19 |
|
# Note that builders will rewrite the number of molecules in each component |
20 |
|
# to match the number of lattice sites. |
21 |
|
# |
22 |
+ |
# The thermalizer command takes the FCC.md file and resamples the velocities |
23 |
+ |
# from a Maxwell-Boltzmann distribution set to 100K: |
24 |
+ |
# |
25 |
|
../../bin/simpleBuilder -o FCC.md --nx=5 --ny=5 --nz=5 --density=1.0 one_component.md |
26 |
+ |
../../bin/thermalizer -o FCC-100K.md -t 100 FCC.md |
27 |
|
# |
28 |
|
# Example 2: |
29 |
|
# Builds an FCC lattice from the <MetaData> block in three_component.md |
35 |
|
# to match the number of lattice sites. |
36 |
|
# |
37 |
|
../../bin/randomBuilder -o random_FCC.md --nx=4 --ny=4 --nz=4 --density=1.0 --molFraction=0.4 --molFraction=0.4 three_component.md |
38 |
+ |
../../bin/thermalizer -o random_FCC-100K.md -t 100 random_FCC.md |
39 |
+ |
# |
40 |
+ |
# Example 3: |
41 |
+ |
# Builds a spherical nanoparticle (FCC) from the <MetaData> block in gold.md |
42 |
+ |
# using a particle radius of 30 Angstroms, and a lattice constant of 4.09 |
43 |
+ |
# angstroms. Places the output (which can be used to start an OOPSE job) in |
44 |
+ |
# gold_sphere.md |
45 |
+ |
# |
46 |
+ |
# Note that builders will rewrite the number of molecules in each component |
47 |
+ |
# to match the number of lattice sites. |
48 |
+ |
# |
49 |
+ |
../../bin/nanoparticleBuilder -o gold_sphere.md --radius=30.0 --latticeConstant=4.09 gold.md |
50 |
+ |
../../bin/thermalizer -o gold_sphere-500K.md -t 500.0 gold_sphere.md |
51 |
+ |
# |
52 |
+ |
# Example 4: |
53 |
+ |
# Builds a random alloy spherical nanoparticle (FCC) from the <MetaData> |
54 |
+ |
# block in bimetallic.md using a particle radius of 30 Angstroms, a |
55 |
+ |
# lattice constant of 4.09 angstroms, and a mole fraction for the gold of 0.4. |
56 |
+ |
# Places the output (which can be used to start an OOPSE job) in |
57 |
+ |
# Au_Ag_alloy.md |
58 |
+ |
# |
59 |
+ |
# Note that builders will rewrite the number of molecules in each component |
60 |
+ |
# to match the number of lattice sites. |
61 |
+ |
# |
62 |
+ |
../../bin/nanoparticleBuilder -o Au_Ag_alloy.md --radius=30.0 --latticeConstant=4.09 --molFraction=0.4 bimetallic.md |
63 |
+ |
../../bin/thermalizer -o Au_Ag_alloy-600K.md -t 600 Au_Ag_alloy.md |
64 |
+ |
# |
65 |
+ |
# Example 5: |
66 |
+ |
# Builds a Au(core)-Ag(shell) spherical nanoparticle (FCC) from the <MetaData> |
67 |
+ |
# block in bimetallic.md using a particle radius of 25 Angstroms, a |
68 |
+ |
# lattice constant of 4.09 angstroms, and a core radius for the gold atoms |
69 |
+ |
# of 12.5 angstroms. Places the output (which can be used to start an |
70 |
+ |
# OOPSE job) in Au(core)-Ag(shell).md |
71 |
+ |
# |
72 |
+ |
# Note that builders will rewrite the number of molecules in each component |
73 |
+ |
# to match the number of lattice sites. |
74 |
+ |
# |
75 |
+ |
../../bin/nanoparticleBuilder -o Au-core-Ag-shell.md --radius=30.0 --latticeConstant=4.09 --shellRadius=12.5 bimetallic.md |
76 |
+ |
../../bin/thermalizer -o Au-core-Ag-shell-800K.md -t 800.0 Au-core-Ag-shell.md |
77 |
+ |
# |
78 |
+ |
# Example 6: |
79 |
+ |
# Reverses example 5 by building a Ag(core)-Au(shell) spherical nanoparticle. |
80 |
+ |
# Uses the same <MetaData> block from bimetallic.md, |
81 |
+ |
# a particle radius of 25 Angstroms, a lattice constant of 4.09 angstroms, |
82 |
+ |
# and a core radius for the silver atoms of 12.5 angstroms. |
83 |
+ |
# Places the output (which can be used to start an OOPSE job) in |
84 |
+ |
# Ag(core)-Au(shell).md |
85 |
+ |
# |
86 |
+ |
# Note that the last radius in Example 5 was taken as the particle radius, |
87 |
+ |
# but since the components are reversed in this example, both are specified: |
88 |
+ |
# |
89 |
+ |
# |
90 |
+ |
../../bin/nanoparticleBuilder -o Ag-core-Au-shell.md --radius=30.0 --latticeConstant=4.09 --shellRadius=30.0,12.5 bimetallic.md |
91 |
+ |
../../bin/thermalizer -o Ag-core-Au-shell-800K.md -t 800.0 Ag-core-Au-shell.md |
92 |
+ |
# |
93 |
+ |
# Example 7: |
94 |
+ |
# Builds a Au(core)-Ag(shell) spherical nanoparticle (FCC) from the <MetaData> |
95 |
+ |
# block in bimetallic.md using a particle radius of 25 Angstroms, a |
96 |
+ |
# lattice constant of 4.09 angstroms, and a core radius for the gold atoms |
97 |
+ |
# of 12.5 angstroms. Places the output (which can be used to start an |
98 |
+ |
# OOPSE job) in Au(core)-Ag(shell).md |
99 |
+ |
# |
100 |
+ |
# This example also introduces 70% vacancies in a 6 angstrom radial band |
101 |
+ |
# around the bimetallic interface: |
102 |
+ |
# |
103 |
+ |
../../bin/nanoparticleBuilder -o vacancy_interface.md --radius=20.0 --latticeConstant=4.09 --shellRadius=12.5 --vacancyPercent=70 --vacancyInnerRadius=9.5 --vacancyOuterRadius=15.5 bimetallic.md |
104 |
+ |
../../bin/thermalizer -o vacancy_interface-800K.md -t 800 vacancy_interface.md |
105 |
+ |
# |
106 |
+ |
# Example 8: |
107 |
+ |
# Builds a random alloy spherical nanoparticle with 30% vacancies using the |
108 |
+ |
# <MetaData> block in bimetallic.md, a particle radius of 30 Angstroms, a |
109 |
+ |
# lattice constant of 4.09 angstroms, and a mole fraction for the gold of 0.4. |
110 |
+ |
# Places the output (which can be used to start an OOPSE job) in |
111 |
+ |
# vacancy_alloy.md |
112 |
+ |
# |
113 |
+ |
../../bin/nanoparticleBuilder -o vacancy_alloy.md --radius=30.0 --latticeConstant=4.09 --molFraction=0.4 --vacancyPercent=80 bimetallic.md |
114 |
+ |
../../bin/thermalizer -o vacancy_alloy-900K.md -t 900 vacancy_alloy.md |