1 |
/* |
2 |
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
* |
4 |
* The University of Notre Dame grants you ("Licensee") a |
5 |
* non-exclusive, royalty free, license to use, modify and |
6 |
* redistribute this software in source and binary code form, provided |
7 |
* that the following conditions are met: |
8 |
* |
9 |
* 1. Redistributions of source code must retain the above copyright |
10 |
* notice, this list of conditions and the following disclaimer. |
11 |
* |
12 |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
* notice, this list of conditions and the following disclaimer in the |
14 |
* documentation and/or other materials provided with the |
15 |
* distribution. |
16 |
* |
17 |
* This software is provided "AS IS," without a warranty of any |
18 |
* kind. All express or implied conditions, representations and |
19 |
* warranties, including any implied warranty of merchantability, |
20 |
* fitness for a particular purpose or non-infringement, are hereby |
21 |
* excluded. The University of Notre Dame and its licensors shall not |
22 |
* be liable for any damages suffered by licensee as a result of |
23 |
* using, modifying or distributing the software or its |
24 |
* derivatives. In no event will the University of Notre Dame or its |
25 |
* licensors be liable for any lost revenue, profit or data, or for |
26 |
* direct, indirect, special, consequential, incidental or punitive |
27 |
* damages, however caused and regardless of the theory of liability, |
28 |
* arising out of the use of or inability to use software, even if the |
29 |
* University of Notre Dame has been advised of the possibility of |
30 |
* such damages. |
31 |
* |
32 |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
* research, please cite the appropriate papers when you publish your |
34 |
* work. Good starting points are: |
35 |
* |
36 |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 |
* [4] Vardeman & Gezelter, in progress (2009). |
40 |
*/ |
41 |
#include "parallel/ForceMatrixDecomposition.hpp" |
42 |
#include "math/SquareMatrix3.hpp" |
43 |
#include "nonbonded/NonBondedInteraction.hpp" |
44 |
#include "brains/SnapshotManager.hpp" |
45 |
#include "brains/PairList.hpp" |
46 |
#include "primitives/Molecule.hpp" |
47 |
|
48 |
using namespace std; |
49 |
namespace OpenMD { |
50 |
|
51 |
ForceMatrixDecomposition::ForceMatrixDecomposition(SimInfo* info, InteractionManager* iMan) : |
52 |
ForceDecomposition(info, iMan) { |
53 |
|
54 |
// In a parallel computation, row and colum scans must visit all |
55 |
// surrounding cells (not just the 14 upper triangular blocks that |
56 |
// are used when the processor can see all pairs) |
57 |
#ifdef IS_MPI |
58 |
cellOffsets_.push_back( Vector3i(-1, 0, 0) ); |
59 |
cellOffsets_.push_back( Vector3i(-1,-1, 0) ); |
60 |
cellOffsets_.push_back( Vector3i( 0,-1, 0) ); |
61 |
cellOffsets_.push_back( Vector3i( 1,-1, 0) ); |
62 |
cellOffsets_.push_back( Vector3i( 0, 0,-1) ); |
63 |
cellOffsets_.push_back( Vector3i(-1, 0, 1) ); |
64 |
cellOffsets_.push_back( Vector3i(-1,-1,-1) ); |
65 |
cellOffsets_.push_back( Vector3i( 0,-1,-1) ); |
66 |
cellOffsets_.push_back( Vector3i( 1,-1,-1) ); |
67 |
cellOffsets_.push_back( Vector3i( 1, 0,-1) ); |
68 |
cellOffsets_.push_back( Vector3i( 1, 1,-1) ); |
69 |
cellOffsets_.push_back( Vector3i( 0, 1,-1) ); |
70 |
cellOffsets_.push_back( Vector3i(-1, 1,-1) ); |
71 |
#endif |
72 |
} |
73 |
|
74 |
/** |
75 |
* distributeInitialData is essentially a copy of the older fortran |
76 |
* SimulationSetup |
77 |
*/ |
78 |
void ForceMatrixDecomposition::distributeInitialData() { |
79 |
snap_ = sman_->getCurrentSnapshot(); |
80 |
storageLayout_ = sman_->getStorageLayout(); |
81 |
ff_ = info_->getForceField(); |
82 |
nLocal_ = snap_->getNumberOfAtoms(); |
83 |
|
84 |
nGroups_ = info_->getNLocalCutoffGroups(); |
85 |
// gather the information for atomtype IDs (atids): |
86 |
idents = info_->getIdentArray(); |
87 |
AtomLocalToGlobal = info_->getGlobalAtomIndices(); |
88 |
cgLocalToGlobal = info_->getGlobalGroupIndices(); |
89 |
vector<int> globalGroupMembership = info_->getGlobalGroupMembership(); |
90 |
|
91 |
massFactors = info_->getMassFactors(); |
92 |
|
93 |
PairList* excludes = info_->getExcludedInteractions(); |
94 |
PairList* oneTwo = info_->getOneTwoInteractions(); |
95 |
PairList* oneThree = info_->getOneThreeInteractions(); |
96 |
PairList* oneFour = info_->getOneFourInteractions(); |
97 |
|
98 |
#ifdef IS_MPI |
99 |
|
100 |
MPI::Intracomm row = rowComm.getComm(); |
101 |
MPI::Intracomm col = colComm.getComm(); |
102 |
|
103 |
AtomPlanIntRow = new Plan<int>(row, nLocal_); |
104 |
AtomPlanRealRow = new Plan<RealType>(row, nLocal_); |
105 |
AtomPlanVectorRow = new Plan<Vector3d>(row, nLocal_); |
106 |
AtomPlanMatrixRow = new Plan<Mat3x3d>(row, nLocal_); |
107 |
AtomPlanPotRow = new Plan<potVec>(row, nLocal_); |
108 |
|
109 |
AtomPlanIntColumn = new Plan<int>(col, nLocal_); |
110 |
AtomPlanRealColumn = new Plan<RealType>(col, nLocal_); |
111 |
AtomPlanVectorColumn = new Plan<Vector3d>(col, nLocal_); |
112 |
AtomPlanMatrixColumn = new Plan<Mat3x3d>(col, nLocal_); |
113 |
AtomPlanPotColumn = new Plan<potVec>(col, nLocal_); |
114 |
|
115 |
cgPlanIntRow = new Plan<int>(row, nGroups_); |
116 |
cgPlanVectorRow = new Plan<Vector3d>(row, nGroups_); |
117 |
cgPlanIntColumn = new Plan<int>(col, nGroups_); |
118 |
cgPlanVectorColumn = new Plan<Vector3d>(col, nGroups_); |
119 |
|
120 |
nAtomsInRow_ = AtomPlanIntRow->getSize(); |
121 |
nAtomsInCol_ = AtomPlanIntColumn->getSize(); |
122 |
nGroupsInRow_ = cgPlanIntRow->getSize(); |
123 |
nGroupsInCol_ = cgPlanIntColumn->getSize(); |
124 |
|
125 |
// Modify the data storage objects with the correct layouts and sizes: |
126 |
atomRowData.resize(nAtomsInRow_); |
127 |
atomRowData.setStorageLayout(storageLayout_); |
128 |
atomColData.resize(nAtomsInCol_); |
129 |
atomColData.setStorageLayout(storageLayout_); |
130 |
cgRowData.resize(nGroupsInRow_); |
131 |
cgRowData.setStorageLayout(DataStorage::dslPosition); |
132 |
cgColData.resize(nGroupsInCol_); |
133 |
cgColData.setStorageLayout(DataStorage::dslPosition); |
134 |
|
135 |
identsRow.resize(nAtomsInRow_); |
136 |
identsCol.resize(nAtomsInCol_); |
137 |
|
138 |
AtomPlanIntRow->gather(idents, identsRow); |
139 |
AtomPlanIntColumn->gather(idents, identsCol); |
140 |
|
141 |
// allocate memory for the parallel objects |
142 |
atypesRow.resize(nAtomsInRow_); |
143 |
atypesCol.resize(nAtomsInCol_); |
144 |
|
145 |
for (int i = 0; i < nAtomsInRow_; i++) |
146 |
atypesRow[i] = ff_->getAtomType(identsRow[i]); |
147 |
for (int i = 0; i < nAtomsInCol_; i++) |
148 |
atypesCol[i] = ff_->getAtomType(identsCol[i]); |
149 |
|
150 |
pot_row.resize(nAtomsInRow_); |
151 |
pot_col.resize(nAtomsInCol_); |
152 |
|
153 |
AtomRowToGlobal.resize(nAtomsInRow_); |
154 |
AtomColToGlobal.resize(nAtomsInCol_); |
155 |
AtomPlanIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal); |
156 |
AtomPlanIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal); |
157 |
|
158 |
cerr << "Atoms in Local:\n"; |
159 |
for (int i = 0; i < AtomLocalToGlobal.size(); i++) |
160 |
{ |
161 |
cerr << "i =\t" << i << "\t localAt =\t" << AtomLocalToGlobal[i] << "\n"; |
162 |
} |
163 |
cerr << "Atoms in Row:\n"; |
164 |
for (int i = 0; i < AtomRowToGlobal.size(); i++) |
165 |
{ |
166 |
cerr << "i =\t" << i << "\t rowAt =\t" << AtomRowToGlobal[i] << "\n"; |
167 |
} |
168 |
cerr << "Atoms in Col:\n"; |
169 |
for (int i = 0; i < AtomColToGlobal.size(); i++) |
170 |
{ |
171 |
cerr << "i =\t" << i << "\t colAt =\t" << AtomColToGlobal[i] << "\n"; |
172 |
} |
173 |
|
174 |
cgRowToGlobal.resize(nGroupsInRow_); |
175 |
cgColToGlobal.resize(nGroupsInCol_); |
176 |
cgPlanIntRow->gather(cgLocalToGlobal, cgRowToGlobal); |
177 |
cgPlanIntColumn->gather(cgLocalToGlobal, cgColToGlobal); |
178 |
|
179 |
cerr << "Gruops in Local:\n"; |
180 |
for (int i = 0; i < cgLocalToGlobal.size(); i++) |
181 |
{ |
182 |
cerr << "i =\t" << i << "\t localCG =\t" << cgLocalToGlobal[i] << "\n"; |
183 |
} |
184 |
cerr << "Groups in Row:\n"; |
185 |
for (int i = 0; i < cgRowToGlobal.size(); i++) |
186 |
{ |
187 |
cerr << "i =\t" << i << "\t rowCG =\t" << cgRowToGlobal[i] << "\n"; |
188 |
} |
189 |
cerr << "Groups in Col:\n"; |
190 |
for (int i = 0; i < cgColToGlobal.size(); i++) |
191 |
{ |
192 |
cerr << "i =\t" << i << "\t colCG =\t" << cgColToGlobal[i] << "\n"; |
193 |
} |
194 |
|
195 |
massFactorsRow.resize(nAtomsInRow_); |
196 |
massFactorsCol.resize(nAtomsInCol_); |
197 |
AtomPlanRealRow->gather(massFactors, massFactorsRow); |
198 |
AtomPlanRealColumn->gather(massFactors, massFactorsCol); |
199 |
|
200 |
groupListRow_.clear(); |
201 |
groupListRow_.resize(nGroupsInRow_); |
202 |
for (int i = 0; i < nGroupsInRow_; i++) |
203 |
{ |
204 |
int gid = cgRowToGlobal[i]; |
205 |
for (int j = 0; j < nAtomsInRow_; j++) |
206 |
{ |
207 |
int aid = AtomRowToGlobal[j]; |
208 |
if (globalGroupMembership[aid] == gid) |
209 |
groupListRow_[i].push_back(j); |
210 |
} |
211 |
} |
212 |
|
213 |
groupListCol_.clear(); |
214 |
groupListCol_.resize(nGroupsInCol_); |
215 |
for (int i = 0; i < nGroupsInCol_; i++) |
216 |
{ |
217 |
int gid = cgColToGlobal[i]; |
218 |
for (int j = 0; j < nAtomsInCol_; j++) |
219 |
{ |
220 |
int aid = AtomColToGlobal[j]; |
221 |
if (globalGroupMembership[aid] == gid) |
222 |
groupListCol_[i].push_back(j); |
223 |
} |
224 |
} |
225 |
|
226 |
excludesForAtom.clear(); |
227 |
excludesForAtom.resize(nAtomsInRow_); |
228 |
toposForAtom.clear(); |
229 |
toposForAtom.resize(nAtomsInRow_); |
230 |
topoDist.clear(); |
231 |
topoDist.resize(nAtomsInRow_); |
232 |
for (int i = 0; i < nAtomsInRow_; i++) |
233 |
{ |
234 |
int iglob = AtomRowToGlobal[i]; |
235 |
|
236 |
for (int j = 0; j < nAtomsInCol_; j++) |
237 |
{ |
238 |
int jglob = AtomColToGlobal[j]; |
239 |
|
240 |
if (excludes->hasPair(iglob, jglob)) |
241 |
excludesForAtom[i].push_back(j); |
242 |
|
243 |
if (oneTwo->hasPair(iglob, jglob)) |
244 |
{ |
245 |
toposForAtom[i].push_back(j); |
246 |
topoDist[i].push_back(1); |
247 |
} else |
248 |
{ |
249 |
if (oneThree->hasPair(iglob, jglob)) |
250 |
{ |
251 |
toposForAtom[i].push_back(j); |
252 |
topoDist[i].push_back(2); |
253 |
} else |
254 |
{ |
255 |
if (oneFour->hasPair(iglob, jglob)) |
256 |
{ |
257 |
toposForAtom[i].push_back(j); |
258 |
topoDist[i].push_back(3); |
259 |
} |
260 |
} |
261 |
} |
262 |
} |
263 |
} |
264 |
|
265 |
#endif |
266 |
|
267 |
// allocate memory for the parallel objects |
268 |
atypesLocal.resize(nLocal_); |
269 |
|
270 |
for (int i = 0; i < nLocal_; i++) |
271 |
atypesLocal[i] = ff_->getAtomType(idents[i]); |
272 |
|
273 |
groupList_.clear(); |
274 |
groupList_.resize(nGroups_); |
275 |
for (int i = 0; i < nGroups_; i++) |
276 |
{ |
277 |
int gid = cgLocalToGlobal[i]; |
278 |
for (int j = 0; j < nLocal_; j++) |
279 |
{ |
280 |
int aid = AtomLocalToGlobal[j]; |
281 |
if (globalGroupMembership[aid] == gid) |
282 |
{ |
283 |
groupList_[i].push_back(j); |
284 |
} |
285 |
} |
286 |
} |
287 |
|
288 |
excludesForAtom.clear(); |
289 |
excludesForAtom.resize(nLocal_); |
290 |
toposForAtom.clear(); |
291 |
toposForAtom.resize(nLocal_); |
292 |
topoDist.clear(); |
293 |
topoDist.resize(nLocal_); |
294 |
|
295 |
for (int i = 0; i < nLocal_; i++) |
296 |
{ |
297 |
int iglob = AtomLocalToGlobal[i]; |
298 |
|
299 |
for (int j = 0; j < nLocal_; j++) |
300 |
{ |
301 |
int jglob = AtomLocalToGlobal[j]; |
302 |
|
303 |
if (excludes->hasPair(iglob, jglob)) |
304 |
excludesForAtom[i].push_back(j); |
305 |
|
306 |
if (oneTwo->hasPair(iglob, jglob)) |
307 |
{ |
308 |
toposForAtom[i].push_back(j); |
309 |
topoDist[i].push_back(1); |
310 |
} else |
311 |
{ |
312 |
if (oneThree->hasPair(iglob, jglob)) |
313 |
{ |
314 |
toposForAtom[i].push_back(j); |
315 |
topoDist[i].push_back(2); |
316 |
} else |
317 |
{ |
318 |
if (oneFour->hasPair(iglob, jglob)) |
319 |
{ |
320 |
toposForAtom[i].push_back(j); |
321 |
topoDist[i].push_back(3); |
322 |
} |
323 |
} |
324 |
} |
325 |
} |
326 |
} |
327 |
|
328 |
createGtypeCutoffMap(); |
329 |
|
330 |
} |
331 |
|
332 |
void ForceMatrixDecomposition::createGtypeCutoffMap() { |
333 |
|
334 |
RealType tol = 1e-6; |
335 |
largestRcut_ = 0.0; |
336 |
RealType rc; |
337 |
int atid; |
338 |
set<AtomType*> atypes = info_->getSimulatedAtomTypes(); |
339 |
|
340 |
map<int, RealType> atypeCutoff; |
341 |
|
342 |
for (set<AtomType*>::iterator at = atypes.begin(); at != atypes.end(); ++at) |
343 |
{ |
344 |
atid = (*at)->getIdent(); |
345 |
if (userChoseCutoff_) |
346 |
atypeCutoff[atid] = userCutoff_; |
347 |
else |
348 |
atypeCutoff[atid] = interactionMan_->getSuggestedCutoffRadius(*at); |
349 |
} |
350 |
|
351 |
vector<RealType> gTypeCutoffs; |
352 |
// first we do a single loop over the cutoff groups to find the |
353 |
// largest cutoff for any atypes present in this group. |
354 |
#ifdef IS_MPI |
355 |
vector<RealType> groupCutoffRow(nGroupsInRow_, 0.0); |
356 |
groupRowToGtype.resize(nGroupsInRow_); |
357 |
for (int cg1 = 0; cg1 < nGroupsInRow_; cg1++) |
358 |
{ |
359 |
vector<int> atomListRow = getAtomsInGroupRow(cg1); |
360 |
for (vector<int>::iterator ia = atomListRow.begin(); |
361 |
ia != atomListRow.end(); ++ia) |
362 |
{ |
363 |
int atom1 = (*ia); |
364 |
atid = identsRow[atom1]; |
365 |
if (atypeCutoff[atid] > groupCutoffRow[cg1]) |
366 |
{ |
367 |
groupCutoffRow[cg1] = atypeCutoff[atid]; |
368 |
} |
369 |
} |
370 |
|
371 |
bool gTypeFound = false; |
372 |
for (int gt = 0; gt < gTypeCutoffs.size(); gt++) |
373 |
{ |
374 |
if (abs(groupCutoffRow[cg1] - gTypeCutoffs[gt]) < tol) |
375 |
{ |
376 |
groupRowToGtype[cg1] = gt; |
377 |
gTypeFound = true; |
378 |
} |
379 |
} |
380 |
if (!gTypeFound) |
381 |
{ |
382 |
gTypeCutoffs.push_back( groupCutoffRow[cg1] ); |
383 |
groupRowToGtype[cg1] = gTypeCutoffs.size() - 1; |
384 |
} |
385 |
|
386 |
} |
387 |
vector<RealType> groupCutoffCol(nGroupsInCol_, 0.0); |
388 |
groupColToGtype.resize(nGroupsInCol_); |
389 |
for (int cg2 = 0; cg2 < nGroupsInCol_; cg2++) |
390 |
{ |
391 |
vector<int> atomListCol = getAtomsInGroupColumn(cg2); |
392 |
for (vector<int>::iterator jb = atomListCol.begin(); |
393 |
jb != atomListCol.end(); ++jb) |
394 |
{ |
395 |
int atom2 = (*jb); |
396 |
atid = identsCol[atom2]; |
397 |
if (atypeCutoff[atid] > groupCutoffCol[cg2]) |
398 |
{ |
399 |
groupCutoffCol[cg2] = atypeCutoff[atid]; |
400 |
} |
401 |
} |
402 |
bool gTypeFound = false; |
403 |
for (int gt = 0; gt < gTypeCutoffs.size(); gt++) |
404 |
{ |
405 |
if (abs(groupCutoffCol[cg2] - gTypeCutoffs[gt]) < tol) |
406 |
{ |
407 |
groupColToGtype[cg2] = gt; |
408 |
gTypeFound = true; |
409 |
} |
410 |
} |
411 |
if (!gTypeFound) |
412 |
{ |
413 |
gTypeCutoffs.push_back( groupCutoffCol[cg2] ); |
414 |
groupColToGtype[cg2] = gTypeCutoffs.size() - 1; |
415 |
} |
416 |
} |
417 |
#else |
418 |
|
419 |
vector<RealType> groupCutoff(nGroups_, 0.0); |
420 |
groupToGtype.resize(nGroups_); |
421 |
for (int cg1 = 0; cg1 < nGroups_; cg1++) |
422 |
{ |
423 |
groupCutoff[cg1] = 0.0; |
424 |
vector<int> atomList = getAtomsInGroupRow(cg1); |
425 |
for (vector<int>::iterator ia = atomList.begin(); ia != atomList.end(); ++ia) |
426 |
{ |
427 |
int atom1 = (*ia); |
428 |
atid = idents[atom1]; |
429 |
if (atypeCutoff[atid] > groupCutoff[cg1]) |
430 |
groupCutoff[cg1] = atypeCutoff[atid]; |
431 |
} |
432 |
|
433 |
bool gTypeFound = false; |
434 |
for (int gt = 0; gt < gTypeCutoffs.size(); gt++) |
435 |
{ |
436 |
if (abs(groupCutoff[cg1] - gTypeCutoffs[gt]) < tol) |
437 |
{ |
438 |
groupToGtype[cg1] = gt; |
439 |
gTypeFound = true; |
440 |
} |
441 |
} |
442 |
if (!gTypeFound) |
443 |
{ |
444 |
gTypeCutoffs.push_back(groupCutoff[cg1]); |
445 |
groupToGtype[cg1] = gTypeCutoffs.size() - 1; |
446 |
} |
447 |
} |
448 |
#endif |
449 |
|
450 |
// Now we find the maximum group cutoff value present in the simulation |
451 |
|
452 |
RealType groupMax = *max_element(gTypeCutoffs.begin(), gTypeCutoffs.end()); |
453 |
|
454 |
#ifdef IS_MPI |
455 |
MPI::COMM_WORLD.Allreduce(&groupMax, &groupMax, 1, MPI::REALTYPE, |
456 |
MPI::MAX); |
457 |
#endif |
458 |
|
459 |
RealType tradRcut = groupMax; |
460 |
|
461 |
for (int i = 0; i < gTypeCutoffs.size(); i++) |
462 |
{ |
463 |
for (int j = 0; j < gTypeCutoffs.size(); j++) |
464 |
{ |
465 |
RealType thisRcut; |
466 |
switch (cutoffPolicy_) { |
467 |
case TRADITIONAL: |
468 |
thisRcut = tradRcut; |
469 |
break; |
470 |
case MIX: |
471 |
thisRcut = 0.5 * (gTypeCutoffs[i] + gTypeCutoffs[j]); |
472 |
break; |
473 |
case MAX: |
474 |
thisRcut = max(gTypeCutoffs[i], gTypeCutoffs[j]); |
475 |
break; |
476 |
default: |
477 |
sprintf(painCave.errMsg, "ForceMatrixDecomposition::createGtypeCutoffMap " |
478 |
"hit an unknown cutoff policy!\n"); |
479 |
painCave.severity = OPENMD_ERROR; |
480 |
painCave.isFatal = 1; |
481 |
simError(); |
482 |
break; |
483 |
} |
484 |
|
485 |
pair<int, int> key = make_pair(i, j); |
486 |
gTypeCutoffMap[key].first = thisRcut; |
487 |
if (thisRcut > largestRcut_) |
488 |
largestRcut_ = thisRcut; |
489 |
gTypeCutoffMap[key].second = thisRcut * thisRcut; |
490 |
gTypeCutoffMap[key].third = pow(thisRcut + skinThickness_, 2); |
491 |
// sanity check |
492 |
|
493 |
if (userChoseCutoff_) |
494 |
{ |
495 |
if (abs(gTypeCutoffMap[key].first - userCutoff_) > 0.0001) |
496 |
{ |
497 |
sprintf(painCave.errMsg, "ForceMatrixDecomposition::createGtypeCutoffMap " |
498 |
"user-specified rCut (%lf) does not match computed group Cutoff\n", userCutoff_); |
499 |
painCave.severity = OPENMD_ERROR; |
500 |
painCave.isFatal = 1; |
501 |
simError(); |
502 |
} |
503 |
} |
504 |
} |
505 |
} |
506 |
} |
507 |
|
508 |
groupCutoffs ForceMatrixDecomposition::getGroupCutoffs(int cg1, int cg2) { |
509 |
int i, j; |
510 |
#ifdef IS_MPI |
511 |
i = groupRowToGtype[cg1]; |
512 |
j = groupColToGtype[cg2]; |
513 |
#else |
514 |
i = groupToGtype[cg1]; |
515 |
j = groupToGtype[cg2]; |
516 |
#endif |
517 |
return gTypeCutoffMap[make_pair(i, j)]; |
518 |
} |
519 |
|
520 |
int ForceMatrixDecomposition::getTopologicalDistance(int atom1, int atom2) { |
521 |
for (int j = 0; j < toposForAtom[atom1].size(); j++) |
522 |
{ |
523 |
if (toposForAtom[atom1][j] == atom2) |
524 |
return topoDist[atom1][j]; |
525 |
} |
526 |
return 0; |
527 |
} |
528 |
|
529 |
void ForceMatrixDecomposition::zeroWorkArrays() { |
530 |
pairwisePot = 0.0; |
531 |
embeddingPot = 0.0; |
532 |
|
533 |
#ifdef IS_MPI |
534 |
if (storageLayout_ & DataStorage::dslForce) |
535 |
{ |
536 |
fill(atomRowData.force.begin(), atomRowData.force.end(), V3Zero); |
537 |
fill(atomColData.force.begin(), atomColData.force.end(), V3Zero); |
538 |
} |
539 |
|
540 |
if (storageLayout_ & DataStorage::dslTorque) |
541 |
{ |
542 |
fill(atomRowData.torque.begin(), atomRowData.torque.end(), V3Zero); |
543 |
fill(atomColData.torque.begin(), atomColData.torque.end(), V3Zero); |
544 |
} |
545 |
|
546 |
fill(pot_row.begin(), pot_row.end(), |
547 |
Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
548 |
|
549 |
fill(pot_col.begin(), pot_col.end(), |
550 |
Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
551 |
|
552 |
if (storageLayout_ & DataStorage::dslParticlePot) |
553 |
{ |
554 |
fill(atomRowData.particlePot.begin(), atomRowData.particlePot.end(), |
555 |
0.0); |
556 |
fill(atomColData.particlePot.begin(), atomColData.particlePot.end(), |
557 |
0.0); |
558 |
} |
559 |
|
560 |
if (storageLayout_ & DataStorage::dslDensity) |
561 |
{ |
562 |
fill(atomRowData.density.begin(), atomRowData.density.end(), 0.0); |
563 |
fill(atomColData.density.begin(), atomColData.density.end(), 0.0); |
564 |
} |
565 |
|
566 |
if (storageLayout_ & DataStorage::dslFunctional) |
567 |
{ |
568 |
fill(atomRowData.functional.begin(), atomRowData.functional.end(), |
569 |
0.0); |
570 |
fill(atomColData.functional.begin(), atomColData.functional.end(), |
571 |
0.0); |
572 |
} |
573 |
|
574 |
if (storageLayout_ & DataStorage::dslFunctionalDerivative) |
575 |
{ |
576 |
fill(atomRowData.functionalDerivative.begin(), |
577 |
atomRowData.functionalDerivative.end(), 0.0); |
578 |
fill(atomColData.functionalDerivative.begin(), |
579 |
atomColData.functionalDerivative.end(), 0.0); |
580 |
} |
581 |
|
582 |
if (storageLayout_ & DataStorage::dslSkippedCharge) |
583 |
{ |
584 |
fill(atomRowData.skippedCharge.begin(), |
585 |
atomRowData.skippedCharge.end(), 0.0); |
586 |
fill(atomColData.skippedCharge.begin(), |
587 |
atomColData.skippedCharge.end(), 0.0); |
588 |
} |
589 |
|
590 |
#endif |
591 |
// even in parallel, we need to zero out the local arrays: |
592 |
|
593 |
if (storageLayout_ & DataStorage::dslParticlePot) |
594 |
{ |
595 |
fill(snap_->atomData.particlePot.begin(), snap_->atomData.particlePot.end(), 0.0); |
596 |
} |
597 |
|
598 |
if (storageLayout_ & DataStorage::dslDensity) |
599 |
{ |
600 |
fill(snap_->atomData.density.begin(), snap_->atomData.density.end(), 0.0); |
601 |
} |
602 |
if (storageLayout_ & DataStorage::dslFunctional) |
603 |
{ |
604 |
fill(snap_->atomData.functional.begin(), snap_->atomData.functional.end(), 0.0); |
605 |
} |
606 |
if (storageLayout_ & DataStorage::dslFunctionalDerivative) |
607 |
{ |
608 |
fill(snap_->atomData.functionalDerivative.begin(), snap_->atomData.functionalDerivative.end(), 0.0); |
609 |
} |
610 |
if (storageLayout_ & DataStorage::dslSkippedCharge) |
611 |
{ |
612 |
fill(snap_->atomData.skippedCharge.begin(), snap_->atomData.skippedCharge.end(), 0.0); |
613 |
} |
614 |
|
615 |
} |
616 |
|
617 |
void ForceMatrixDecomposition::distributeData() { |
618 |
snap_ = sman_->getCurrentSnapshot(); |
619 |
storageLayout_ = sman_->getStorageLayout(); |
620 |
#ifdef IS_MPI |
621 |
|
622 |
// gather up the atomic positions |
623 |
AtomPlanVectorRow->gather(snap_->atomData.position, |
624 |
atomRowData.position); |
625 |
AtomPlanVectorColumn->gather(snap_->atomData.position, |
626 |
atomColData.position); |
627 |
|
628 |
// gather up the cutoff group positions |
629 |
|
630 |
cerr << "before gather\n"; |
631 |
for (int i = 0; i < snap_->cgData.position.size(); i++) |
632 |
{ |
633 |
cerr << "cgpos = " << snap_->cgData.position[i] << "\n"; |
634 |
} |
635 |
|
636 |
cgPlanVectorRow->gather(snap_->cgData.position, |
637 |
cgRowData.position); |
638 |
|
639 |
cerr << "after gather\n"; |
640 |
for (int i = 0; i < cgRowData.position.size(); i++) |
641 |
{ |
642 |
cerr << "cgRpos = " << cgRowData.position[i] << "\n"; |
643 |
} |
644 |
|
645 |
cgPlanVectorColumn->gather(snap_->cgData.position, |
646 |
cgColData.position); |
647 |
for (int i = 0; i < cgColData.position.size(); i++) |
648 |
{ |
649 |
cerr << "cgCpos = " << cgColData.position[i] << "\n"; |
650 |
} |
651 |
|
652 |
// if needed, gather the atomic rotation matrices |
653 |
if (storageLayout_ & DataStorage::dslAmat) |
654 |
{ |
655 |
AtomPlanMatrixRow->gather(snap_->atomData.aMat, |
656 |
atomRowData.aMat); |
657 |
AtomPlanMatrixColumn->gather(snap_->atomData.aMat, |
658 |
atomColData.aMat); |
659 |
} |
660 |
|
661 |
// if needed, gather the atomic eletrostatic frames |
662 |
if (storageLayout_ & DataStorage::dslElectroFrame) |
663 |
{ |
664 |
AtomPlanMatrixRow->gather(snap_->atomData.electroFrame, |
665 |
atomRowData.electroFrame); |
666 |
AtomPlanMatrixColumn->gather(snap_->atomData.electroFrame, |
667 |
atomColData.electroFrame); |
668 |
} |
669 |
|
670 |
#endif |
671 |
} |
672 |
|
673 |
/* collects information obtained during the pre-pair loop onto local |
674 |
* data structures. |
675 |
*/ |
676 |
void ForceMatrixDecomposition::collectIntermediateData() { |
677 |
snap_ = sman_->getCurrentSnapshot(); |
678 |
storageLayout_ = sman_->getStorageLayout(); |
679 |
#ifdef IS_MPI |
680 |
|
681 |
if (storageLayout_ & DataStorage::dslDensity) |
682 |
{ |
683 |
|
684 |
AtomPlanRealRow->scatter(atomRowData.density, |
685 |
snap_->atomData.density); |
686 |
|
687 |
int n = snap_->atomData.density.size(); |
688 |
vector<RealType> rho_tmp(n, 0.0); |
689 |
AtomPlanRealColumn->scatter(atomColData.density, rho_tmp); |
690 |
for (int i = 0; i < n; i++) |
691 |
snap_->atomData.density[i] += rho_tmp[i]; |
692 |
} |
693 |
#endif |
694 |
} |
695 |
|
696 |
/* |
697 |
* redistributes information obtained during the pre-pair loop out to |
698 |
* row and column-indexed data structures |
699 |
*/ |
700 |
void ForceMatrixDecomposition::distributeIntermediateData() { |
701 |
snap_ = sman_->getCurrentSnapshot(); |
702 |
storageLayout_ = sman_->getStorageLayout(); |
703 |
#ifdef IS_MPI |
704 |
if (storageLayout_ & DataStorage::dslFunctional) |
705 |
{ |
706 |
AtomPlanRealRow->gather(snap_->atomData.functional, |
707 |
atomRowData.functional); |
708 |
AtomPlanRealColumn->gather(snap_->atomData.functional, |
709 |
atomColData.functional); |
710 |
} |
711 |
|
712 |
if (storageLayout_ & DataStorage::dslFunctionalDerivative) |
713 |
{ |
714 |
AtomPlanRealRow->gather(snap_->atomData.functionalDerivative, |
715 |
atomRowData.functionalDerivative); |
716 |
AtomPlanRealColumn->gather(snap_->atomData.functionalDerivative, |
717 |
atomColData.functionalDerivative); |
718 |
} |
719 |
#endif |
720 |
} |
721 |
|
722 |
void ForceMatrixDecomposition::collectData() { |
723 |
snap_ = sman_->getCurrentSnapshot(); |
724 |
storageLayout_ = sman_->getStorageLayout(); |
725 |
#ifdef IS_MPI |
726 |
int n = snap_->atomData.force.size(); |
727 |
vector<Vector3d> frc_tmp(n, V3Zero); |
728 |
|
729 |
AtomPlanVectorRow->scatter(atomRowData.force, frc_tmp); |
730 |
for (int i = 0; i < n; i++) |
731 |
{ |
732 |
snap_->atomData.force[i] += frc_tmp[i]; |
733 |
frc_tmp[i] = 0.0; |
734 |
} |
735 |
|
736 |
AtomPlanVectorColumn->scatter(atomColData.force, frc_tmp); |
737 |
for (int i = 0; i < n; i++) |
738 |
{ |
739 |
snap_->atomData.force[i] += frc_tmp[i]; |
740 |
} |
741 |
|
742 |
if (storageLayout_ & DataStorage::dslTorque) |
743 |
{ |
744 |
|
745 |
int nt = snap_->atomData.torque.size(); |
746 |
vector<Vector3d> trq_tmp(nt, V3Zero); |
747 |
|
748 |
AtomPlanVectorRow->scatter(atomRowData.torque, trq_tmp); |
749 |
for (int i = 0; i < nt; i++) |
750 |
{ |
751 |
snap_->atomData.torque[i] += trq_tmp[i]; |
752 |
trq_tmp[i] = 0.0; |
753 |
} |
754 |
|
755 |
AtomPlanVectorColumn->scatter(atomColData.torque, trq_tmp); |
756 |
for (int i = 0; i < nt; i++) |
757 |
snap_->atomData.torque[i] += trq_tmp[i]; |
758 |
} |
759 |
|
760 |
if (storageLayout_ & DataStorage::dslSkippedCharge) |
761 |
{ |
762 |
|
763 |
int ns = snap_->atomData.skippedCharge.size(); |
764 |
vector<RealType> skch_tmp(ns, 0.0); |
765 |
|
766 |
AtomPlanRealRow->scatter(atomRowData.skippedCharge, skch_tmp); |
767 |
for (int i = 0; i < ns; i++) |
768 |
{ |
769 |
snap_->atomData.skippedCharge[i] += skch_tmp[i]; |
770 |
skch_tmp[i] = 0.0; |
771 |
} |
772 |
|
773 |
AtomPlanRealColumn->scatter(atomColData.skippedCharge, skch_tmp); |
774 |
for (int i = 0; i < ns; i++) |
775 |
snap_->atomData.skippedCharge[i] += skch_tmp[i]; |
776 |
} |
777 |
|
778 |
nLocal_ = snap_->getNumberOfAtoms(); |
779 |
|
780 |
vector<potVec> pot_temp(nLocal_, |
781 |
Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
782 |
|
783 |
// scatter/gather pot_row into the members of my column |
784 |
|
785 |
AtomPlanPotRow->scatter(pot_row, pot_temp); |
786 |
|
787 |
for (int ii = 0; ii < pot_temp.size(); ii++ ) |
788 |
pairwisePot += pot_temp[ii]; |
789 |
|
790 |
fill(pot_temp.begin(), pot_temp.end(), |
791 |
Vector<RealType, N_INTERACTION_FAMILIES> (0.0)); |
792 |
|
793 |
AtomPlanPotColumn->scatter(pot_col, pot_temp); |
794 |
|
795 |
for (int ii = 0; ii < pot_temp.size(); ii++ ) |
796 |
pairwisePot += pot_temp[ii]; |
797 |
#endif |
798 |
|
799 |
cerr << "pairwisePot = " << pairwisePot << "\n"; |
800 |
} |
801 |
|
802 |
int ForceMatrixDecomposition::getNAtomsInRow() { |
803 |
#ifdef IS_MPI |
804 |
return nAtomsInRow_; |
805 |
#else |
806 |
return nLocal_; |
807 |
#endif |
808 |
} |
809 |
|
810 |
/** |
811 |
* returns the list of atoms belonging to this group. |
812 |
*/ |
813 |
vector<int> ForceMatrixDecomposition::getAtomsInGroupRow(int cg1) { |
814 |
#ifdef IS_MPI |
815 |
return groupListRow_[cg1]; |
816 |
#else |
817 |
return groupList_[cg1]; |
818 |
#endif |
819 |
} |
820 |
|
821 |
vector<int> ForceMatrixDecomposition::getAtomsInGroupColumn(int cg2) { |
822 |
#ifdef IS_MPI |
823 |
return groupListCol_[cg2]; |
824 |
#else |
825 |
return groupList_[cg2]; |
826 |
#endif |
827 |
} |
828 |
|
829 |
Vector3d ForceMatrixDecomposition::getIntergroupVector(int cg1, int cg2) { |
830 |
Vector3d d; |
831 |
|
832 |
#ifdef IS_MPI |
833 |
d = cgColData.position[cg2] - cgRowData.position[cg1]; |
834 |
cerr << "cg1 = " << cg1 << "\tcg1p = " << cgRowData.position[cg1] << "\n"; |
835 |
cerr << "cg2 = " << cg2 << "\tcg2p = " << cgColData.position[cg2] << "\n"; |
836 |
#else |
837 |
d = snap_->cgData.position[cg2] - snap_->cgData.position[cg1]; |
838 |
cerr << "cg1 = " << cg1 << "\tcg1p = " << snap_->cgData.position[cg1] << "\n"; |
839 |
cerr << "cg2 = " << cg2 << "\tcg2p = " << snap_->cgData.position[cg2] << "\n"; |
840 |
#endif |
841 |
|
842 |
snap_->wrapVector(d); |
843 |
return d; |
844 |
} |
845 |
|
846 |
Vector3d ForceMatrixDecomposition::getIntergroupVector(CutoffGroup *cg1, CutoffGroup *cg2) { |
847 |
Vector3d d; |
848 |
|
849 |
d = snap_->cgData.position[cg2->getLocalIndex()] - snap_->cgData.position[cg1->getLocalIndex()]; |
850 |
/* cerr << "cg1_gid = " << cg1->getGlobalIndex() << "\tcg1_lid = " << cg1->getLocalIndex() << "\tcg1p = " |
851 |
<< snap_->cgData.position[cg1->getLocalIndex()] << "\n"; |
852 |
cerr << "cg2_gid = " << cg2->getGlobalIndex() << "\tcg2_lid = " << cg2->getLocalIndex() << "\tcg2p = " |
853 |
<< snap_->cgData.position[cg2->getLocalIndex()] << "\n";*/ |
854 |
|
855 |
snap_->wrapVector(d); |
856 |
return d; |
857 |
} |
858 |
|
859 |
Vector3d ForceMatrixDecomposition::getAtomToGroupVectorRow(int atom1, int cg1) { |
860 |
|
861 |
Vector3d d; |
862 |
|
863 |
#ifdef IS_MPI |
864 |
d = cgRowData.position[cg1] - atomRowData.position[atom1]; |
865 |
#else |
866 |
d = snap_->cgData.position[cg1] - snap_->atomData.position[atom1]; |
867 |
#endif |
868 |
|
869 |
snap_->wrapVector(d); |
870 |
return d; |
871 |
} |
872 |
|
873 |
Vector3d ForceMatrixDecomposition::getAtomToGroupVectorColumn(int atom2, int cg2) { |
874 |
Vector3d d; |
875 |
|
876 |
#ifdef IS_MPI |
877 |
d = cgColData.position[cg2] - atomColData.position[atom2]; |
878 |
#else |
879 |
d = snap_->cgData.position[cg2] - snap_->atomData.position[atom2]; |
880 |
#endif |
881 |
|
882 |
snap_->wrapVector(d); |
883 |
return d; |
884 |
} |
885 |
|
886 |
RealType ForceMatrixDecomposition::getMassFactorRow(int atom1) { |
887 |
#ifdef IS_MPI |
888 |
return massFactorsRow[atom1]; |
889 |
#else |
890 |
return massFactors[atom1]; |
891 |
#endif |
892 |
} |
893 |
|
894 |
RealType ForceMatrixDecomposition::getMassFactorColumn(int atom2) { |
895 |
#ifdef IS_MPI |
896 |
return massFactorsCol[atom2]; |
897 |
#else |
898 |
return massFactors[atom2]; |
899 |
#endif |
900 |
|
901 |
} |
902 |
|
903 |
Vector3d ForceMatrixDecomposition::getInteratomicVector(int atom1, int atom2) { |
904 |
Vector3d d; |
905 |
|
906 |
#ifdef IS_MPI |
907 |
d = atomColData.position[atom2] - atomRowData.position[atom1]; |
908 |
#else |
909 |
d = snap_->atomData.position[atom2] - snap_->atomData.position[atom1]; |
910 |
#endif |
911 |
|
912 |
snap_->wrapVector(d); |
913 |
return d; |
914 |
} |
915 |
|
916 |
vector<int> ForceMatrixDecomposition::getExcludesForAtom(int atom1) { |
917 |
return excludesForAtom[atom1]; |
918 |
} |
919 |
|
920 |
/** |
921 |
* We need to exclude some overcounted interactions that result from |
922 |
* the parallel decomposition. |
923 |
*/ |
924 |
bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2) { |
925 |
int unique_id_1, unique_id_2; |
926 |
|
927 |
// cerr << "sap with atom1, atom2 =\t" << atom1 << "\t" << atom2 << "\n"; |
928 |
#ifdef IS_MPI |
929 |
// in MPI, we have to look up the unique IDs for each atom |
930 |
unique_id_1 = AtomRowToGlobal[atom1]; |
931 |
unique_id_2 = AtomColToGlobal[atom2]; |
932 |
|
933 |
cerr << "sap with uid1, uid2 =\t" << unique_id_1 << "\t" << unique_id_2 << "\n"; |
934 |
// this situation should only arise in MPI simulations |
935 |
if (unique_id_1 == unique_id_2) return true; |
936 |
|
937 |
// this prevents us from doing the pair on multiple processors |
938 |
if (unique_id_1 < unique_id_2) |
939 |
{ |
940 |
if ((unique_id_1 + unique_id_2) % 2 == 0) return true; |
941 |
} else |
942 |
{ |
943 |
if ((unique_id_1 + unique_id_2) % 2 == 1) return true; |
944 |
} |
945 |
#endif |
946 |
return false; |
947 |
} |
948 |
|
949 |
/** |
950 |
* We need to handle the interactions for atoms who are involved in |
951 |
* the same rigid body as well as some short range interactions |
952 |
* (bonds, bends, torsions) differently from other interactions. |
953 |
* We'll still visit the pairwise routines, but with a flag that |
954 |
* tells those routines to exclude the pair from direct long range |
955 |
* interactions. Some indirect interactions (notably reaction |
956 |
* field) must still be handled for these pairs. |
957 |
*/ |
958 |
bool ForceMatrixDecomposition::excludeAtomPair(int atom1, int atom2) { |
959 |
int unique_id_2; |
960 |
#ifdef IS_MPI |
961 |
// in MPI, we have to look up the unique IDs for the row atom. |
962 |
unique_id_2 = AtomColToGlobal[atom2]; |
963 |
#else |
964 |
// in the normal loop, the atom numbers are unique |
965 |
unique_id_2 = atom2; |
966 |
#endif |
967 |
|
968 |
for (vector<int>::iterator i = excludesForAtom[atom1].begin(); i != excludesForAtom[atom1].end(); ++i) |
969 |
{ |
970 |
if ((*i) == unique_id_2) |
971 |
return true; |
972 |
} |
973 |
|
974 |
return false; |
975 |
} |
976 |
|
977 |
void ForceMatrixDecomposition::addForceToAtomRow(int atom1, Vector3d fg) { |
978 |
#ifdef IS_MPI |
979 |
atomRowData.force[atom1] += fg; |
980 |
#else |
981 |
snap_->atomData.force[atom1] += fg; |
982 |
#endif |
983 |
} |
984 |
|
985 |
void ForceMatrixDecomposition::addForceToAtomColumn(int atom2, Vector3d fg) { |
986 |
#ifdef IS_MPI |
987 |
atomColData.force[atom2] += fg; |
988 |
#else |
989 |
snap_->atomData.force[atom2] += fg; |
990 |
#endif |
991 |
} |
992 |
|
993 |
// filling interaction blocks with pointers |
994 |
void ForceMatrixDecomposition::fillInteractionData(InteractionData &idat, int atom1, int atom2) { |
995 |
|
996 |
idat.excluded = excludeAtomPair(atom1, atom2); |
997 |
|
998 |
#ifdef IS_MPI |
999 |
idat.atypes = make_pair( atypesRow[atom1], atypesCol[atom2]); |
1000 |
//idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]), |
1001 |
// ff_->getAtomType(identsCol[atom2]) ); |
1002 |
|
1003 |
if (storageLayout_ & DataStorage::dslAmat) |
1004 |
{ |
1005 |
idat.A1 = &(atomRowData.aMat[atom1]); |
1006 |
idat.A2 = &(atomColData.aMat[atom2]); |
1007 |
} |
1008 |
|
1009 |
if (storageLayout_ & DataStorage::dslElectroFrame) |
1010 |
{ |
1011 |
idat.eFrame1 = &(atomRowData.electroFrame[atom1]); |
1012 |
idat.eFrame2 = &(atomColData.electroFrame[atom2]); |
1013 |
} |
1014 |
|
1015 |
if (storageLayout_ & DataStorage::dslTorque) |
1016 |
{ |
1017 |
idat.t1 = &(atomRowData.torque[atom1]); |
1018 |
idat.t2 = &(atomColData.torque[atom2]); |
1019 |
} |
1020 |
|
1021 |
if (storageLayout_ & DataStorage::dslDensity) |
1022 |
{ |
1023 |
idat.rho1 = &(atomRowData.density[atom1]); |
1024 |
idat.rho2 = &(atomColData.density[atom2]); |
1025 |
} |
1026 |
|
1027 |
if (storageLayout_ & DataStorage::dslFunctional) |
1028 |
{ |
1029 |
idat.frho1 = &(atomRowData.functional[atom1]); |
1030 |
idat.frho2 = &(atomColData.functional[atom2]); |
1031 |
} |
1032 |
|
1033 |
if (storageLayout_ & DataStorage::dslFunctionalDerivative) |
1034 |
{ |
1035 |
idat.dfrho1 = &(atomRowData.functionalDerivative[atom1]); |
1036 |
idat.dfrho2 = &(atomColData.functionalDerivative[atom2]); |
1037 |
} |
1038 |
|
1039 |
if (storageLayout_ & DataStorage::dslParticlePot) |
1040 |
{ |
1041 |
idat.particlePot1 = &(atomRowData.particlePot[atom1]); |
1042 |
idat.particlePot2 = &(atomColData.particlePot[atom2]); |
1043 |
} |
1044 |
|
1045 |
if (storageLayout_ & DataStorage::dslSkippedCharge) |
1046 |
{ |
1047 |
idat.skippedCharge1 = &(atomRowData.skippedCharge[atom1]); |
1048 |
idat.skippedCharge2 = &(atomColData.skippedCharge[atom2]); |
1049 |
} |
1050 |
|
1051 |
#else |
1052 |
|
1053 |
idat.atypes = make_pair(atypesLocal[atom1], atypesLocal[atom2]); |
1054 |
//idat.atypes = make_pair( ff_->getAtomType(idents[atom1]), |
1055 |
// ff_->getAtomType(idents[atom2]) ); |
1056 |
|
1057 |
if (storageLayout_ & DataStorage::dslAmat) |
1058 |
{ |
1059 |
idat.A1 = &(snap_->atomData.aMat[atom1]); |
1060 |
idat.A2 = &(snap_->atomData.aMat[atom2]); |
1061 |
} |
1062 |
|
1063 |
if (storageLayout_ & DataStorage::dslElectroFrame) |
1064 |
{ |
1065 |
idat.eFrame1 = &(snap_->atomData.electroFrame[atom1]); |
1066 |
idat.eFrame2 = &(snap_->atomData.electroFrame[atom2]); |
1067 |
} |
1068 |
|
1069 |
if (storageLayout_ & DataStorage::dslTorque) |
1070 |
{ |
1071 |
idat.t1 = &(snap_->atomData.torque[atom1]); |
1072 |
idat.t2 = &(snap_->atomData.torque[atom2]); |
1073 |
} |
1074 |
|
1075 |
if (storageLayout_ & DataStorage::dslDensity) |
1076 |
{ |
1077 |
idat.rho1 = &(snap_->atomData.density[atom1]); |
1078 |
idat.rho2 = &(snap_->atomData.density[atom2]); |
1079 |
} |
1080 |
|
1081 |
if (storageLayout_ & DataStorage::dslFunctional) |
1082 |
{ |
1083 |
idat.frho1 = &(snap_->atomData.functional[atom1]); |
1084 |
idat.frho2 = &(snap_->atomData.functional[atom2]); |
1085 |
} |
1086 |
|
1087 |
if (storageLayout_ & DataStorage::dslFunctionalDerivative) |
1088 |
{ |
1089 |
idat.dfrho1 = &(snap_->atomData.functionalDerivative[atom1]); |
1090 |
idat.dfrho2 = &(snap_->atomData.functionalDerivative[atom2]); |
1091 |
} |
1092 |
|
1093 |
if (storageLayout_ & DataStorage::dslParticlePot) |
1094 |
{ |
1095 |
idat.particlePot1 = &(snap_->atomData.particlePot[atom1]); |
1096 |
idat.particlePot2 = &(snap_->atomData.particlePot[atom2]); |
1097 |
} |
1098 |
|
1099 |
if (storageLayout_ & DataStorage::dslSkippedCharge) |
1100 |
{ |
1101 |
idat.skippedCharge1 = &(snap_->atomData.skippedCharge[atom1]); |
1102 |
idat.skippedCharge2 = &(snap_->atomData.skippedCharge[atom2]); |
1103 |
} |
1104 |
#endif |
1105 |
} |
1106 |
|
1107 |
void ForceMatrixDecomposition::unpackInteractionData(InteractionData &idat, int atom1, int atom2) { |
1108 |
#ifdef IS_MPI |
1109 |
pot_row[atom1] += 0.5 * *(idat.pot); |
1110 |
pot_col[atom2] += 0.5 * *(idat.pot); |
1111 |
|
1112 |
atomRowData.force[atom1] += *(idat.f1); |
1113 |
atomColData.force[atom2] -= *(idat.f1); |
1114 |
#else |
1115 |
pairwisePot += *(idat.pot); |
1116 |
|
1117 |
snap_->atomData.force[atom1] += *(idat.f1); |
1118 |
snap_->atomData.force[atom2] -= *(idat.f1); |
1119 |
#endif |
1120 |
|
1121 |
} |
1122 |
|
1123 |
void ForceMatrixDecomposition::reorderGroupCutoffs(vector<int> &order) { |
1124 |
vector<int> tmp = vector<int> (groupToGtype.size()); |
1125 |
|
1126 |
for (int i = 0; i < groupToGtype.size(); ++i) |
1127 |
{ |
1128 |
tmp[i] = groupToGtype[i]; |
1129 |
} |
1130 |
|
1131 |
for (int i = 0; i < groupToGtype.size(); ++i) |
1132 |
{ |
1133 |
groupToGtype[i] = tmp[order[i]]; |
1134 |
} |
1135 |
} |
1136 |
|
1137 |
void ForceMatrixDecomposition::reorderPosition(vector<int> &order) { |
1138 |
Snapshot* snap_ = info_->getSnapshotManager()->getCurrentSnapshot(); |
1139 |
DataStorage* cgConfig = &(snap_->cgData); |
1140 |
vector<Vector3d> tmp = vector<Vector3d> (nGroups_); |
1141 |
|
1142 |
for (int i = 0; i < nGroups_; ++i) |
1143 |
{ |
1144 |
tmp[i] = snap_->cgData.position[i]; |
1145 |
} |
1146 |
|
1147 |
vector<int> mapPos = vector<int>(nGroups_); |
1148 |
for (int i = 0; i < nGroups_; ++i) |
1149 |
{ |
1150 |
snap_->cgData.position[i] = tmp[order[i]]; |
1151 |
mapPos[order[i]] = i; |
1152 |
} |
1153 |
|
1154 |
SimInfo::MoleculeIterator mi; |
1155 |
Molecule* mol; |
1156 |
Molecule::CutoffGroupIterator ci; |
1157 |
CutoffGroup* cg; |
1158 |
|
1159 |
for (mol = info_->beginMolecule(mi); mol != NULL; mol = info_->nextMolecule(mi)) |
1160 |
{ |
1161 |
for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) |
1162 |
{ |
1163 |
cg->setLocalIndex(mapPos[cg->getLocalIndex()]); |
1164 |
} |
1165 |
} |
1166 |
|
1167 |
/* if (info_->getNCutoffGroups() > 0) |
1168 |
{ |
1169 |
for (mol = info_->beginMolecule(mi); mol != NULL; mol = info_->nextMolecule(mi)) |
1170 |
{ |
1171 |
for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) |
1172 |
{ |
1173 |
printf("gbI:%d locI:%d x:%f y:%f z:%f\n", cg->getGlobalIndex(), cg->getLocalIndex(), |
1174 |
cgConfig->position[cg->getLocalIndex()].x(), cgConfig->position[cg->getLocalIndex()].y(), |
1175 |
cgConfig->position[cg->getLocalIndex()].z()); |
1176 |
} |
1177 |
} |
1178 |
} else |
1179 |
{ |
1180 |
// center of mass of the group is the same as position of the atom |
1181 |
// if cutoff group does not exist |
1182 |
printf("ERROR!!!!!!!!!!!!!!!!!!!!!!!!!!!\n"); |
1183 |
// cgConfig->position = config->position; |
1184 |
}*/ |
1185 |
} |
1186 |
|
1187 |
void ForceMatrixDecomposition::reorderGroupList(vector<int> &order) { |
1188 |
vector<vector<int> > tmp = vector<vector<int> > (groupList_.size()); |
1189 |
|
1190 |
for (int i = 0; i < groupList_.size(); ++i) |
1191 |
{ |
1192 |
tmp[i] = groupList_[i]; |
1193 |
} |
1194 |
|
1195 |
for (int i = 0; i < groupList_.size(); ++i) |
1196 |
{ |
1197 |
groupList_[i] = tmp[order[i]]; |
1198 |
} |
1199 |
} |
1200 |
|
1201 |
void ForceMatrixDecomposition::reorderMemory(vector<vector<CutoffGroup *> > &H_c_l) { |
1202 |
int n = 0; |
1203 |
// printf("Reorder memory time:%f!!!!!!!!!!!!!!!!!!!!!!!!!!!\n", |
1204 |
// info_->getSnapshotManager()->getCurrentSnapshot()->getTime()); |
1205 |
|
1206 |
/* record the reordered atom indices */ |
1207 |
vector<int> k = vector<int> (nGroups_); |
1208 |
|
1209 |
for (int c = 0; c < H_c_l.size(); ++c) |
1210 |
{ |
1211 |
for (vector<CutoffGroup *>::iterator cg = H_c_l[c].begin(); cg != H_c_l[c].end(); ++cg) |
1212 |
{ |
1213 |
int i = (*cg)->getGlobalIndex(); |
1214 |
k[n] = i; |
1215 |
++n; |
1216 |
} |
1217 |
} |
1218 |
|
1219 |
// reorderGroupCutoffs(k); |
1220 |
// reorderGroupList(k); |
1221 |
reorderPosition(k); |
1222 |
} |
1223 |
|
1224 |
vector<vector<CutoffGroup *> > ForceMatrixDecomposition::buildLayerBasedNeighborList() { |
1225 |
// printf("buildLayerBasedNeighborList; nGroups:%d\n", nGroups_); |
1226 |
// Na = nGroups_ |
1227 |
/* cell occupancy counter */ |
1228 |
// vector<int> k_c; |
1229 |
/* c_i - has cell containing atom i (size Na) */ |
1230 |
vector<int> c = vector<int> (nGroups_); |
1231 |
/* l_i - layer containing atom i (size Na) */ |
1232 |
// vector<int> l; |
1233 |
|
1234 |
RealType rList_ = (largestRcut_ + skinThickness_); |
1235 |
Snapshot* snap_ = sman_->getCurrentSnapshot(); |
1236 |
Mat3x3d Hmat = snap_->getHmat(); |
1237 |
Vector3d Hx = Hmat.getColumn(0); |
1238 |
Vector3d Hy = Hmat.getColumn(1); |
1239 |
Vector3d Hz = Hmat.getColumn(2); |
1240 |
|
1241 |
nCells_.x() = (int) (Hx.length()) / rList_; |
1242 |
nCells_.y() = (int) (Hy.length()) / rList_; |
1243 |
nCells_.z() = (int) (Hz.length()) / rList_; |
1244 |
|
1245 |
Mat3x3d invHmat = snap_->getInvHmat(); |
1246 |
Vector3d rs, scaled, dr; |
1247 |
Vector3i whichCell; |
1248 |
int cellIndex; |
1249 |
int nCtot = nCells_.x() * nCells_.y() * nCells_.z(); |
1250 |
|
1251 |
// k_c = vector<int> (nCtot, 0); |
1252 |
|
1253 |
SimInfo::MoleculeIterator mi; |
1254 |
Molecule* mol; |
1255 |
Molecule::CutoffGroupIterator ci; |
1256 |
CutoffGroup* cg; |
1257 |
|
1258 |
for (mol = info_->beginMolecule(mi); mol != NULL; mol = info_->nextMolecule(mi)) |
1259 |
{ |
1260 |
for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) |
1261 |
{ |
1262 |
rs = snap_->cgData.position[cg->getLocalIndex()]; |
1263 |
|
1264 |
// scaled positions relative to the box vectors |
1265 |
scaled = invHmat * rs; |
1266 |
|
1267 |
// wrap the vector back into the unit box by subtracting integer box |
1268 |
// numbers |
1269 |
for (int j = 0; j < 3; j++) |
1270 |
{ |
1271 |
scaled[j] -= roundMe(scaled[j]); |
1272 |
scaled[j] += 0.5; |
1273 |
} |
1274 |
|
1275 |
// find xyz-indices of cell that cutoffGroup is in. |
1276 |
whichCell.x() = nCells_.x() * scaled.x(); |
1277 |
whichCell.y() = nCells_.y() * scaled.y(); |
1278 |
whichCell.z() = nCells_.z() * scaled.z(); |
1279 |
|
1280 |
// printf("pos x:%f y:%f z:%f cell x:%d y:%d z:%d\n", rs.x(), rs.y(), rs.z(), whichCell.x(), whichCell.y(), |
1281 |
// whichCell.z()); |
1282 |
|
1283 |
// find single index of this cell: |
1284 |
cellIndex = Vlinear(whichCell, nCells_); |
1285 |
|
1286 |
c[cg->getGlobalIndex()] = cellIndex; |
1287 |
} |
1288 |
} |
1289 |
|
1290 |
// int k_c_curr; |
1291 |
// int k_c_max = 0; |
1292 |
/* the cell-layer occupancy matrix */ |
1293 |
vector<vector<CutoffGroup *> > H_c_l = vector<vector<CutoffGroup *> > (nCtot); |
1294 |
|
1295 |
for (mol = info_->beginMolecule(mi); mol != NULL; mol = info_->nextMolecule(mi)) |
1296 |
{ |
1297 |
for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) |
1298 |
|
1299 |
{ |
1300 |
// k_c_curr = ++k_c[c[cg1->getGlobalIndex()]]; |
1301 |
// l.push_back(k_c_curr); |
1302 |
// |
1303 |
// /* determines the number of layers in use */ |
1304 |
// if (k_c_max < k_c_curr) |
1305 |
// { |
1306 |
// k_c_max = k_c_curr; |
1307 |
// } |
1308 |
|
1309 |
H_c_l[c[cg->getGlobalIndex()]].push_back(/*l[*/cg/*]*/); |
1310 |
} |
1311 |
} |
1312 |
|
1313 |
reorderMemory(H_c_l); |
1314 |
|
1315 |
int m; |
1316 |
/* the neighbor matrix */ |
1317 |
vector<vector<CutoffGroup *> > neighborMatW = vector<vector<CutoffGroup *> > (nGroups_); |
1318 |
|
1319 |
groupCutoffs cuts; |
1320 |
CutoffGroup *cg1; |
1321 |
|
1322 |
/* loops over objects(atoms, rigidBodies, cutoffGroups, etc.) */ |
1323 |
for (mol = info_->beginMolecule(mi); mol != NULL; mol = info_->nextMolecule(mi)) |
1324 |
{ |
1325 |
for (cg1 = mol->beginCutoffGroup(ci); cg1 != NULL; cg1 = mol->nextCutoffGroup(ci)) |
1326 |
{ |
1327 |
/* c' */ |
1328 |
int c1 = c[cg1->getGlobalIndex()]; |
1329 |
Vector3i c1v = idxToV(c1, nCells_); |
1330 |
|
1331 |
/* loops over the neighboring cells c'' */ |
1332 |
for (vector<Vector3i>::iterator os = cellOffsets_.begin(); os != cellOffsets_.end(); ++os) |
1333 |
{ |
1334 |
Vector3i c2v = c1v + (*os); |
1335 |
|
1336 |
if (c2v.x() >= nCells_.x()) |
1337 |
{ |
1338 |
c2v.x() = 0; |
1339 |
} else if (c2v.x() < 0) |
1340 |
{ |
1341 |
c2v.x() = nCells_.x() - 1; |
1342 |
} |
1343 |
|
1344 |
if (c2v.y() >= nCells_.y()) |
1345 |
{ |
1346 |
c2v.y() = 0; |
1347 |
} else if (c2v.y() < 0) |
1348 |
{ |
1349 |
c2v.y() = nCells_.y() - 1; |
1350 |
} |
1351 |
|
1352 |
if (c2v.z() >= nCells_.z()) |
1353 |
{ |
1354 |
c2v.z() = 0; |
1355 |
} else if (c2v.z() < 0) |
1356 |
{ |
1357 |
c2v.z() = nCells_.z() - 1; |
1358 |
} |
1359 |
|
1360 |
int c2 = Vlinear(c2v, nCells_); |
1361 |
/* loops over layers l to access the neighbor atoms */ |
1362 |
for (vector<CutoffGroup *>::iterator cg2 = H_c_l[c2].begin(); cg2 != H_c_l[c2].end(); ++cg2) |
1363 |
{ |
1364 |
// if i'' = 0 then break // doesn't apply to vector implementation of matrix |
1365 |
// if(i != *j) |
1366 |
if (c2 != c1 || (*cg2)->getGlobalIndex() < cg1->getGlobalIndex()) |
1367 |
{ |
1368 |
dr = snap_->cgData.position[(*cg2)->getLocalIndex()] - snap_->cgData.position[cg1->getLocalIndex()]; |
1369 |
snap_->wrapVector(dr); |
1370 |
cuts = getGroupCutoffs(cg1->getGlobalIndex(), (*cg2)->getGlobalIndex()); |
1371 |
if (dr.lengthSquare() < cuts.third) |
1372 |
{ |
1373 |
/* transposed version of Rapaport W mat, to occupy successive memory locations on CPU */ |
1374 |
neighborMatW[cg1->getGlobalIndex()].push_back((*cg2)); |
1375 |
} |
1376 |
} |
1377 |
} |
1378 |
} |
1379 |
} |
1380 |
} |
1381 |
|
1382 |
// save the local cutoff group positions for the check that is |
1383 |
// done on each loop: |
1384 |
saved_CG_positions_.clear(); |
1385 |
for (int i = 0; i < nGroups_; i++) |
1386 |
saved_CG_positions_.push_back(snap_->cgData.position[i]); |
1387 |
|
1388 |
return neighborMatW; |
1389 |
} |
1390 |
|
1391 |
/* |
1392 |
* buildNeighborList |
1393 |
* |
1394 |
* first element of pair is row-indexed CutoffGroup |
1395 |
* second element of pair is column-indexed CutoffGroup |
1396 |
*/ |
1397 |
vector<pair<int, int> > ForceMatrixDecomposition::buildNeighborList() { |
1398 |
|
1399 |
vector<pair<int, int> > neighborList; |
1400 |
groupCutoffs cuts; |
1401 |
bool doAllPairs = false; |
1402 |
|
1403 |
#ifdef IS_MPI |
1404 |
cellListRow_.clear(); |
1405 |
cellListCol_.clear(); |
1406 |
#else |
1407 |
cellList_.clear(); |
1408 |
#endif |
1409 |
|
1410 |
RealType rList_ = (largestRcut_ + skinThickness_); |
1411 |
RealType rl2 = rList_ * rList_; |
1412 |
Snapshot* snap_ = sman_->getCurrentSnapshot(); |
1413 |
Mat3x3d Hmat = snap_->getHmat(); |
1414 |
Vector3d Hx = Hmat.getColumn(0); |
1415 |
Vector3d Hy = Hmat.getColumn(1); |
1416 |
Vector3d Hz = Hmat.getColumn(2); |
1417 |
|
1418 |
nCells_.x() = (int) (Hx.length()) / rList_; |
1419 |
nCells_.y() = (int) (Hy.length()) / rList_; |
1420 |
nCells_.z() = (int) (Hz.length()) / rList_; |
1421 |
|
1422 |
// handle small boxes where the cell offsets can end up repeating cells |
1423 |
|
1424 |
if (nCells_.x() < 3) |
1425 |
doAllPairs = true; |
1426 |
if (nCells_.y() < 3) |
1427 |
doAllPairs = true; |
1428 |
if (nCells_.z() < 3) |
1429 |
doAllPairs = true; |
1430 |
|
1431 |
Mat3x3d invHmat = snap_->getInvHmat(); |
1432 |
Vector3d rs, scaled, dr; |
1433 |
Vector3i whichCell; |
1434 |
int cellIndex; |
1435 |
int nCtot = nCells_.x() * nCells_.y() * nCells_.z(); |
1436 |
|
1437 |
#ifdef IS_MPI |
1438 |
cellListRow_.resize(nCtot); |
1439 |
cellListCol_.resize(nCtot); |
1440 |
#else |
1441 |
cellList_.resize(nCtot); |
1442 |
#endif |
1443 |
|
1444 |
if (!doAllPairs) |
1445 |
{ |
1446 |
#ifdef IS_MPI |
1447 |
|
1448 |
for (int i = 0; i < nGroupsInRow_; i++) |
1449 |
{ |
1450 |
rs = cgRowData.position[i]; |
1451 |
|
1452 |
// scaled positions relative to the box vectors |
1453 |
scaled = invHmat * rs; |
1454 |
|
1455 |
// wrap the vector back into the unit box by subtracting integer box |
1456 |
// numbers |
1457 |
for (int j = 0; j < 3; j++) |
1458 |
{ |
1459 |
scaled[j] -= roundMe(scaled[j]); |
1460 |
scaled[j] += 0.5; |
1461 |
} |
1462 |
|
1463 |
// find xyz-indices of cell that cutoffGroup is in. |
1464 |
whichCell.x() = nCells_.x() * scaled.x(); |
1465 |
whichCell.y() = nCells_.y() * scaled.y(); |
1466 |
whichCell.z() = nCells_.z() * scaled.z(); |
1467 |
|
1468 |
// find single index of this cell: |
1469 |
cellIndex = Vlinear(whichCell, nCells_); |
1470 |
|
1471 |
// add this cutoff group to the list of groups in this cell; |
1472 |
cellListRow_[cellIndex].push_back(i); |
1473 |
} |
1474 |
for (int i = 0; i < nGroupsInCol_; i++) |
1475 |
{ |
1476 |
rs = cgColData.position[i]; |
1477 |
|
1478 |
// scaled positions relative to the box vectors |
1479 |
scaled = invHmat * rs; |
1480 |
|
1481 |
// wrap the vector back into the unit box by subtracting integer box |
1482 |
// numbers |
1483 |
for (int j = 0; j < 3; j++) |
1484 |
{ |
1485 |
scaled[j] -= roundMe(scaled[j]); |
1486 |
scaled[j] += 0.5; |
1487 |
} |
1488 |
|
1489 |
// find xyz-indices of cell that cutoffGroup is in. |
1490 |
whichCell.x() = nCells_.x() * scaled.x(); |
1491 |
whichCell.y() = nCells_.y() * scaled.y(); |
1492 |
whichCell.z() = nCells_.z() * scaled.z(); |
1493 |
|
1494 |
// find single index of this cell: |
1495 |
cellIndex = Vlinear(whichCell, nCells_); |
1496 |
|
1497 |
// add this cutoff group to the list of groups in this cell; |
1498 |
cellListCol_[cellIndex].push_back(i); |
1499 |
} |
1500 |
#else |
1501 |
for (int i = 0; i < nGroups_; i++) |
1502 |
{ |
1503 |
rs = snap_->cgData.position[i]; |
1504 |
|
1505 |
// scaled positions relative to the box vectors |
1506 |
scaled = invHmat * rs; |
1507 |
|
1508 |
// wrap the vector back into the unit box by subtracting integer box |
1509 |
// numbers |
1510 |
for (int j = 0; j < 3; j++) |
1511 |
{ |
1512 |
scaled[j] -= roundMe(scaled[j]); |
1513 |
scaled[j] += 0.5; |
1514 |
} |
1515 |
|
1516 |
// find xyz-indices of cell that cutoffGroup is in. |
1517 |
whichCell.x() = nCells_.x() * scaled.x(); |
1518 |
whichCell.y() = nCells_.y() * scaled.y(); |
1519 |
whichCell.z() = nCells_.z() * scaled.z(); |
1520 |
|
1521 |
// find single index of this cell: |
1522 |
cellIndex = Vlinear(whichCell, nCells_); |
1523 |
|
1524 |
// add this cutoff group to the list of groups in this cell; |
1525 |
cellList_[cellIndex].push_back(i); |
1526 |
} |
1527 |
#endif |
1528 |
|
1529 |
for (int m1z = 0; m1z < nCells_.z(); m1z++) |
1530 |
{ |
1531 |
for (int m1y = 0; m1y < nCells_.y(); m1y++) |
1532 |
{ |
1533 |
for (int m1x = 0; m1x < nCells_.x(); m1x++) |
1534 |
{ |
1535 |
Vector3i m1v(m1x, m1y, m1z); |
1536 |
int m1 = Vlinear(m1v, nCells_); |
1537 |
|
1538 |
for (vector<Vector3i>::iterator os = cellOffsets_.begin(); os != cellOffsets_.end(); ++os) |
1539 |
{ |
1540 |
|
1541 |
Vector3i m2v = m1v + (*os); |
1542 |
|
1543 |
if (m2v.x() >= nCells_.x()) |
1544 |
{ |
1545 |
m2v.x() = 0; |
1546 |
} else if (m2v.x() < 0) |
1547 |
{ |
1548 |
m2v.x() = nCells_.x() - 1; |
1549 |
} |
1550 |
|
1551 |
if (m2v.y() >= nCells_.y()) |
1552 |
{ |
1553 |
m2v.y() = 0; |
1554 |
} else if (m2v.y() < 0) |
1555 |
{ |
1556 |
m2v.y() = nCells_.y() - 1; |
1557 |
} |
1558 |
|
1559 |
if (m2v.z() >= nCells_.z()) |
1560 |
{ |
1561 |
m2v.z() = 0; |
1562 |
} else if (m2v.z() < 0) |
1563 |
{ |
1564 |
m2v.z() = nCells_.z() - 1; |
1565 |
} |
1566 |
|
1567 |
int m2 = Vlinear(m2v, nCells_); |
1568 |
|
1569 |
#ifdef IS_MPI |
1570 |
for (vector<int>::iterator j1 = cellListRow_[m1].begin(); |
1571 |
j1 != cellListRow_[m1].end(); ++j1) |
1572 |
{ |
1573 |
for (vector<int>::iterator j2 = cellListCol_[m2].begin(); |
1574 |
j2 != cellListCol_[m2].end(); ++j2) |
1575 |
{ |
1576 |
|
1577 |
// In parallel, we need to visit *all* pairs of row & |
1578 |
// column indicies and will truncate later on. |
1579 |
dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)]; |
1580 |
snap_->wrapVector(dr); |
1581 |
cuts = getGroupCutoffs( (*j1), (*j2) ); |
1582 |
if (dr.lengthSquare() < cuts.third) |
1583 |
{ |
1584 |
neighborList.push_back(make_pair((*j1), (*j2))); |
1585 |
} |
1586 |
} |
1587 |
} |
1588 |
#else |
1589 |
|
1590 |
for (vector<int>::iterator j1 = cellList_[m1].begin(); j1 != cellList_[m1].end(); ++j1) |
1591 |
{ |
1592 |
for (vector<int>::iterator j2 = cellList_[m2].begin(); j2 != cellList_[m2].end(); ++j2) |
1593 |
{ |
1594 |
|
1595 |
// Always do this if we're in different cells or if |
1596 |
// we're in the same cell and the global index of the |
1597 |
// j2 cutoff group is less than the j1 cutoff group |
1598 |
|
1599 |
if (m2 != m1 || (*j2) < (*j1)) |
1600 |
{ |
1601 |
dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)]; |
1602 |
snap_->wrapVector(dr); |
1603 |
cuts = getGroupCutoffs((*j1), (*j2)); |
1604 |
if (dr.lengthSquare() < cuts.third) |
1605 |
{ |
1606 |
neighborList.push_back(make_pair((*j1), (*j2))); |
1607 |
} |
1608 |
} |
1609 |
} |
1610 |
} |
1611 |
#endif |
1612 |
} |
1613 |
} |
1614 |
} |
1615 |
} |
1616 |
} else |
1617 |
{ |
1618 |
// branch to do all cutoff group pairs |
1619 |
#ifdef IS_MPI |
1620 |
for (int j1 = 0; j1 < nGroupsInRow_; j1++) |
1621 |
{ |
1622 |
for (int j2 = 0; j2 < nGroupsInCol_; j2++) |
1623 |
{ |
1624 |
dr = cgColData.position[j2] - cgRowData.position[j1]; |
1625 |
snap_->wrapVector(dr); |
1626 |
cuts = getGroupCutoffs( j1, j2 ); |
1627 |
if (dr.lengthSquare() < cuts.third) |
1628 |
{ |
1629 |
neighborList.push_back(make_pair(j1, j2)); |
1630 |
} |
1631 |
} |
1632 |
} |
1633 |
#else |
1634 |
for (int j1 = 0; j1 < nGroups_ - 1; j1++) |
1635 |
{ |
1636 |
for (int j2 = j1 + 1; j2 < nGroups_; j2++) |
1637 |
{ |
1638 |
dr = snap_->cgData.position[j2] - snap_->cgData.position[j1]; |
1639 |
snap_->wrapVector(dr); |
1640 |
cuts = getGroupCutoffs(j1, j2); |
1641 |
if (dr.lengthSquare() < cuts.third) |
1642 |
{ |
1643 |
neighborList.push_back(make_pair(j1, j2)); |
1644 |
} |
1645 |
} |
1646 |
} |
1647 |
#endif |
1648 |
} |
1649 |
|
1650 |
// save the local cutoff group positions for the check that is |
1651 |
// done on each loop: |
1652 |
saved_CG_positions_.clear(); |
1653 |
for (int i = 0; i < nGroups_; i++) |
1654 |
saved_CG_positions_.push_back(snap_->cgData.position[i]); |
1655 |
|
1656 |
return neighborList; |
1657 |
} |
1658 |
} //end namespace OpenMD |