |
vterm = - pref * ct_j * ( ri2 - preRF2*rij ) |
1281 |
myPot = myPot + sw*vterm |
1282 |
|
1283 |
dudx = dudx - sw*pref*( ri3*(uz_j(1)-3.0_dp*ct_j*xhat) & |
1284 |
- preRF2*uz_j(1) ) |
1285 |
dudy = dudy - sw*pref*( ri3*(uz_j(2)-3.0_dp*ct_j*yhat) & |
1286 |
- preRF2*uz_j(2) ) |
1287 |
dudz = dudz - sw*pref*( ri3*(uz_j(3)-3.0_dp*ct_j*zhat) & |
1288 |
- preRF2*uz_j(3) ) |
1289 |
|
1290 |
duduz_j(1) = duduz_j(1) - sw * pref * xhat * ( ri2 - preRF2*rij ) |
1291 |
duduz_j(2) = duduz_j(2) - sw * pref * yhat * ( ri2 - preRF2*rij ) |
1292 |
duduz_j(3) = duduz_j(3) - sw * pref * zhat * ( ri2 - preRF2*rij ) |
1293 |
|
1294 |
elseif (i_is_Dipole.and.j_is_Charge) then |
1295 |
mu_i = ElectrostaticMap(atid1)%dipole_moment |
1296 |
q_j = ElectrostaticMap(atid2)%charge |
1297 |
uz_i(1) = eFrame(3,atom1) |
1298 |
uz_i(2) = eFrame(6,atom1) |
1299 |
uz_i(3) = eFrame(9,atom1) |
1300 |
ct_i = uz_i(1)*xhat + uz_i(2)*yhat + uz_i(3)*zhat |
1301 |
|
1302 |
ri2 = riji * riji |
1303 |
ri3 = ri2 * riji |
1304 |
|
1305 |
pref = electroMult * pre12 * q_j * mu_i |
1306 |
vterm = pref * ct_i * ( ri2 - preRF2*rij ) |
1307 |
myPot = myPot + sw*vterm |
1308 |
|
1309 |
dudx = dudx + sw*pref*( ri3*(uz_i(1)-3.0_dp*ct_i*xhat) & |
1310 |
- preRF2*uz_i(1) ) |
1311 |
dudy = dudy + sw*pref*( ri3*(uz_i(2)-3.0_dp*ct_i*yhat) & |
1312 |
- preRF2*uz_i(2) ) |
1313 |
dudz = dudz + sw*pref*( ri3*(uz_i(3)-3.0_dp*ct_i*zhat) & |
1314 |
- preRF2*uz_i(3) ) |
1315 |
|
1316 |
duduz_i(1) = duduz_i(1) + sw * pref * xhat * ( ri2 - preRF2*rij ) |
1317 |
duduz_i(2) = duduz_i(2) + sw * pref * yhat * ( ri2 - preRF2*rij ) |
1318 |
duduz_i(3) = duduz_i(3) + sw * pref * zhat * ( ri2 - preRF2*rij ) |
1319 |
|
1320 |
endif |
1321 |
|
1322 |
|
1323 |
! accumulate the forces and torques resulting from the self term |
1324 |
f(1,atom1) = f(1,atom1) + dudx |
1325 |
f(2,atom1) = f(2,atom1) + dudy |
1326 |
f(3,atom1) = f(3,atom1) + dudz |
1327 |
|
1328 |
f(1,atom2) = f(1,atom2) - dudx |
1329 |
f(2,atom2) = f(2,atom2) - dudy |
1330 |
f(3,atom2) = f(3,atom2) - dudz |
1331 |
|
1332 |
if (i_is_Dipole) then |
1333 |
t(1,atom1)=t(1,atom1) - uz_i(2)*duduz_i(3) + uz_i(3)*duduz_i(2) |
1334 |
t(2,atom1)=t(2,atom1) - uz_i(3)*duduz_i(1) + uz_i(1)*duduz_i(3) |
1335 |
t(3,atom1)=t(3,atom1) - uz_i(1)*duduz_i(2) + uz_i(2)*duduz_i(1) |
1336 |
elseif (j_is_Dipole) then |
1337 |
t(1,atom2)=t(1,atom2) - uz_j(2)*duduz_j(3) + uz_j(3)*duduz_j(2) |
1338 |
t(2,atom2)=t(2,atom2) - uz_j(3)*duduz_j(1) + uz_j(1)*duduz_j(3) |
1339 |
t(3,atom2)=t(3,atom2) - uz_j(1)*duduz_j(2) + uz_j(2)*duduz_j(1) |
1340 |
endif |
1341 |
|
1342 |
return |
1343 |
end subroutine rf_self_excludes |
1344 |
|
1345 |
subroutine accumulate_box_dipole(atom1, eFrame, d, pChg, nChg, pChgPos, & |
1346 |
nChgPos, dipVec, pChgCount, nChgCount) |
1347 |
integer, intent(in) :: atom1 |
1348 |
logical :: i_is_Charge |
1349 |
logical :: i_is_Dipole |
1350 |
integer :: atid1 |
1351 |
integer :: pChgCount |
1352 |
integer :: nChgCount |
1353 |
real(kind=dp), intent(in), dimension(3) :: d |
1354 |
real(kind=dp), dimension(9,nLocal) :: eFrame |
1355 |
real(kind=dp) :: pChg |
1356 |
real(kind=dp) :: nChg |
1357 |
real(kind=dp), dimension(3) :: pChgPos |
1358 |
real(kind=dp), dimension(3) :: nChgPos |
1359 |
real(kind=dp), dimension(3) :: dipVec |
1360 |
real(kind=dp), dimension(3) :: uz_i |
1361 |
real(kind=dp), dimension(3) :: pos |
1362 |
real(kind=dp) :: q_i, mu_i |
1363 |
real(kind=dp) :: pref, preVal |
1364 |
|
1365 |
if (.not.summationMethodChecked) then |
1366 |
call checkSummationMethod() |
1367 |
endif |
1368 |
|
1369 |
! this is a local only array, so we use the local atom type id's: |
1370 |
atid1 = atid(atom1) |
1371 |
i_is_Charge = ElectrostaticMap(atid1)%is_Charge |
1372 |
i_is_Dipole = ElectrostaticMap(atid1)%is_Dipole |
1373 |
|
1374 |
if (i_is_Charge) then |
1375 |
q_i = ElectrostaticMap(atid1)%charge |
1376 |
! convert to the proper units |
1377 |
q_i = q_i * chargeToC |
1378 |
pos = d * angstromToM |
1379 |
|
1380 |
if (q_i.le.0.0_dp) then |
1381 |
nChg = nChg - q_i |
1382 |
nChgPos(1) = nChgPos(1) + pos(1) |
1383 |
nChgPos(2) = nChgPos(2) + pos(2) |
1384 |
nChgPos(3) = nChgPos(3) + pos(3) |
1385 |
nChgCount = nChgCount + 1 |
1386 |
|
1387 |
else |
1388 |
pChg = pChg + q_i |
1389 |
pChgPos(1) = pChgPos(1) + pos(1) |
1390 |
pChgPos(2) = pChgPos(2) + pos(2) |
1391 |
pChgPos(3) = pChgPos(3) + pos(3) |
1392 |
pChgCount = pChgCount + 1 |
1393 |
|
1394 |
endif |
1395 |
|
1396 |
endif |
1397 |
|
1398 |
if (i_is_Dipole) then |
1399 |
mu_i = ElectrostaticMap(atid1)%dipole_moment |
1400 |
uz_i(1) = eFrame(3,atom1) |
1401 |
uz_i(2) = eFrame(6,atom1) |
1402 |
uz_i(3) = eFrame(9,atom1) |
1403 |
! convert to the proper units |
1404 |
mu_i = mu_i * debyeToCm |
1405 |
|
1406 |
dipVec(1) = dipVec(1) + uz_i(1)*mu_i |
1407 |
dipVec(2) = dipVec(2) + uz_i(2)*mu_i |
1408 |
dipVec(3) = dipVec(3) + uz_i(3)*mu_i |
1409 |
|
1410 |
endif |
1411 |
|
1412 |
return |
1413 |
end subroutine accumulate_box_dipole |
1414 |
|
1415 |
end module electrostatic_module |