ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/devel_omp/src/parallel/ForceMatrixDecomposition.cpp
Revision: 1614
Committed: Tue Aug 23 20:55:51 2011 UTC (13 years, 8 months ago) by mciznick
File size: 48868 byte(s)
Log Message:
Updated scalability of OpenMP threads.

File Contents

# User Rev Content
1 gezelter 1539 /*
2     * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 chuckv 1538 *
4     * The University of Notre Dame grants you ("Licensee") a
5     * non-exclusive, royalty free, license to use, modify and
6     * redistribute this software in source and binary code form, provided
7     * that the following conditions are met:
8     *
9     * 1. Redistributions of source code must retain the above copyright
10     * notice, this list of conditions and the following disclaimer.
11     *
12     * 2. Redistributions in binary form must reproduce the above copyright
13     * notice, this list of conditions and the following disclaimer in the
14     * documentation and/or other materials provided with the
15     * distribution.
16     *
17     * This software is provided "AS IS," without a warranty of any
18     * kind. All express or implied conditions, representations and
19     * warranties, including any implied warranty of merchantability,
20     * fitness for a particular purpose or non-infringement, are hereby
21     * excluded. The University of Notre Dame and its licensors shall not
22     * be liable for any damages suffered by licensee as a result of
23     * using, modifying or distributing the software or its
24     * derivatives. In no event will the University of Notre Dame or its
25     * licensors be liable for any lost revenue, profit or data, or for
26     * direct, indirect, special, consequential, incidental or punitive
27     * damages, however caused and regardless of the theory of liability,
28     * arising out of the use of or inability to use software, even if the
29     * University of Notre Dame has been advised of the possibility of
30     * such damages.
31     *
32     * SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your
33     * research, please cite the appropriate papers when you publish your
34     * work. Good starting points are:
35     *
36     * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).
37     * [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).
38     * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).
39     * [4] Vardeman & Gezelter, in progress (2009).
40     */
41 gezelter 1549 #include "parallel/ForceMatrixDecomposition.hpp"
42 gezelter 1539 #include "math/SquareMatrix3.hpp"
43 gezelter 1544 #include "nonbonded/NonBondedInteraction.hpp"
44     #include "brains/SnapshotManager.hpp"
45 gezelter 1570 #include "brains/PairList.hpp"
46 mciznick 1598 #include "primitives/Molecule.hpp"
47 chuckv 1538
48 gezelter 1541 using namespace std;
49 gezelter 1539 namespace OpenMD {
50 chuckv 1538
51 mciznick 1598 ForceMatrixDecomposition::ForceMatrixDecomposition(SimInfo* info, InteractionManager* iMan) :
52     ForceDecomposition(info, iMan) {
53     // In a parallel computation, row and colum scans must visit all
54     // surrounding cells (not just the 14 upper triangular blocks that
55     // are used when the processor can see all pairs)
56 gezelter 1593 #ifdef IS_MPI
57 mciznick 1598 cellOffsets_.push_back( Vector3i(-1, 0, 0) );
58     cellOffsets_.push_back( Vector3i(-1,-1, 0) );
59     cellOffsets_.push_back( Vector3i( 0,-1, 0) );
60     cellOffsets_.push_back( Vector3i( 1,-1, 0) );
61     cellOffsets_.push_back( Vector3i( 0, 0,-1) );
62     cellOffsets_.push_back( Vector3i(-1, 0, 1) );
63     cellOffsets_.push_back( Vector3i(-1,-1,-1) );
64     cellOffsets_.push_back( Vector3i( 0,-1,-1) );
65     cellOffsets_.push_back( Vector3i( 1,-1,-1) );
66     cellOffsets_.push_back( Vector3i( 1, 0,-1) );
67     cellOffsets_.push_back( Vector3i( 1, 1,-1) );
68     cellOffsets_.push_back( Vector3i( 0, 1,-1) );
69     cellOffsets_.push_back( Vector3i(-1, 1,-1) );
70 gezelter 1593 #endif
71 mciznick 1598 }
72 gezelter 1593
73 mciznick 1598 /**
74     * distributeInitialData is essentially a copy of the older fortran
75     * SimulationSetup
76     */
77     void ForceMatrixDecomposition::distributeInitialData() {
78     snap_ = sman_->getCurrentSnapshot();
79     storageLayout_ = sman_->getStorageLayout();
80     ff_ = info_->getForceField();
81     nLocal_ = snap_->getNumberOfAtoms();
82 gezelter 1593
83 mciznick 1598 nGroups_ = info_->getNLocalCutoffGroups();
84     // gather the information for atomtype IDs (atids):
85     idents = info_->getIdentArray();
86     AtomLocalToGlobal = info_->getGlobalAtomIndices();
87     cgLocalToGlobal = info_->getGlobalGroupIndices();
88     vector<int> globalGroupMembership = info_->getGlobalGroupMembership();
89 gezelter 1586
90 mciznick 1598 massFactors = info_->getMassFactors();
91 gezelter 1584
92 mciznick 1598 PairList* excludes = info_->getExcludedInteractions();
93     PairList* oneTwo = info_->getOneTwoInteractions();
94     PairList* oneThree = info_->getOneThreeInteractions();
95     PairList* oneFour = info_->getOneFourInteractions();
96 gezelter 1569
97 gezelter 1567 #ifdef IS_MPI
98 chuckv 1538
99 mciznick 1598 MPI::Intracomm row = rowComm.getComm();
100     MPI::Intracomm col = colComm.getComm();
101 gezelter 1541
102 mciznick 1598 AtomPlanIntRow = new Plan<int>(row, nLocal_);
103     AtomPlanRealRow = new Plan<RealType>(row, nLocal_);
104     AtomPlanVectorRow = new Plan<Vector3d>(row, nLocal_);
105     AtomPlanMatrixRow = new Plan<Mat3x3d>(row, nLocal_);
106     AtomPlanPotRow = new Plan<potVec>(row, nLocal_);
107 gezelter 1551
108 mciznick 1598 AtomPlanIntColumn = new Plan<int>(col, nLocal_);
109     AtomPlanRealColumn = new Plan<RealType>(col, nLocal_);
110     AtomPlanVectorColumn = new Plan<Vector3d>(col, nLocal_);
111     AtomPlanMatrixColumn = new Plan<Mat3x3d>(col, nLocal_);
112     AtomPlanPotColumn = new Plan<potVec>(col, nLocal_);
113 gezelter 1567
114 mciznick 1598 cgPlanIntRow = new Plan<int>(row, nGroups_);
115     cgPlanVectorRow = new Plan<Vector3d>(row, nGroups_);
116     cgPlanIntColumn = new Plan<int>(col, nGroups_);
117     cgPlanVectorColumn = new Plan<Vector3d>(col, nGroups_);
118 gezelter 1593
119 mciznick 1598 nAtomsInRow_ = AtomPlanIntRow->getSize();
120     nAtomsInCol_ = AtomPlanIntColumn->getSize();
121     nGroupsInRow_ = cgPlanIntRow->getSize();
122     nGroupsInCol_ = cgPlanIntColumn->getSize();
123 gezelter 1591
124 mciznick 1598 // Modify the data storage objects with the correct layouts and sizes:
125     atomRowData.resize(nAtomsInRow_);
126     atomRowData.setStorageLayout(storageLayout_);
127     atomColData.resize(nAtomsInCol_);
128     atomColData.setStorageLayout(storageLayout_);
129     cgRowData.resize(nGroupsInRow_);
130     cgRowData.setStorageLayout(DataStorage::dslPosition);
131     cgColData.resize(nGroupsInCol_);
132     cgColData.setStorageLayout(DataStorage::dslPosition);
133 gezelter 1591
134 mciznick 1598 identsRow.resize(nAtomsInRow_);
135     identsCol.resize(nAtomsInCol_);
136 gezelter 1589
137 mciznick 1598 AtomPlanIntRow->gather(idents, identsRow);
138     AtomPlanIntColumn->gather(idents, identsCol);
139 gezelter 1593
140 mciznick 1598 // allocate memory for the parallel objects
141     atypesRow.resize(nAtomsInRow_);
142     atypesCol.resize(nAtomsInCol_);
143 gezelter 1593
144 mciznick 1598 for (int i = 0; i < nAtomsInRow_; i++)
145     atypesRow[i] = ff_->getAtomType(identsRow[i]);
146     for (int i = 0; i < nAtomsInCol_; i++)
147     atypesCol[i] = ff_->getAtomType(identsCol[i]);
148 gezelter 1541
149 mciznick 1598 pot_row.resize(nAtomsInRow_);
150     pot_col.resize(nAtomsInCol_);
151 gezelter 1593
152 mciznick 1598 AtomRowToGlobal.resize(nAtomsInRow_);
153     AtomColToGlobal.resize(nAtomsInCol_);
154     AtomPlanIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal);
155     AtomPlanIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal);
156 gezelter 1593
157 mciznick 1598 cerr << "Atoms in Local:\n";
158     for (int i = 0; i < AtomLocalToGlobal.size(); i++)
159     {
160     cerr << "i =\t" << i << "\t localAt =\t" << AtomLocalToGlobal[i] << "\n";
161     }
162     cerr << "Atoms in Row:\n";
163     for (int i = 0; i < AtomRowToGlobal.size(); i++)
164     {
165     cerr << "i =\t" << i << "\t rowAt =\t" << AtomRowToGlobal[i] << "\n";
166     }
167     cerr << "Atoms in Col:\n";
168     for (int i = 0; i < AtomColToGlobal.size(); i++)
169     {
170     cerr << "i =\t" << i << "\t colAt =\t" << AtomColToGlobal[i] << "\n";
171     }
172 gezelter 1569
173 mciznick 1598 cgRowToGlobal.resize(nGroupsInRow_);
174     cgColToGlobal.resize(nGroupsInCol_);
175     cgPlanIntRow->gather(cgLocalToGlobal, cgRowToGlobal);
176     cgPlanIntColumn->gather(cgLocalToGlobal, cgColToGlobal);
177 gezelter 1569
178 mciznick 1598 cerr << "Gruops in Local:\n";
179     for (int i = 0; i < cgLocalToGlobal.size(); i++)
180     {
181     cerr << "i =\t" << i << "\t localCG =\t" << cgLocalToGlobal[i] << "\n";
182     }
183     cerr << "Groups in Row:\n";
184     for (int i = 0; i < cgRowToGlobal.size(); i++)
185     {
186     cerr << "i =\t" << i << "\t rowCG =\t" << cgRowToGlobal[i] << "\n";
187     }
188     cerr << "Groups in Col:\n";
189     for (int i = 0; i < cgColToGlobal.size(); i++)
190     {
191     cerr << "i =\t" << i << "\t colCG =\t" << cgColToGlobal[i] << "\n";
192     }
193 gezelter 1569
194 mciznick 1598 massFactorsRow.resize(nAtomsInRow_);
195     massFactorsCol.resize(nAtomsInCol_);
196     AtomPlanRealRow->gather(massFactors, massFactorsRow);
197     AtomPlanRealColumn->gather(massFactors, massFactorsCol);
198 gezelter 1579
199 mciznick 1598 groupListRow_.clear();
200     groupListRow_.resize(nGroupsInRow_);
201     for (int i = 0; i < nGroupsInRow_; i++)
202     {
203     int gid = cgRowToGlobal[i];
204     for (int j = 0; j < nAtomsInRow_; j++)
205     {
206     int aid = AtomRowToGlobal[j];
207     if (globalGroupMembership[aid] == gid)
208     groupListRow_[i].push_back(j);
209     }
210     }
211 gezelter 1579
212 mciznick 1598 groupListCol_.clear();
213     groupListCol_.resize(nGroupsInCol_);
214     for (int i = 0; i < nGroupsInCol_; i++)
215     {
216     int gid = cgColToGlobal[i];
217     for (int j = 0; j < nAtomsInCol_; j++)
218     {
219     int aid = AtomColToGlobal[j];
220     if (globalGroupMembership[aid] == gid)
221     groupListCol_[i].push_back(j);
222     }
223     }
224 gezelter 1570
225 mciznick 1598 excludesForAtom.clear();
226     excludesForAtom.resize(nAtomsInRow_);
227     toposForAtom.clear();
228     toposForAtom.resize(nAtomsInRow_);
229     topoDist.clear();
230     topoDist.resize(nAtomsInRow_);
231     for (int i = 0; i < nAtomsInRow_; i++)
232     {
233     int iglob = AtomRowToGlobal[i];
234    
235     for (int j = 0; j < nAtomsInCol_; j++)
236     {
237     int jglob = AtomColToGlobal[j];
238    
239     if (excludes->hasPair(iglob, jglob))
240     excludesForAtom[i].push_back(j);
241    
242     if (oneTwo->hasPair(iglob, jglob))
243     {
244     toposForAtom[i].push_back(j);
245     topoDist[i].push_back(1);
246     } else
247     {
248     if (oneThree->hasPair(iglob, jglob))
249     {
250     toposForAtom[i].push_back(j);
251     topoDist[i].push_back(2);
252     } else
253     {
254     if (oneFour->hasPair(iglob, jglob))
255     {
256     toposForAtom[i].push_back(j);
257     topoDist[i].push_back(3);
258     }
259     }
260     }
261     }
262     }
263    
264 gezelter 1569 #endif
265 gezelter 1579
266 mciznick 1598 // allocate memory for the parallel objects
267     atypesLocal.resize(nLocal_);
268 gezelter 1591
269 mciznick 1598 for (int i = 0; i < nLocal_; i++)
270     atypesLocal[i] = ff_->getAtomType(idents[i]);
271 gezelter 1591
272 mciznick 1598 groupList_.clear();
273     groupList_.resize(nGroups_);
274     for (int i = 0; i < nGroups_; i++)
275     {
276     int gid = cgLocalToGlobal[i];
277     for (int j = 0; j < nLocal_; j++)
278     {
279     int aid = AtomLocalToGlobal[j];
280     if (globalGroupMembership[aid] == gid)
281     {
282     groupList_[i].push_back(j);
283     }
284     }
285     }
286 gezelter 1569
287 mciznick 1598 excludesForAtom.clear();
288     excludesForAtom.resize(nLocal_);
289     toposForAtom.clear();
290     toposForAtom.resize(nLocal_);
291     topoDist.clear();
292     topoDist.resize(nLocal_);
293 gezelter 1569
294 mciznick 1598 for (int i = 0; i < nLocal_; i++)
295     {
296     int iglob = AtomLocalToGlobal[i];
297 gezelter 1579
298 mciznick 1598 for (int j = 0; j < nLocal_; j++)
299     {
300     int jglob = AtomLocalToGlobal[j];
301 gezelter 1579
302 mciznick 1598 if (excludes->hasPair(iglob, jglob))
303     excludesForAtom[i].push_back(j);
304 gezelter 1587
305 mciznick 1598 if (oneTwo->hasPair(iglob, jglob))
306     {
307     toposForAtom[i].push_back(j);
308     topoDist[i].push_back(1);
309     } else
310     {
311     if (oneThree->hasPair(iglob, jglob))
312     {
313     toposForAtom[i].push_back(j);
314     topoDist[i].push_back(2);
315     } else
316     {
317     if (oneFour->hasPair(iglob, jglob))
318     {
319     toposForAtom[i].push_back(j);
320     topoDist[i].push_back(3);
321     }
322     }
323     }
324     }
325     }
326    
327 mciznick 1599 Globals* simParams_ = info_->getSimParams();
328     if (simParams_->haveNeighborListReorderFreq())
329     {
330     neighborListReorderFreq = simParams_->getNeighborListReorderFreq();
331     } else
332     {
333     neighborListReorderFreq = 0;
334     }
335     reorderFreqCounter = 1;
336    
337 mciznick 1598 createGtypeCutoffMap();
338    
339     }
340    
341     void ForceMatrixDecomposition::createGtypeCutoffMap() {
342    
343     RealType tol = 1e-6;
344     largestRcut_ = 0.0;
345     RealType rc;
346     int atid;
347     set<AtomType*> atypes = info_->getSimulatedAtomTypes();
348    
349     map<int, RealType> atypeCutoff;
350    
351     for (set<AtomType*>::iterator at = atypes.begin(); at != atypes.end(); ++at)
352     {
353     atid = (*at)->getIdent();
354     if (userChoseCutoff_)
355     atypeCutoff[atid] = userCutoff_;
356     else
357     atypeCutoff[atid] = interactionMan_->getSuggestedCutoffRadius(*at);
358     }
359    
360     vector<RealType> gTypeCutoffs;
361     // first we do a single loop over the cutoff groups to find the
362     // largest cutoff for any atypes present in this group.
363 gezelter 1576 #ifdef IS_MPI
364 mciznick 1598 vector<RealType> groupCutoffRow(nGroupsInRow_, 0.0);
365     groupRowToGtype.resize(nGroupsInRow_);
366     for (int cg1 = 0; cg1 < nGroupsInRow_; cg1++)
367     {
368     vector<int> atomListRow = getAtomsInGroupRow(cg1);
369     for (vector<int>::iterator ia = atomListRow.begin();
370     ia != atomListRow.end(); ++ia)
371     {
372     int atom1 = (*ia);
373     atid = identsRow[atom1];
374     if (atypeCutoff[atid] > groupCutoffRow[cg1])
375     {
376     groupCutoffRow[cg1] = atypeCutoff[atid];
377     }
378     }
379 gezelter 1576
380 mciznick 1598 bool gTypeFound = false;
381     for (int gt = 0; gt < gTypeCutoffs.size(); gt++)
382     {
383     if (abs(groupCutoffRow[cg1] - gTypeCutoffs[gt]) < tol)
384     {
385     groupRowToGtype[cg1] = gt;
386     gTypeFound = true;
387     }
388     }
389     if (!gTypeFound)
390     {
391     gTypeCutoffs.push_back( groupCutoffRow[cg1] );
392     groupRowToGtype[cg1] = gTypeCutoffs.size() - 1;
393     }
394    
395     }
396     vector<RealType> groupCutoffCol(nGroupsInCol_, 0.0);
397     groupColToGtype.resize(nGroupsInCol_);
398     for (int cg2 = 0; cg2 < nGroupsInCol_; cg2++)
399     {
400     vector<int> atomListCol = getAtomsInGroupColumn(cg2);
401     for (vector<int>::iterator jb = atomListCol.begin();
402     jb != atomListCol.end(); ++jb)
403     {
404     int atom2 = (*jb);
405     atid = identsCol[atom2];
406     if (atypeCutoff[atid] > groupCutoffCol[cg2])
407     {
408     groupCutoffCol[cg2] = atypeCutoff[atid];
409     }
410     }
411     bool gTypeFound = false;
412     for (int gt = 0; gt < gTypeCutoffs.size(); gt++)
413     {
414     if (abs(groupCutoffCol[cg2] - gTypeCutoffs[gt]) < tol)
415     {
416     groupColToGtype[cg2] = gt;
417     gTypeFound = true;
418     }
419     }
420     if (!gTypeFound)
421     {
422     gTypeCutoffs.push_back( groupCutoffCol[cg2] );
423     groupColToGtype[cg2] = gTypeCutoffs.size() - 1;
424     }
425     }
426 gezelter 1576 #else
427 gezelter 1579
428 mciznick 1598 vector<RealType> groupCutoff(nGroups_, 0.0);
429     groupToGtype.resize(nGroups_);
430     for (int cg1 = 0; cg1 < nGroups_; cg1++)
431     {
432     groupCutoff[cg1] = 0.0;
433     vector<int> atomList = getAtomsInGroupRow(cg1);
434     for (vector<int>::iterator ia = atomList.begin(); ia != atomList.end(); ++ia)
435     {
436     int atom1 = (*ia);
437     atid = idents[atom1];
438     if (atypeCutoff[atid] > groupCutoff[cg1])
439     groupCutoff[cg1] = atypeCutoff[atid];
440     }
441    
442     bool gTypeFound = false;
443     for (int gt = 0; gt < gTypeCutoffs.size(); gt++)
444     {
445     if (abs(groupCutoff[cg1] - gTypeCutoffs[gt]) < tol)
446     {
447     groupToGtype[cg1] = gt;
448     gTypeFound = true;
449     }
450     }
451     if (!gTypeFound)
452     {
453     gTypeCutoffs.push_back(groupCutoff[cg1]);
454     groupToGtype[cg1] = gTypeCutoffs.size() - 1;
455     }
456     }
457 gezelter 1576 #endif
458    
459 mciznick 1598 // Now we find the maximum group cutoff value present in the simulation
460 gezelter 1576
461 mciznick 1598 RealType groupMax = *max_element(gTypeCutoffs.begin(), gTypeCutoffs.end());
462 gezelter 1576
463     #ifdef IS_MPI
464 mciznick 1598 MPI::COMM_WORLD.Allreduce(&groupMax, &groupMax, 1, MPI::REALTYPE,
465     MPI::MAX);
466 gezelter 1576 #endif
467    
468 mciznick 1598 RealType tradRcut = groupMax;
469 gezelter 1576
470 mciznick 1598 for (int i = 0; i < gTypeCutoffs.size(); i++)
471     {
472     for (int j = 0; j < gTypeCutoffs.size(); j++)
473     {
474     RealType thisRcut;
475     switch (cutoffPolicy_) {
476     case TRADITIONAL:
477     thisRcut = tradRcut;
478     break;
479     case MIX:
480     thisRcut = 0.5 * (gTypeCutoffs[i] + gTypeCutoffs[j]);
481     break;
482     case MAX:
483     thisRcut = max(gTypeCutoffs[i], gTypeCutoffs[j]);
484     break;
485     default:
486     sprintf(painCave.errMsg, "ForceMatrixDecomposition::createGtypeCutoffMap "
487     "hit an unknown cutoff policy!\n");
488     painCave.severity = OPENMD_ERROR;
489     painCave.isFatal = 1;
490     simError();
491     break;
492     }
493 gezelter 1576
494 mciznick 1598 pair<int, int> key = make_pair(i, j);
495     gTypeCutoffMap[key].first = thisRcut;
496     if (thisRcut > largestRcut_)
497     largestRcut_ = thisRcut;
498     gTypeCutoffMap[key].second = thisRcut * thisRcut;
499     gTypeCutoffMap[key].third = pow(thisRcut + skinThickness_, 2);
500     // sanity check
501 gezelter 1576
502 mciznick 1598 if (userChoseCutoff_)
503     {
504     if (abs(gTypeCutoffMap[key].first - userCutoff_) > 0.0001)
505     {
506     sprintf(painCave.errMsg, "ForceMatrixDecomposition::createGtypeCutoffMap "
507     "user-specified rCut (%lf) does not match computed group Cutoff\n", userCutoff_);
508     painCave.severity = OPENMD_ERROR;
509     painCave.isFatal = 1;
510     simError();
511     }
512     }
513     }
514     }
515     }
516    
517     groupCutoffs ForceMatrixDecomposition::getGroupCutoffs(int cg1, int cg2) {
518     int i, j;
519 gezelter 1576 #ifdef IS_MPI
520 mciznick 1598 i = groupRowToGtype[cg1];
521     j = groupColToGtype[cg2];
522 gezelter 1576 #else
523 mciznick 1598 i = groupToGtype[cg1];
524     j = groupToGtype[cg2];
525 gezelter 1579 #endif
526 mciznick 1598 return gTypeCutoffMap[make_pair(i, j)];
527     }
528 gezelter 1576
529 mciznick 1598 int ForceMatrixDecomposition::getTopologicalDistance(int atom1, int atom2) {
530     for (int j = 0; j < toposForAtom[atom1].size(); j++)
531     {
532     if (toposForAtom[atom1][j] == atom2)
533     return topoDist[atom1][j];
534     }
535     return 0;
536     }
537 gezelter 1576
538 mciznick 1598 void ForceMatrixDecomposition::zeroWorkArrays() {
539     pairwisePot = 0.0;
540     embeddingPot = 0.0;
541 gezelter 1575
542     #ifdef IS_MPI
543 mciznick 1598 if (storageLayout_ & DataStorage::dslForce)
544     {
545     fill(atomRowData.force.begin(), atomRowData.force.end(), V3Zero);
546     fill(atomColData.force.begin(), atomColData.force.end(), V3Zero);
547     }
548 gezelter 1575
549 mciznick 1598 if (storageLayout_ & DataStorage::dslTorque)
550     {
551     fill(atomRowData.torque.begin(), atomRowData.torque.end(), V3Zero);
552     fill(atomColData.torque.begin(), atomColData.torque.end(), V3Zero);
553     }
554 gezelter 1575
555 mciznick 1598 fill(pot_row.begin(), pot_row.end(),
556     Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
557 gezelter 1575
558 mciznick 1598 fill(pot_col.begin(), pot_col.end(),
559     Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
560 gezelter 1575
561 mciznick 1598 if (storageLayout_ & DataStorage::dslParticlePot)
562     {
563     fill(atomRowData.particlePot.begin(), atomRowData.particlePot.end(),
564     0.0);
565     fill(atomColData.particlePot.begin(), atomColData.particlePot.end(),
566     0.0);
567     }
568 gezelter 1575
569 mciznick 1598 if (storageLayout_ & DataStorage::dslDensity)
570     {
571     fill(atomRowData.density.begin(), atomRowData.density.end(), 0.0);
572     fill(atomColData.density.begin(), atomColData.density.end(), 0.0);
573     }
574 gezelter 1575
575 mciznick 1598 if (storageLayout_ & DataStorage::dslFunctional)
576     {
577     fill(atomRowData.functional.begin(), atomRowData.functional.end(),
578     0.0);
579     fill(atomColData.functional.begin(), atomColData.functional.end(),
580     0.0);
581     }
582 gezelter 1575
583 mciznick 1598 if (storageLayout_ & DataStorage::dslFunctionalDerivative)
584     {
585     fill(atomRowData.functionalDerivative.begin(),
586     atomRowData.functionalDerivative.end(), 0.0);
587     fill(atomColData.functionalDerivative.begin(),
588     atomColData.functionalDerivative.end(), 0.0);
589     }
590 gezelter 1586
591 mciznick 1598 if (storageLayout_ & DataStorage::dslSkippedCharge)
592     {
593     fill(atomRowData.skippedCharge.begin(),
594     atomRowData.skippedCharge.end(), 0.0);
595     fill(atomColData.skippedCharge.begin(),
596     atomColData.skippedCharge.end(), 0.0);
597     }
598    
599 gezelter 1590 #endif
600 mciznick 1598 // even in parallel, we need to zero out the local arrays:
601 gezelter 1590
602 mciznick 1598 if (storageLayout_ & DataStorage::dslParticlePot)
603     {
604     fill(snap_->atomData.particlePot.begin(), snap_->atomData.particlePot.end(), 0.0);
605     }
606 gezelter 1575
607 mciznick 1598 if (storageLayout_ & DataStorage::dslDensity)
608     {
609     fill(snap_->atomData.density.begin(), snap_->atomData.density.end(), 0.0);
610     }
611     if (storageLayout_ & DataStorage::dslFunctional)
612     {
613     fill(snap_->atomData.functional.begin(), snap_->atomData.functional.end(), 0.0);
614     }
615     if (storageLayout_ & DataStorage::dslFunctionalDerivative)
616     {
617     fill(snap_->atomData.functionalDerivative.begin(), snap_->atomData.functionalDerivative.end(), 0.0);
618     }
619     if (storageLayout_ & DataStorage::dslSkippedCharge)
620     {
621     fill(snap_->atomData.skippedCharge.begin(), snap_->atomData.skippedCharge.end(), 0.0);
622     }
623 gezelter 1575
624 mciznick 1598 }
625    
626     void ForceMatrixDecomposition::distributeData() {
627     snap_ = sman_->getCurrentSnapshot();
628     storageLayout_ = sman_->getStorageLayout();
629 chuckv 1538 #ifdef IS_MPI
630 gezelter 1593
631 mciznick 1598 // gather up the atomic positions
632     AtomPlanVectorRow->gather(snap_->atomData.position,
633     atomRowData.position);
634     AtomPlanVectorColumn->gather(snap_->atomData.position,
635     atomColData.position);
636 gezelter 1593
637 mciznick 1598 // gather up the cutoff group positions
638 gezelter 1593
639 mciznick 1598 cerr << "before gather\n";
640     for (int i = 0; i < snap_->cgData.position.size(); i++)
641     {
642     cerr << "cgpos = " << snap_->cgData.position[i] << "\n";
643     }
644 gezelter 1593
645 mciznick 1598 cgPlanVectorRow->gather(snap_->cgData.position,
646     cgRowData.position);
647 gezelter 1593
648 mciznick 1598 cerr << "after gather\n";
649     for (int i = 0; i < cgRowData.position.size(); i++)
650     {
651     cerr << "cgRpos = " << cgRowData.position[i] << "\n";
652     }
653 gezelter 1590
654 mciznick 1598 cgPlanVectorColumn->gather(snap_->cgData.position,
655     cgColData.position);
656     for (int i = 0; i < cgColData.position.size(); i++)
657     {
658     cerr << "cgCpos = " << cgColData.position[i] << "\n";
659     }
660    
661     // if needed, gather the atomic rotation matrices
662     if (storageLayout_ & DataStorage::dslAmat)
663     {
664     AtomPlanMatrixRow->gather(snap_->atomData.aMat,
665     atomRowData.aMat);
666     AtomPlanMatrixColumn->gather(snap_->atomData.aMat,
667     atomColData.aMat);
668     }
669    
670     // if needed, gather the atomic eletrostatic frames
671     if (storageLayout_ & DataStorage::dslElectroFrame)
672     {
673     AtomPlanMatrixRow->gather(snap_->atomData.electroFrame,
674     atomRowData.electroFrame);
675     AtomPlanMatrixColumn->gather(snap_->atomData.electroFrame,
676     atomColData.electroFrame);
677     }
678    
679 gezelter 1539 #endif
680 mciznick 1598 }
681    
682     /* collects information obtained during the pre-pair loop onto local
683     * data structures.
684     */
685     void ForceMatrixDecomposition::collectIntermediateData() {
686     snap_ = sman_->getCurrentSnapshot();
687     storageLayout_ = sman_->getStorageLayout();
688 gezelter 1539 #ifdef IS_MPI
689 mciznick 1598
690     if (storageLayout_ & DataStorage::dslDensity)
691     {
692    
693     AtomPlanRealRow->scatter(atomRowData.density,
694     snap_->atomData.density);
695    
696     int n = snap_->atomData.density.size();
697     vector<RealType> rho_tmp(n, 0.0);
698     AtomPlanRealColumn->scatter(atomColData.density, rho_tmp);
699     for (int i = 0; i < n; i++)
700     snap_->atomData.density[i] += rho_tmp[i];
701     }
702 chuckv 1538 #endif
703 mciznick 1598 }
704 gezelter 1575
705 mciznick 1598 /*
706     * redistributes information obtained during the pre-pair loop out to
707     * row and column-indexed data structures
708     */
709     void ForceMatrixDecomposition::distributeIntermediateData() {
710     snap_ = sman_->getCurrentSnapshot();
711     storageLayout_ = sman_->getStorageLayout();
712 chuckv 1538 #ifdef IS_MPI
713 mciznick 1598 if (storageLayout_ & DataStorage::dslFunctional)
714     {
715     AtomPlanRealRow->gather(snap_->atomData.functional,
716     atomRowData.functional);
717     AtomPlanRealColumn->gather(snap_->atomData.functional,
718     atomColData.functional);
719     }
720    
721     if (storageLayout_ & DataStorage::dslFunctionalDerivative)
722     {
723     AtomPlanRealRow->gather(snap_->atomData.functionalDerivative,
724     atomRowData.functionalDerivative);
725     AtomPlanRealColumn->gather(snap_->atomData.functionalDerivative,
726     atomColData.functionalDerivative);
727     }
728 chuckv 1538 #endif
729 mciznick 1598 }
730    
731     void ForceMatrixDecomposition::collectData() {
732     snap_ = sman_->getCurrentSnapshot();
733     storageLayout_ = sman_->getStorageLayout();
734 gezelter 1551 #ifdef IS_MPI
735 mciznick 1598 int n = snap_->atomData.force.size();
736     vector<Vector3d> frc_tmp(n, V3Zero);
737 gezelter 1541
738 mciznick 1598 AtomPlanVectorRow->scatter(atomRowData.force, frc_tmp);
739     for (int i = 0; i < n; i++)
740     {
741     snap_->atomData.force[i] += frc_tmp[i];
742     frc_tmp[i] = 0.0;
743     }
744 gezelter 1541
745 mciznick 1598 AtomPlanVectorColumn->scatter(atomColData.force, frc_tmp);
746     for (int i = 0; i < n; i++)
747     {
748     snap_->atomData.force[i] += frc_tmp[i];
749     }
750 gezelter 1587
751 mciznick 1598 if (storageLayout_ & DataStorage::dslTorque)
752     {
753 gezelter 1587
754 mciznick 1598 int nt = snap_->atomData.torque.size();
755     vector<Vector3d> trq_tmp(nt, V3Zero);
756 gezelter 1587
757 mciznick 1598 AtomPlanVectorRow->scatter(atomRowData.torque, trq_tmp);
758     for (int i = 0; i < nt; i++)
759     {
760     snap_->atomData.torque[i] += trq_tmp[i];
761     trq_tmp[i] = 0.0;
762     }
763 gezelter 1544
764 mciznick 1598 AtomPlanVectorColumn->scatter(atomColData.torque, trq_tmp);
765     for (int i = 0; i < nt; i++)
766     snap_->atomData.torque[i] += trq_tmp[i];
767     }
768 gezelter 1575
769 mciznick 1598 if (storageLayout_ & DataStorage::dslSkippedCharge)
770     {
771 gezelter 1575
772 mciznick 1598 int ns = snap_->atomData.skippedCharge.size();
773     vector<RealType> skch_tmp(ns, 0.0);
774    
775     AtomPlanRealRow->scatter(atomRowData.skippedCharge, skch_tmp);
776     for (int i = 0; i < ns; i++)
777     {
778     snap_->atomData.skippedCharge[i] += skch_tmp[i];
779     skch_tmp[i] = 0.0;
780     }
781    
782     AtomPlanRealColumn->scatter(atomColData.skippedCharge, skch_tmp);
783     for (int i = 0; i < ns; i++)
784     snap_->atomData.skippedCharge[i] += skch_tmp[i];
785     }
786    
787     nLocal_ = snap_->getNumberOfAtoms();
788    
789     vector<potVec> pot_temp(nLocal_,
790     Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
791    
792     // scatter/gather pot_row into the members of my column
793    
794     AtomPlanPotRow->scatter(pot_row, pot_temp);
795    
796     for (int ii = 0; ii < pot_temp.size(); ii++ )
797     pairwisePot += pot_temp[ii];
798    
799     fill(pot_temp.begin(), pot_temp.end(),
800     Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
801    
802     AtomPlanPotColumn->scatter(pot_col, pot_temp);
803    
804     for (int ii = 0; ii < pot_temp.size(); ii++ )
805     pairwisePot += pot_temp[ii];
806 gezelter 1539 #endif
807 gezelter 1583
808 mciznick 1599 // cerr << "pairwisePot = " << pairwisePot << "\n";
809 mciznick 1598 }
810 gezelter 1551
811 mciznick 1598 int ForceMatrixDecomposition::getNAtomsInRow() {
812 gezelter 1570 #ifdef IS_MPI
813 mciznick 1598 return nAtomsInRow_;
814 gezelter 1570 #else
815 mciznick 1598 return nLocal_;
816 gezelter 1570 #endif
817 mciznick 1598 }
818 gezelter 1570
819 mciznick 1598 /**
820     * returns the list of atoms belonging to this group.
821     */
822     vector<int> ForceMatrixDecomposition::getAtomsInGroupRow(int cg1) {
823 gezelter 1569 #ifdef IS_MPI
824 mciznick 1598 return groupListRow_[cg1];
825 gezelter 1569 #else
826 mciznick 1598 return groupList_[cg1];
827 gezelter 1569 #endif
828 mciznick 1598 }
829 gezelter 1569
830 mciznick 1598 vector<int> ForceMatrixDecomposition::getAtomsInGroupColumn(int cg2) {
831 gezelter 1569 #ifdef IS_MPI
832 mciznick 1598 return groupListCol_[cg2];
833 gezelter 1569 #else
834 mciznick 1598 return groupList_[cg2];
835 gezelter 1569 #endif
836 mciznick 1598 }
837    
838     Vector3d ForceMatrixDecomposition::getIntergroupVector(int cg1, int cg2) {
839     Vector3d d;
840    
841 gezelter 1551 #ifdef IS_MPI
842 mciznick 1598 d = cgColData.position[cg2] - cgRowData.position[cg1];
843     cerr << "cg1 = " << cg1 << "\tcg1p = " << cgRowData.position[cg1] << "\n";
844     cerr << "cg2 = " << cg2 << "\tcg2p = " << cgColData.position[cg2] << "\n";
845 gezelter 1551 #else
846 mciznick 1598 d = snap_->cgData.position[cg2] - snap_->cgData.position[cg1];
847     cerr << "cg1 = " << cg1 << "\tcg1p = " << snap_->cgData.position[cg1] << "\n";
848     cerr << "cg2 = " << cg2 << "\tcg2p = " << snap_->cgData.position[cg2] << "\n";
849 gezelter 1551 #endif
850    
851 mciznick 1598 snap_->wrapVector(d);
852     return d;
853     }
854 gezelter 1551
855 mciznick 1598 Vector3d ForceMatrixDecomposition::getIntergroupVector(CutoffGroup *cg1, CutoffGroup *cg2) {
856     Vector3d d;
857 gezelter 1551
858 mciznick 1598 d = snap_->cgData.position[cg2->getLocalIndex()] - snap_->cgData.position[cg1->getLocalIndex()];
859 mciznick 1599 /* cerr << "cg1_gid = " << cg1->getGlobalIndex() << "\tcg1_lid = " << cg1->getLocalIndex() << "\tcg1p = "
860     << snap_->cgData.position[cg1->getLocalIndex()] << "\n";
861     cerr << "cg2_gid = " << cg2->getGlobalIndex() << "\tcg2_lid = " << cg2->getLocalIndex() << "\tcg2p = "
862     << snap_->cgData.position[cg2->getLocalIndex()] << "\n";*/
863 mciznick 1598
864     snap_->wrapVector(d);
865     return d;
866     }
867    
868     Vector3d ForceMatrixDecomposition::getAtomToGroupVectorRow(int atom1, int cg1) {
869    
870     Vector3d d;
871    
872 gezelter 1551 #ifdef IS_MPI
873 mciznick 1598 d = cgRowData.position[cg1] - atomRowData.position[atom1];
874 gezelter 1551 #else
875 mciznick 1598 d = snap_->cgData.position[cg1] - snap_->atomData.position[atom1];
876 gezelter 1551 #endif
877    
878 mciznick 1598 snap_->wrapVector(d);
879     return d;
880     }
881    
882     Vector3d ForceMatrixDecomposition::getAtomToGroupVectorColumn(int atom2, int cg2) {
883     Vector3d d;
884    
885 gezelter 1551 #ifdef IS_MPI
886 mciznick 1598 d = cgColData.position[cg2] - atomColData.position[atom2];
887 gezelter 1551 #else
888 mciznick 1598 d = snap_->cgData.position[cg2] - snap_->atomData.position[atom2];
889 gezelter 1551 #endif
890 gezelter 1569
891 mciznick 1598 snap_->wrapVector(d);
892     return d;
893     }
894    
895     RealType ForceMatrixDecomposition::getMassFactorRow(int atom1) {
896 gezelter 1569 #ifdef IS_MPI
897 mciznick 1598 return massFactorsRow[atom1];
898 gezelter 1569 #else
899 mciznick 1598 return massFactors[atom1];
900 gezelter 1569 #endif
901 mciznick 1598 }
902 gezelter 1569
903 mciznick 1598 RealType ForceMatrixDecomposition::getMassFactorColumn(int atom2) {
904 gezelter 1569 #ifdef IS_MPI
905 mciznick 1598 return massFactorsCol[atom2];
906 gezelter 1569 #else
907 mciznick 1598 return massFactors[atom2];
908 gezelter 1569 #endif
909    
910 mciznick 1598 }
911    
912     Vector3d ForceMatrixDecomposition::getInteratomicVector(int atom1, int atom2) {
913     Vector3d d;
914    
915 gezelter 1551 #ifdef IS_MPI
916 mciznick 1598 d = atomColData.position[atom2] - atomRowData.position[atom1];
917 gezelter 1551 #else
918 mciznick 1598 d = snap_->atomData.position[atom2] - snap_->atomData.position[atom1];
919 gezelter 1551 #endif
920    
921 mciznick 1598 snap_->wrapVector(d);
922     return d;
923     }
924 gezelter 1551
925 mciznick 1598 vector<int> ForceMatrixDecomposition::getExcludesForAtom(int atom1) {
926     return excludesForAtom[atom1];
927     }
928 gezelter 1570
929 mciznick 1598 /**
930     * We need to exclude some overcounted interactions that result from
931     * the parallel decomposition.
932     */
933     bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2) {
934     int unique_id_1, unique_id_2;
935 gezelter 1570
936 mciznick 1599 // cerr << "sap with atom1, atom2 =\t" << atom1 << "\t" << atom2 << "\n";
937 gezelter 1570 #ifdef IS_MPI
938 mciznick 1598 // in MPI, we have to look up the unique IDs for each atom
939     unique_id_1 = AtomRowToGlobal[atom1];
940     unique_id_2 = AtomColToGlobal[atom2];
941 gezelter 1570
942 mciznick 1598 cerr << "sap with uid1, uid2 =\t" << unique_id_1 << "\t" << unique_id_2 << "\n";
943     // this situation should only arise in MPI simulations
944     if (unique_id_1 == unique_id_2) return true;
945    
946     // this prevents us from doing the pair on multiple processors
947     if (unique_id_1 < unique_id_2)
948     {
949     if ((unique_id_1 + unique_id_2) % 2 == 0) return true;
950     } else
951     {
952     if ((unique_id_1 + unique_id_2) % 2 == 1) return true;
953     }
954 gezelter 1587 #endif
955 mciznick 1598 return false;
956     }
957 gezelter 1587
958 mciznick 1598 /**
959     * We need to handle the interactions for atoms who are involved in
960     * the same rigid body as well as some short range interactions
961     * (bonds, bends, torsions) differently from other interactions.
962     * We'll still visit the pairwise routines, but with a flag that
963     * tells those routines to exclude the pair from direct long range
964     * interactions. Some indirect interactions (notably reaction
965     * field) must still be handled for these pairs.
966     */
967     bool ForceMatrixDecomposition::excludeAtomPair(int atom1, int atom2) {
968     int unique_id_2;
969 gezelter 1587 #ifdef IS_MPI
970 mciznick 1598 // in MPI, we have to look up the unique IDs for the row atom.
971     unique_id_2 = AtomColToGlobal[atom2];
972 gezelter 1570 #else
973 mciznick 1598 // in the normal loop, the atom numbers are unique
974     unique_id_2 = atom2;
975 gezelter 1570 #endif
976 gezelter 1579
977 mciznick 1598 for (vector<int>::iterator i = excludesForAtom[atom1].begin(); i != excludesForAtom[atom1].end(); ++i)
978     {
979     if ((*i) == unique_id_2)
980     return true;
981     }
982 gezelter 1570
983 mciznick 1598 return false;
984     }
985 gezelter 1570
986 mciznick 1598 void ForceMatrixDecomposition::addForceToAtomRow(int atom1, Vector3d fg) {
987 gezelter 1551 #ifdef IS_MPI
988 mciznick 1598 atomRowData.force[atom1] += fg;
989 gezelter 1551 #else
990 mciznick 1598 snap_->atomData.force[atom1] += fg;
991 gezelter 1551 #endif
992 mciznick 1598 }
993 gezelter 1551
994 mciznick 1598 void ForceMatrixDecomposition::addForceToAtomColumn(int atom2, Vector3d fg) {
995 gezelter 1551 #ifdef IS_MPI
996 mciznick 1598 atomColData.force[atom2] += fg;
997 gezelter 1551 #else
998 mciznick 1598 snap_->atomData.force[atom2] += fg;
999 gezelter 1551 #endif
1000 mciznick 1598 }
1001 gezelter 1551
1002 mciznick 1598 // filling interaction blocks with pointers
1003     void ForceMatrixDecomposition::fillInteractionData(InteractionData &idat, int atom1, int atom2) {
1004 gezelter 1587
1005 mciznick 1598 idat.excluded = excludeAtomPair(atom1, atom2);
1006    
1007 gezelter 1551 #ifdef IS_MPI
1008 mciznick 1598 idat.atypes = make_pair( atypesRow[atom1], atypesCol[atom2]);
1009     //idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]),
1010     // ff_->getAtomType(identsCol[atom2]) );
1011 gezelter 1551
1012 mciznick 1598 if (storageLayout_ & DataStorage::dslAmat)
1013     {
1014     idat.A1 = &(atomRowData.aMat[atom1]);
1015     idat.A2 = &(atomColData.aMat[atom2]);
1016     }
1017 gezelter 1551
1018 mciznick 1598 if (storageLayout_ & DataStorage::dslElectroFrame)
1019     {
1020     idat.eFrame1 = &(atomRowData.electroFrame[atom1]);
1021     idat.eFrame2 = &(atomColData.electroFrame[atom2]);
1022     }
1023 gezelter 1551
1024 mciznick 1598 if (storageLayout_ & DataStorage::dslTorque)
1025     {
1026     idat.t1 = &(atomRowData.torque[atom1]);
1027     idat.t2 = &(atomColData.torque[atom2]);
1028     }
1029 gezelter 1575
1030 mciznick 1598 if (storageLayout_ & DataStorage::dslDensity)
1031     {
1032     idat.rho1 = &(atomRowData.density[atom1]);
1033     idat.rho2 = &(atomColData.density[atom2]);
1034     }
1035 gezelter 1570
1036 mciznick 1598 if (storageLayout_ & DataStorage::dslFunctional)
1037     {
1038     idat.frho1 = &(atomRowData.functional[atom1]);
1039     idat.frho2 = &(atomColData.functional[atom2]);
1040     }
1041 gezelter 1575
1042 mciznick 1598 if (storageLayout_ & DataStorage::dslFunctionalDerivative)
1043     {
1044     idat.dfrho1 = &(atomRowData.functionalDerivative[atom1]);
1045     idat.dfrho2 = &(atomColData.functionalDerivative[atom2]);
1046     }
1047 gezelter 1587
1048 mciznick 1598 if (storageLayout_ & DataStorage::dslParticlePot)
1049     {
1050     idat.particlePot1 = &(atomRowData.particlePot[atom1]);
1051     idat.particlePot2 = &(atomColData.particlePot[atom2]);
1052     }
1053    
1054     if (storageLayout_ & DataStorage::dslSkippedCharge)
1055     {
1056     idat.skippedCharge1 = &(atomRowData.skippedCharge[atom1]);
1057     idat.skippedCharge2 = &(atomColData.skippedCharge[atom2]);
1058     }
1059    
1060 gezelter 1562 #else
1061 gezelter 1571
1062 mciznick 1598 idat.atypes = make_pair(atypesLocal[atom1], atypesLocal[atom2]);
1063     //idat.atypes = make_pair( ff_->getAtomType(idents[atom1]),
1064     // ff_->getAtomType(idents[atom2]) );
1065 gezelter 1571
1066 mciznick 1598 if (storageLayout_ & DataStorage::dslAmat)
1067     {
1068     idat.A1 = &(snap_->atomData.aMat[atom1]);
1069     idat.A2 = &(snap_->atomData.aMat[atom2]);
1070     }
1071 gezelter 1562
1072 mciznick 1598 if (storageLayout_ & DataStorage::dslElectroFrame)
1073     {
1074     idat.eFrame1 = &(snap_->atomData.electroFrame[atom1]);
1075     idat.eFrame2 = &(snap_->atomData.electroFrame[atom2]);
1076     }
1077 gezelter 1562
1078 mciznick 1598 if (storageLayout_ & DataStorage::dslTorque)
1079     {
1080     idat.t1 = &(snap_->atomData.torque[atom1]);
1081     idat.t2 = &(snap_->atomData.torque[atom2]);
1082     }
1083 gezelter 1562
1084 mciznick 1598 if (storageLayout_ & DataStorage::dslDensity)
1085     {
1086     idat.rho1 = &(snap_->atomData.density[atom1]);
1087     idat.rho2 = &(snap_->atomData.density[atom2]);
1088     }
1089 gezelter 1562
1090 mciznick 1598 if (storageLayout_ & DataStorage::dslFunctional)
1091     {
1092     idat.frho1 = &(snap_->atomData.functional[atom1]);
1093     idat.frho2 = &(snap_->atomData.functional[atom2]);
1094     }
1095 gezelter 1575
1096 mciznick 1598 if (storageLayout_ & DataStorage::dslFunctionalDerivative)
1097     {
1098     idat.dfrho1 = &(snap_->atomData.functionalDerivative[atom1]);
1099     idat.dfrho2 = &(snap_->atomData.functionalDerivative[atom2]);
1100     }
1101 gezelter 1575
1102 mciznick 1598 if (storageLayout_ & DataStorage::dslParticlePot)
1103     {
1104     idat.particlePot1 = &(snap_->atomData.particlePot[atom1]);
1105     idat.particlePot2 = &(snap_->atomData.particlePot[atom2]);
1106     }
1107 gezelter 1575
1108 mciznick 1598 if (storageLayout_ & DataStorage::dslSkippedCharge)
1109     {
1110     idat.skippedCharge1 = &(snap_->atomData.skippedCharge[atom1]);
1111     idat.skippedCharge2 = &(snap_->atomData.skippedCharge[atom2]);
1112     }
1113 gezelter 1551 #endif
1114 mciznick 1598 }
1115 gezelter 1567
1116 mciznick 1608 // filling interaction blocks with pointers
1117     void ForceMatrixDecomposition::fillInteractionDataOMP(InteractionDataPrv &idat, int atom1, int atom2) {
1118    
1119     idat.excluded = excludeAtomPair(atom1, atom2);
1120    
1121     #ifdef IS_MPI
1122     idat.atypes = make_pair( atypesRow[atom1], atypesCol[atom2]);
1123     //idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]),
1124     // ff_->getAtomType(identsCol[atom2]) );
1125    
1126     if (storageLayout_ & DataStorage::dslAmat)
1127     {
1128     idat.A1 = &(atomRowData.aMat[atom1]);
1129     idat.A2 = &(atomColData.aMat[atom2]);
1130     }
1131    
1132     if (storageLayout_ & DataStorage::dslElectroFrame)
1133     {
1134     idat.eFrame1 = &(atomRowData.electroFrame[atom1]);
1135     idat.eFrame2 = &(atomColData.electroFrame[atom2]);
1136     }
1137    
1138     if (storageLayout_ & DataStorage::dslTorque)
1139     {
1140     idat.t1 = &(atomRowData.torque[atom1]);
1141     idat.t2 = &(atomColData.torque[atom2]);
1142     }
1143    
1144     if (storageLayout_ & DataStorage::dslDensity)
1145     {
1146     idat.rho1 = &(atomRowData.density[atom1]);
1147     idat.rho2 = &(atomColData.density[atom2]);
1148     }
1149    
1150     if (storageLayout_ & DataStorage::dslFunctional)
1151     {
1152     idat.frho1 = &(atomRowData.functional[atom1]);
1153     idat.frho2 = &(atomColData.functional[atom2]);
1154     }
1155    
1156     if (storageLayout_ & DataStorage::dslFunctionalDerivative)
1157     {
1158     idat.dfrho1 = &(atomRowData.functionalDerivative[atom1]);
1159     idat.dfrho2 = &(atomColData.functionalDerivative[atom2]);
1160     }
1161    
1162     if (storageLayout_ & DataStorage::dslParticlePot)
1163     {
1164     idat.particlePot1 = &(atomRowData.particlePot[atom1]);
1165     idat.particlePot2 = &(atomColData.particlePot[atom2]);
1166     }
1167    
1168     if (storageLayout_ & DataStorage::dslSkippedCharge)
1169     {
1170     idat.skippedCharge1 = &(atomRowData.skippedCharge[atom1]);
1171     idat.skippedCharge2 = &(atomColData.skippedCharge[atom2]);
1172     }
1173    
1174     #else
1175    
1176     idat.atypes = make_pair(atypesLocal[atom1], atypesLocal[atom2]);
1177     //idat.atypes = make_pair( ff_->getAtomType(idents[atom1]),
1178     // ff_->getAtomType(idents[atom2]) );
1179    
1180     if (storageLayout_ & DataStorage::dslAmat)
1181     {
1182     idat.A1 = &(snap_->atomData.aMat[atom1]);
1183     idat.A2 = &(snap_->atomData.aMat[atom2]);
1184     }
1185    
1186     if (storageLayout_ & DataStorage::dslElectroFrame)
1187     {
1188     idat.eFrame1 = &(snap_->atomData.electroFrame[atom1]);
1189     idat.eFrame2 = &(snap_->atomData.electroFrame[atom2]);
1190     }
1191    
1192     if (storageLayout_ & DataStorage::dslTorque)
1193     {
1194     idat.t1 = &(snap_->atomData.torque[atom1]);
1195     idat.t2 = &(snap_->atomData.torque[atom2]);
1196     }
1197    
1198     if (storageLayout_ & DataStorage::dslDensity)
1199     {
1200     idat.rho1 = &(snap_->atomData.density[atom1]);
1201     idat.rho2 = &(snap_->atomData.density[atom2]);
1202     }
1203    
1204     if (storageLayout_ & DataStorage::dslFunctional)
1205     {
1206     idat.frho1 = &(snap_->atomData.functional[atom1]);
1207     idat.frho2 = &(snap_->atomData.functional[atom2]);
1208     }
1209    
1210     if (storageLayout_ & DataStorage::dslFunctionalDerivative)
1211     {
1212     idat.dfrho1 = &(snap_->atomData.functionalDerivative[atom1]);
1213     idat.dfrho2 = &(snap_->atomData.functionalDerivative[atom2]);
1214     }
1215    
1216     if (storageLayout_ & DataStorage::dslParticlePot)
1217     {
1218     idat.particlePot1 = &(snap_->atomData.particlePot[atom1]);
1219     idat.particlePot2 = &(snap_->atomData.particlePot[atom2]);
1220     }
1221    
1222     if (storageLayout_ & DataStorage::dslSkippedCharge)
1223     {
1224     idat.skippedCharge1 = &(snap_->atomData.skippedCharge[atom1]);
1225     idat.skippedCharge2 = &(snap_->atomData.skippedCharge[atom2]);
1226     }
1227     #endif
1228     }
1229    
1230 mciznick 1598 void ForceMatrixDecomposition::unpackInteractionData(InteractionData &idat, int atom1, int atom2) {
1231 gezelter 1575 #ifdef IS_MPI
1232 mciznick 1598 pot_row[atom1] += 0.5 * *(idat.pot);
1233     pot_col[atom2] += 0.5 * *(idat.pot);
1234 gezelter 1575
1235 mciznick 1598 atomRowData.force[atom1] += *(idat.f1);
1236     atomColData.force[atom2] -= *(idat.f1);
1237 gezelter 1575 #else
1238 mciznick 1598 pairwisePot += *(idat.pot);
1239 gezelter 1583
1240 mciznick 1598 snap_->atomData.force[atom1] += *(idat.f1);
1241     snap_->atomData.force[atom2] -= *(idat.f1);
1242 gezelter 1575 #endif
1243    
1244 mciznick 1598 }
1245    
1246 mciznick 1608 void ForceMatrixDecomposition::unpackInteractionDataOMP(InteractionDataPrv &idat, int atom1, int atom2) {
1247     pairwisePot += idat.pot;
1248    
1249     snap_->atomData.force[atom1] += idat.f1;
1250     snap_->atomData.force[atom2] -= idat.f1;
1251     }
1252    
1253 mciznick 1598 void ForceMatrixDecomposition::reorderGroupCutoffs(vector<int> &order) {
1254     vector<int> tmp = vector<int> (groupToGtype.size());
1255    
1256     for (int i = 0; i < groupToGtype.size(); ++i)
1257     {
1258     tmp[i] = groupToGtype[i];
1259     }
1260    
1261     for (int i = 0; i < groupToGtype.size(); ++i)
1262     {
1263     groupToGtype[i] = tmp[order[i]];
1264     }
1265     }
1266    
1267     void ForceMatrixDecomposition::reorderPosition(vector<int> &order) {
1268     Snapshot* snap_ = info_->getSnapshotManager()->getCurrentSnapshot();
1269     DataStorage* cgConfig = &(snap_->cgData);
1270     vector<Vector3d> tmp = vector<Vector3d> (nGroups_);
1271    
1272     for (int i = 0; i < nGroups_; ++i)
1273     {
1274     tmp[i] = snap_->cgData.position[i];
1275     }
1276    
1277 mciznick 1599 vector<int> mapPos = vector<int> (nGroups_);
1278 mciznick 1598 for (int i = 0; i < nGroups_; ++i)
1279     {
1280     snap_->cgData.position[i] = tmp[order[i]];
1281     mapPos[order[i]] = i;
1282     }
1283    
1284     SimInfo::MoleculeIterator mi;
1285     Molecule* mol;
1286     Molecule::CutoffGroupIterator ci;
1287     CutoffGroup* cg;
1288    
1289     for (mol = info_->beginMolecule(mi); mol != NULL; mol = info_->nextMolecule(mi))
1290     {
1291     for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci))
1292     {
1293     cg->setLocalIndex(mapPos[cg->getLocalIndex()]);
1294     }
1295     }
1296     }
1297    
1298     void ForceMatrixDecomposition::reorderGroupList(vector<int> &order) {
1299     vector<vector<int> > tmp = vector<vector<int> > (groupList_.size());
1300    
1301     for (int i = 0; i < groupList_.size(); ++i)
1302     {
1303     tmp[i] = groupList_[i];
1304     }
1305    
1306     for (int i = 0; i < groupList_.size(); ++i)
1307     {
1308     groupList_[i] = tmp[order[i]];
1309     }
1310     }
1311    
1312     void ForceMatrixDecomposition::reorderMemory(vector<vector<CutoffGroup *> > &H_c_l) {
1313     int n = 0;
1314    
1315     /* record the reordered atom indices */
1316     vector<int> k = vector<int> (nGroups_);
1317    
1318     for (int c = 0; c < H_c_l.size(); ++c)
1319     {
1320     for (vector<CutoffGroup *>::iterator cg = H_c_l[c].begin(); cg != H_c_l[c].end(); ++cg)
1321     {
1322     int i = (*cg)->getGlobalIndex();
1323     k[n] = i;
1324     ++n;
1325     }
1326     }
1327    
1328     // reorderGroupCutoffs(k);
1329     // reorderGroupList(k);
1330     reorderPosition(k);
1331     }
1332    
1333     vector<vector<CutoffGroup *> > ForceMatrixDecomposition::buildLayerBasedNeighborList() {
1334 chuckv 1595 // Na = nGroups_
1335     /* cell occupancy counter */
1336 mciznick 1599 // vector<int> k_c;
1337 chuckv 1595 /* c_i - has cell containing atom i (size Na) */
1338 mciznick 1598 vector<int> c = vector<int> (nGroups_);
1339 chuckv 1595 /* l_i - layer containing atom i (size Na) */
1340 mciznick 1599 // vector<int> l;
1341 chuckv 1595
1342     RealType rList_ = (largestRcut_ + skinThickness_);
1343     Snapshot* snap_ = sman_->getCurrentSnapshot();
1344     Mat3x3d Hmat = snap_->getHmat();
1345     Vector3d Hx = Hmat.getColumn(0);
1346     Vector3d Hy = Hmat.getColumn(1);
1347     Vector3d Hz = Hmat.getColumn(2);
1348    
1349     nCells_.x() = (int) (Hx.length()) / rList_;
1350     nCells_.y() = (int) (Hy.length()) / rList_;
1351     nCells_.z() = (int) (Hz.length()) / rList_;
1352    
1353     Mat3x3d invHmat = snap_->getInvHmat();
1354     Vector3d rs, scaled, dr;
1355     Vector3i whichCell;
1356     int cellIndex;
1357     int nCtot = nCells_.x() * nCells_.y() * nCells_.z();
1358    
1359 mciznick 1599 // k_c = vector<int> (nCtot, 0);
1360 chuckv 1595
1361 mciznick 1598 SimInfo::MoleculeIterator mi;
1362     Molecule* mol;
1363     Molecule::CutoffGroupIterator ci;
1364     CutoffGroup* cg;
1365    
1366     for (mol = info_->beginMolecule(mi); mol != NULL; mol = info_->nextMolecule(mi))
1367 chuckv 1595 {
1368 mciznick 1598 for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci))
1369     {
1370     rs = snap_->cgData.position[cg->getLocalIndex()];
1371 chuckv 1595
1372 mciznick 1598 // scaled positions relative to the box vectors
1373     scaled = invHmat * rs;
1374 chuckv 1595
1375 mciznick 1598 // wrap the vector back into the unit box by subtracting integer box
1376     // numbers
1377     for (int j = 0; j < 3; j++)
1378     {
1379     scaled[j] -= roundMe(scaled[j]);
1380     scaled[j] += 0.5;
1381     }
1382 chuckv 1595
1383 mciznick 1598 // find xyz-indices of cell that cutoffGroup is in.
1384     whichCell.x() = nCells_.x() * scaled.x();
1385     whichCell.y() = nCells_.y() * scaled.y();
1386     whichCell.z() = nCells_.z() * scaled.z();
1387 chuckv 1595
1388 mciznick 1599 // printf("pos x:%f y:%f z:%f cell x:%d y:%d z:%d\n", rs.x(), rs.y(), rs.z(), whichCell.x(), whichCell.y(),
1389     // whichCell.z());
1390 chuckv 1595
1391 mciznick 1598 // find single index of this cell:
1392     cellIndex = Vlinear(whichCell, nCells_);
1393 chuckv 1595
1394 mciznick 1598 c[cg->getGlobalIndex()] = cellIndex;
1395     }
1396 chuckv 1595 }
1397    
1398 mciznick 1599 // int k_c_curr;
1399     // int k_c_max = 0;
1400 chuckv 1595 /* the cell-layer occupancy matrix */
1401 mciznick 1598 vector<vector<CutoffGroup *> > H_c_l = vector<vector<CutoffGroup *> > (nCtot);
1402 chuckv 1595
1403 mciznick 1598 for (mol = info_->beginMolecule(mi); mol != NULL; mol = info_->nextMolecule(mi))
1404 chuckv 1595 {
1405 mciznick 1598 for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci))
1406 chuckv 1595
1407     {
1408 mciznick 1598 // k_c_curr = ++k_c[c[cg1->getGlobalIndex()]];
1409     // l.push_back(k_c_curr);
1410     //
1411     // /* determines the number of layers in use */
1412     // if (k_c_max < k_c_curr)
1413     // {
1414     // k_c_max = k_c_curr;
1415     // }
1416     H_c_l[c[cg->getGlobalIndex()]].push_back(/*l[*/cg/*]*/);
1417 chuckv 1595 }
1418     }
1419    
1420 mciznick 1599 /* Frequency of reordering the memory */
1421     if (neighborListReorderFreq != 0)
1422     {
1423     if (reorderFreqCounter == neighborListReorderFreq)
1424     {
1425     reorderMemory(H_c_l);
1426     reorderFreqCounter = 1;
1427     } else
1428     {
1429     reorderFreqCounter++;
1430     }
1431     }
1432 mciznick 1598
1433 chuckv 1595 int m;
1434 mciznick 1614 /* The neighbor matrix */
1435 mciznick 1598 vector<vector<CutoffGroup *> > neighborMatW = vector<vector<CutoffGroup *> > (nGroups_);
1436 chuckv 1595
1437     groupCutoffs cuts;
1438 mciznick 1598 CutoffGroup *cg1;
1439 chuckv 1595
1440 mciznick 1614 /* Loops over objects(atoms, rigidBodies, cutoffGroups, etc.) */
1441 mciznick 1598 for (mol = info_->beginMolecule(mi); mol != NULL; mol = info_->nextMolecule(mi))
1442 chuckv 1595 {
1443 mciznick 1598 for (cg1 = mol->beginCutoffGroup(ci); cg1 != NULL; cg1 = mol->nextCutoffGroup(ci))
1444 chuckv 1595 {
1445 mciznick 1598 /* c' */
1446     int c1 = c[cg1->getGlobalIndex()];
1447     Vector3i c1v = idxToV(c1, nCells_);
1448 chuckv 1595
1449 mciznick 1598 /* loops over the neighboring cells c'' */
1450     for (vector<Vector3i>::iterator os = cellOffsets_.begin(); os != cellOffsets_.end(); ++os)
1451 chuckv 1595 {
1452 mciznick 1598 Vector3i c2v = c1v + (*os);
1453 chuckv 1595
1454 mciznick 1598 if (c2v.x() >= nCells_.x())
1455     {
1456     c2v.x() = 0;
1457     } else if (c2v.x() < 0)
1458     {
1459     c2v.x() = nCells_.x() - 1;
1460     }
1461 chuckv 1595
1462 mciznick 1598 if (c2v.y() >= nCells_.y())
1463     {
1464     c2v.y() = 0;
1465     } else if (c2v.y() < 0)
1466     {
1467     c2v.y() = nCells_.y() - 1;
1468     }
1469 chuckv 1595
1470 mciznick 1598 if (c2v.z() >= nCells_.z())
1471 chuckv 1595 {
1472 mciznick 1598 c2v.z() = 0;
1473     } else if (c2v.z() < 0)
1474     {
1475     c2v.z() = nCells_.z() - 1;
1476     }
1477    
1478     int c2 = Vlinear(c2v, nCells_);
1479 mciznick 1614 /* Loops over layers l to access the neighbor atoms */
1480 mciznick 1598 for (vector<CutoffGroup *>::iterator cg2 = H_c_l[c2].begin(); cg2 != H_c_l[c2].end(); ++cg2)
1481     {
1482 mciznick 1614 // if i'' = 0 then break // doesn't apply to vector implementation of the matrix
1483 mciznick 1598 // if(i != *j)
1484     if (c2 != c1 || (*cg2)->getGlobalIndex() < cg1->getGlobalIndex())
1485 chuckv 1595 {
1486 mciznick 1598 dr = snap_->cgData.position[(*cg2)->getLocalIndex()] - snap_->cgData.position[cg1->getLocalIndex()];
1487     snap_->wrapVector(dr);
1488     cuts = getGroupCutoffs(cg1->getGlobalIndex(), (*cg2)->getGlobalIndex());
1489     if (dr.lengthSquare() < cuts.third)
1490     {
1491 mciznick 1614 /* Transposed version of Rapaport W mat, to occupy successive memory locations on CPU */
1492 mciznick 1598 neighborMatW[cg1->getGlobalIndex()].push_back((*cg2));
1493     }
1494 chuckv 1595 }
1495     }
1496     }
1497     }
1498     }
1499    
1500     // save the local cutoff group positions for the check that is
1501     // done on each loop:
1502     saved_CG_positions_.clear();
1503     for (int i = 0; i < nGroups_; i++)
1504     saved_CG_positions_.push_back(snap_->cgData.position[i]);
1505    
1506     return neighborMatW;
1507     }
1508    
1509 mciznick 1598 /*
1510     * buildNeighborList
1511     *
1512     * first element of pair is row-indexed CutoffGroup
1513     * second element of pair is column-indexed CutoffGroup
1514     */
1515     vector<pair<int, int> > ForceMatrixDecomposition::buildNeighborList() {
1516 gezelter 1587
1517 mciznick 1598 vector<pair<int, int> > neighborList;
1518     groupCutoffs cuts;
1519     bool doAllPairs = false;
1520    
1521 gezelter 1567 #ifdef IS_MPI
1522 mciznick 1598 cellListRow_.clear();
1523     cellListCol_.clear();
1524 gezelter 1567 #else
1525 mciznick 1598 cellList_.clear();
1526 gezelter 1567 #endif
1527 gezelter 1562
1528 mciznick 1598 RealType rList_ = (largestRcut_ + skinThickness_);
1529     RealType rl2 = rList_ * rList_;
1530     Snapshot* snap_ = sman_->getCurrentSnapshot();
1531     Mat3x3d Hmat = snap_->getHmat();
1532     Vector3d Hx = Hmat.getColumn(0);
1533     Vector3d Hy = Hmat.getColumn(1);
1534     Vector3d Hz = Hmat.getColumn(2);
1535 gezelter 1562
1536 mciznick 1598 nCells_.x() = (int) (Hx.length()) / rList_;
1537     nCells_.y() = (int) (Hy.length()) / rList_;
1538     nCells_.z() = (int) (Hz.length()) / rList_;
1539 gezelter 1562
1540 mciznick 1598 // handle small boxes where the cell offsets can end up repeating cells
1541 gezelter 1587
1542 mciznick 1598 if (nCells_.x() < 3)
1543     doAllPairs = true;
1544     if (nCells_.y() < 3)
1545     doAllPairs = true;
1546     if (nCells_.z() < 3)
1547     doAllPairs = true;
1548 gezelter 1567
1549 mciznick 1598 Mat3x3d invHmat = snap_->getInvHmat();
1550     Vector3d rs, scaled, dr;
1551     Vector3i whichCell;
1552     int cellIndex;
1553     int nCtot = nCells_.x() * nCells_.y() * nCells_.z();
1554    
1555 gezelter 1567 #ifdef IS_MPI
1556 mciznick 1598 cellListRow_.resize(nCtot);
1557     cellListCol_.resize(nCtot);
1558 gezelter 1579 #else
1559 mciznick 1598 cellList_.resize(nCtot);
1560 gezelter 1579 #endif
1561 gezelter 1582
1562 mciznick 1598 if (!doAllPairs)
1563     {
1564 gezelter 1579 #ifdef IS_MPI
1565 gezelter 1581
1566 mciznick 1598 for (int i = 0; i < nGroupsInRow_; i++)
1567     {
1568     rs = cgRowData.position[i];
1569    
1570     // scaled positions relative to the box vectors
1571     scaled = invHmat * rs;
1572    
1573     // wrap the vector back into the unit box by subtracting integer box
1574     // numbers
1575     for (int j = 0; j < 3; j++)
1576     {
1577     scaled[j] -= roundMe(scaled[j]);
1578     scaled[j] += 0.5;
1579     }
1580    
1581     // find xyz-indices of cell that cutoffGroup is in.
1582     whichCell.x() = nCells_.x() * scaled.x();
1583     whichCell.y() = nCells_.y() * scaled.y();
1584     whichCell.z() = nCells_.z() * scaled.z();
1585    
1586     // find single index of this cell:
1587     cellIndex = Vlinear(whichCell, nCells_);
1588    
1589     // add this cutoff group to the list of groups in this cell;
1590     cellListRow_[cellIndex].push_back(i);
1591     }
1592     for (int i = 0; i < nGroupsInCol_; i++)
1593     {
1594     rs = cgColData.position[i];
1595    
1596     // scaled positions relative to the box vectors
1597     scaled = invHmat * rs;
1598    
1599     // wrap the vector back into the unit box by subtracting integer box
1600     // numbers
1601     for (int j = 0; j < 3; j++)
1602     {
1603     scaled[j] -= roundMe(scaled[j]);
1604     scaled[j] += 0.5;
1605     }
1606    
1607     // find xyz-indices of cell that cutoffGroup is in.
1608     whichCell.x() = nCells_.x() * scaled.x();
1609     whichCell.y() = nCells_.y() * scaled.y();
1610     whichCell.z() = nCells_.z() * scaled.z();
1611    
1612     // find single index of this cell:
1613     cellIndex = Vlinear(whichCell, nCells_);
1614    
1615     // add this cutoff group to the list of groups in this cell;
1616     cellListCol_[cellIndex].push_back(i);
1617     }
1618 gezelter 1567 #else
1619 mciznick 1598 for (int i = 0; i < nGroups_; i++)
1620     {
1621     rs = snap_->cgData.position[i];
1622    
1623     // scaled positions relative to the box vectors
1624     scaled = invHmat * rs;
1625    
1626     // wrap the vector back into the unit box by subtracting integer box
1627     // numbers
1628     for (int j = 0; j < 3; j++)
1629     {
1630     scaled[j] -= roundMe(scaled[j]);
1631     scaled[j] += 0.5;
1632     }
1633    
1634     // find xyz-indices of cell that cutoffGroup is in.
1635     whichCell.x() = nCells_.x() * scaled.x();
1636     whichCell.y() = nCells_.y() * scaled.y();
1637     whichCell.z() = nCells_.z() * scaled.z();
1638    
1639     // find single index of this cell:
1640     cellIndex = Vlinear(whichCell, nCells_);
1641    
1642     // add this cutoff group to the list of groups in this cell;
1643     cellList_[cellIndex].push_back(i);
1644     }
1645 gezelter 1567 #endif
1646    
1647 mciznick 1598 for (int m1z = 0; m1z < nCells_.z(); m1z++)
1648     {
1649     for (int m1y = 0; m1y < nCells_.y(); m1y++)
1650     {
1651     for (int m1x = 0; m1x < nCells_.x(); m1x++)
1652     {
1653     Vector3i m1v(m1x, m1y, m1z);
1654     int m1 = Vlinear(m1v, nCells_);
1655    
1656     for (vector<Vector3i>::iterator os = cellOffsets_.begin(); os != cellOffsets_.end(); ++os)
1657     {
1658    
1659     Vector3i m2v = m1v + (*os);
1660    
1661     if (m2v.x() >= nCells_.x())
1662     {
1663     m2v.x() = 0;
1664     } else if (m2v.x() < 0)
1665     {
1666     m2v.x() = nCells_.x() - 1;
1667     }
1668    
1669     if (m2v.y() >= nCells_.y())
1670     {
1671     m2v.y() = 0;
1672     } else if (m2v.y() < 0)
1673     {
1674     m2v.y() = nCells_.y() - 1;
1675     }
1676    
1677     if (m2v.z() >= nCells_.z())
1678     {
1679     m2v.z() = 0;
1680     } else if (m2v.z() < 0)
1681     {
1682     m2v.z() = nCells_.z() - 1;
1683     }
1684    
1685     int m2 = Vlinear(m2v, nCells_);
1686    
1687 gezelter 1567 #ifdef IS_MPI
1688 mciznick 1598 for (vector<int>::iterator j1 = cellListRow_[m1].begin();
1689     j1 != cellListRow_[m1].end(); ++j1)
1690     {
1691     for (vector<int>::iterator j2 = cellListCol_[m2].begin();
1692     j2 != cellListCol_[m2].end(); ++j2)
1693     {
1694    
1695     // In parallel, we need to visit *all* pairs of row &
1696     // column indicies and will truncate later on.
1697     dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)];
1698     snap_->wrapVector(dr);
1699     cuts = getGroupCutoffs( (*j1), (*j2) );
1700     if (dr.lengthSquare() < cuts.third)
1701     {
1702     neighborList.push_back(make_pair((*j1), (*j2)));
1703     }
1704     }
1705     }
1706 gezelter 1567 #else
1707 mciznick 1598
1708     for (vector<int>::iterator j1 = cellList_[m1].begin(); j1 != cellList_[m1].end(); ++j1)
1709     {
1710     for (vector<int>::iterator j2 = cellList_[m2].begin(); j2 != cellList_[m2].end(); ++j2)
1711     {
1712    
1713     // Always do this if we're in different cells or if
1714     // we're in the same cell and the global index of the
1715     // j2 cutoff group is less than the j1 cutoff group
1716    
1717     if (m2 != m1 || (*j2) < (*j1))
1718     {
1719     dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)];
1720     snap_->wrapVector(dr);
1721     cuts = getGroupCutoffs((*j1), (*j2));
1722     if (dr.lengthSquare() < cuts.third)
1723     {
1724     neighborList.push_back(make_pair((*j1), (*j2)));
1725     }
1726     }
1727     }
1728     }
1729 gezelter 1587 #endif
1730 mciznick 1598 }
1731     }
1732     }
1733     }
1734     } else
1735     {
1736     // branch to do all cutoff group pairs
1737 gezelter 1587 #ifdef IS_MPI
1738 mciznick 1598 for (int j1 = 0; j1 < nGroupsInRow_; j1++)
1739     {
1740     for (int j2 = 0; j2 < nGroupsInCol_; j2++)
1741     {
1742     dr = cgColData.position[j2] - cgRowData.position[j1];
1743     snap_->wrapVector(dr);
1744     cuts = getGroupCutoffs( j1, j2 );
1745     if (dr.lengthSquare() < cuts.third)
1746     {
1747     neighborList.push_back(make_pair(j1, j2));
1748     }
1749     }
1750     }
1751 gezelter 1587 #else
1752 mciznick 1598 for (int j1 = 0; j1 < nGroups_ - 1; j1++)
1753     {
1754     for (int j2 = j1 + 1; j2 < nGroups_; j2++)
1755     {
1756     dr = snap_->cgData.position[j2] - snap_->cgData.position[j1];
1757     snap_->wrapVector(dr);
1758     cuts = getGroupCutoffs(j1, j2);
1759     if (dr.lengthSquare() < cuts.third)
1760     {
1761     neighborList.push_back(make_pair(j1, j2));
1762     }
1763     }
1764     }
1765 gezelter 1587 #endif
1766 mciznick 1598 }
1767    
1768     // save the local cutoff group positions for the check that is
1769     // done on each loop:
1770     saved_CG_positions_.clear();
1771     for (int i = 0; i < nGroups_; i++)
1772     saved_CG_positions_.push_back(snap_->cgData.position[i]);
1773    
1774     return neighborList;
1775     }
1776 gezelter 1539 } //end namespace OpenMD