ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/devel_omp/src/parallel/ForceMatrixDecomposition.cpp
Revision: 1589
Committed: Sun Jul 10 16:05:34 2011 UTC (13 years, 9 months ago) by gezelter
Original Path: branches/development/src/parallel/ForceMatrixDecomposition.cpp
File size: 39143 byte(s)
Log Message:
Fixing some parallel bugs

File Contents

# User Rev Content
1 gezelter 1539 /*
2     * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 chuckv 1538 *
4     * The University of Notre Dame grants you ("Licensee") a
5     * non-exclusive, royalty free, license to use, modify and
6     * redistribute this software in source and binary code form, provided
7     * that the following conditions are met:
8     *
9     * 1. Redistributions of source code must retain the above copyright
10     * notice, this list of conditions and the following disclaimer.
11     *
12     * 2. Redistributions in binary form must reproduce the above copyright
13     * notice, this list of conditions and the following disclaimer in the
14     * documentation and/or other materials provided with the
15     * distribution.
16     *
17     * This software is provided "AS IS," without a warranty of any
18     * kind. All express or implied conditions, representations and
19     * warranties, including any implied warranty of merchantability,
20     * fitness for a particular purpose or non-infringement, are hereby
21     * excluded. The University of Notre Dame and its licensors shall not
22     * be liable for any damages suffered by licensee as a result of
23     * using, modifying or distributing the software or its
24     * derivatives. In no event will the University of Notre Dame or its
25     * licensors be liable for any lost revenue, profit or data, or for
26     * direct, indirect, special, consequential, incidental or punitive
27     * damages, however caused and regardless of the theory of liability,
28     * arising out of the use of or inability to use software, even if the
29     * University of Notre Dame has been advised of the possibility of
30     * such damages.
31     *
32     * SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your
33     * research, please cite the appropriate papers when you publish your
34     * work. Good starting points are:
35     *
36     * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).
37     * [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).
38     * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).
39     * [4] Vardeman & Gezelter, in progress (2009).
40     */
41 gezelter 1549 #include "parallel/ForceMatrixDecomposition.hpp"
42 gezelter 1539 #include "math/SquareMatrix3.hpp"
43 gezelter 1544 #include "nonbonded/NonBondedInteraction.hpp"
44     #include "brains/SnapshotManager.hpp"
45 gezelter 1570 #include "brains/PairList.hpp"
46 chuckv 1538
47 gezelter 1541 using namespace std;
48 gezelter 1539 namespace OpenMD {
49 chuckv 1538
50 gezelter 1544 /**
51     * distributeInitialData is essentially a copy of the older fortran
52     * SimulationSetup
53     */
54    
55 gezelter 1549 void ForceMatrixDecomposition::distributeInitialData() {
56 gezelter 1551 snap_ = sman_->getCurrentSnapshot();
57     storageLayout_ = sman_->getStorageLayout();
58 gezelter 1571 ff_ = info_->getForceField();
59 gezelter 1567 nLocal_ = snap_->getNumberOfAtoms();
60 gezelter 1587
61 gezelter 1577 nGroups_ = info_->getNLocalCutoffGroups();
62 gezelter 1569 // gather the information for atomtype IDs (atids):
63 gezelter 1583 idents = info_->getIdentArray();
64 gezelter 1569 AtomLocalToGlobal = info_->getGlobalAtomIndices();
65     cgLocalToGlobal = info_->getGlobalGroupIndices();
66     vector<int> globalGroupMembership = info_->getGlobalGroupMembership();
67 gezelter 1586
68 gezelter 1581 massFactors = info_->getMassFactors();
69 gezelter 1584
70 gezelter 1587 PairList* excludes = info_->getExcludedInteractions();
71     PairList* oneTwo = info_->getOneTwoInteractions();
72     PairList* oneThree = info_->getOneThreeInteractions();
73     PairList* oneFour = info_->getOneFourInteractions();
74 gezelter 1569
75 gezelter 1567 #ifdef IS_MPI
76    
77     AtomCommIntRow = new Communicator<Row,int>(nLocal_);
78     AtomCommRealRow = new Communicator<Row,RealType>(nLocal_);
79     AtomCommVectorRow = new Communicator<Row,Vector3d>(nLocal_);
80     AtomCommMatrixRow = new Communicator<Row,Mat3x3d>(nLocal_);
81 gezelter 1575 AtomCommPotRow = new Communicator<Row,potVec>(nLocal_);
82 chuckv 1538
83 gezelter 1567 AtomCommIntColumn = new Communicator<Column,int>(nLocal_);
84     AtomCommRealColumn = new Communicator<Column,RealType>(nLocal_);
85     AtomCommVectorColumn = new Communicator<Column,Vector3d>(nLocal_);
86     AtomCommMatrixColumn = new Communicator<Column,Mat3x3d>(nLocal_);
87 gezelter 1575 AtomCommPotColumn = new Communicator<Column,potVec>(nLocal_);
88 gezelter 1541
89 gezelter 1567 cgCommIntRow = new Communicator<Row,int>(nGroups_);
90     cgCommVectorRow = new Communicator<Row,Vector3d>(nGroups_);
91     cgCommIntColumn = new Communicator<Column,int>(nGroups_);
92     cgCommVectorColumn = new Communicator<Column,Vector3d>(nGroups_);
93 gezelter 1551
94 gezelter 1567 nAtomsInRow_ = AtomCommIntRow->getSize();
95     nAtomsInCol_ = AtomCommIntColumn->getSize();
96     nGroupsInRow_ = cgCommIntRow->getSize();
97     nGroupsInCol_ = cgCommIntColumn->getSize();
98    
99 gezelter 1551 // Modify the data storage objects with the correct layouts and sizes:
100 gezelter 1567 atomRowData.resize(nAtomsInRow_);
101 gezelter 1551 atomRowData.setStorageLayout(storageLayout_);
102 gezelter 1567 atomColData.resize(nAtomsInCol_);
103 gezelter 1551 atomColData.setStorageLayout(storageLayout_);
104 gezelter 1567 cgRowData.resize(nGroupsInRow_);
105 gezelter 1551 cgRowData.setStorageLayout(DataStorage::dslPosition);
106 gezelter 1567 cgColData.resize(nGroupsInCol_);
107 gezelter 1551 cgColData.setStorageLayout(DataStorage::dslPosition);
108 gezelter 1575
109 gezelter 1577 identsRow.resize(nAtomsInRow_);
110     identsCol.resize(nAtomsInCol_);
111 gezelter 1549
112 gezelter 1583 AtomCommIntRow->gather(idents, identsRow);
113     AtomCommIntColumn->gather(idents, identsCol);
114 gezelter 1549
115 gezelter 1589 // allocate memory for the parallel objects
116     AtomRowToGlobal.resize(nAtomsInRow_);
117     AtomColToGlobal.resize(nAtomsInCol_);
118     cgRowToGlobal.resize(nGroupsInRow_);
119     cgColToGlobal.resize(nGroupsInCol_);
120     massFactorsRow.resize(nAtomsInRow_);
121     massFactorsCol.resize(nAtomsInCol_);
122     pot_row.resize(nAtomsInRow_);
123     pot_col.resize(nAtomsInCol_);
124    
125 gezelter 1549 AtomCommIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal);
126     AtomCommIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal);
127    
128     cgCommIntRow->gather(cgLocalToGlobal, cgRowToGlobal);
129     cgCommIntColumn->gather(cgLocalToGlobal, cgColToGlobal);
130 gezelter 1541
131 gezelter 1581 AtomCommRealRow->gather(massFactors, massFactorsRow);
132     AtomCommRealColumn->gather(massFactors, massFactorsCol);
133 gezelter 1569
134     groupListRow_.clear();
135 gezelter 1577 groupListRow_.resize(nGroupsInRow_);
136 gezelter 1569 for (int i = 0; i < nGroupsInRow_; i++) {
137     int gid = cgRowToGlobal[i];
138     for (int j = 0; j < nAtomsInRow_; j++) {
139     int aid = AtomRowToGlobal[j];
140     if (globalGroupMembership[aid] == gid)
141     groupListRow_[i].push_back(j);
142     }
143     }
144    
145     groupListCol_.clear();
146 gezelter 1577 groupListCol_.resize(nGroupsInCol_);
147 gezelter 1569 for (int i = 0; i < nGroupsInCol_; i++) {
148     int gid = cgColToGlobal[i];
149     for (int j = 0; j < nAtomsInCol_; j++) {
150     int aid = AtomColToGlobal[j];
151     if (globalGroupMembership[aid] == gid)
152     groupListCol_[i].push_back(j);
153     }
154     }
155    
156 gezelter 1587 excludesForAtom.clear();
157     excludesForAtom.resize(nAtomsInRow_);
158 gezelter 1579 toposForAtom.clear();
159     toposForAtom.resize(nAtomsInRow_);
160     topoDist.clear();
161     topoDist.resize(nAtomsInRow_);
162 gezelter 1570 for (int i = 0; i < nAtomsInRow_; i++) {
163 gezelter 1571 int iglob = AtomRowToGlobal[i];
164 gezelter 1579
165 gezelter 1570 for (int j = 0; j < nAtomsInCol_; j++) {
166 gezelter 1579 int jglob = AtomColToGlobal[j];
167    
168 gezelter 1587 if (excludes->hasPair(iglob, jglob))
169     excludesForAtom[i].push_back(j);
170 gezelter 1579
171 gezelter 1587 if (oneTwo->hasPair(iglob, jglob)) {
172 gezelter 1579 toposForAtom[i].push_back(j);
173     topoDist[i].push_back(1);
174     } else {
175 gezelter 1587 if (oneThree->hasPair(iglob, jglob)) {
176 gezelter 1579 toposForAtom[i].push_back(j);
177     topoDist[i].push_back(2);
178     } else {
179 gezelter 1587 if (oneFour->hasPair(iglob, jglob)) {
180 gezelter 1579 toposForAtom[i].push_back(j);
181     topoDist[i].push_back(3);
182     }
183     }
184 gezelter 1570 }
185     }
186     }
187    
188 gezelter 1569 #endif
189 gezelter 1579
190 gezelter 1569 groupList_.clear();
191 gezelter 1577 groupList_.resize(nGroups_);
192 gezelter 1569 for (int i = 0; i < nGroups_; i++) {
193     int gid = cgLocalToGlobal[i];
194     for (int j = 0; j < nLocal_; j++) {
195     int aid = AtomLocalToGlobal[j];
196 gezelter 1577 if (globalGroupMembership[aid] == gid) {
197 gezelter 1569 groupList_[i].push_back(j);
198 gezelter 1577 }
199 gezelter 1569 }
200     }
201    
202 gezelter 1587 excludesForAtom.clear();
203     excludesForAtom.resize(nLocal_);
204 gezelter 1579 toposForAtom.clear();
205     toposForAtom.resize(nLocal_);
206     topoDist.clear();
207     topoDist.resize(nLocal_);
208 gezelter 1569
209 gezelter 1570 for (int i = 0; i < nLocal_; i++) {
210     int iglob = AtomLocalToGlobal[i];
211 gezelter 1579
212 gezelter 1570 for (int j = 0; j < nLocal_; j++) {
213 gezelter 1579 int jglob = AtomLocalToGlobal[j];
214    
215 gezelter 1587 if (excludes->hasPair(iglob, jglob))
216     excludesForAtom[i].push_back(j);
217 gezelter 1579
218 gezelter 1587 if (oneTwo->hasPair(iglob, jglob)) {
219 gezelter 1579 toposForAtom[i].push_back(j);
220     topoDist[i].push_back(1);
221     } else {
222 gezelter 1587 if (oneThree->hasPair(iglob, jglob)) {
223 gezelter 1579 toposForAtom[i].push_back(j);
224     topoDist[i].push_back(2);
225     } else {
226 gezelter 1587 if (oneFour->hasPair(iglob, jglob)) {
227 gezelter 1579 toposForAtom[i].push_back(j);
228     topoDist[i].push_back(3);
229     }
230     }
231 gezelter 1570 }
232     }
233 gezelter 1579 }
234    
235     createGtypeCutoffMap();
236 gezelter 1587
237 gezelter 1576 }
238    
239     void ForceMatrixDecomposition::createGtypeCutoffMap() {
240 gezelter 1586
241 gezelter 1576 RealType tol = 1e-6;
242     RealType rc;
243     int atid;
244     set<AtomType*> atypes = info_->getSimulatedAtomTypes();
245 gezelter 1587 map<int, RealType> atypeCutoff;
246 gezelter 1583
247 gezelter 1579 for (set<AtomType*>::iterator at = atypes.begin();
248     at != atypes.end(); ++at){
249 gezelter 1576 atid = (*at)->getIdent();
250 gezelter 1587 if (userChoseCutoff_)
251 gezelter 1583 atypeCutoff[atid] = userCutoff_;
252 gezelter 1587 else
253 gezelter 1583 atypeCutoff[atid] = interactionMan_->getSuggestedCutoffRadius(*at);
254 gezelter 1570 }
255 gezelter 1576
256     vector<RealType> gTypeCutoffs;
257     // first we do a single loop over the cutoff groups to find the
258     // largest cutoff for any atypes present in this group.
259     #ifdef IS_MPI
260     vector<RealType> groupCutoffRow(nGroupsInRow_, 0.0);
261 gezelter 1579 groupRowToGtype.resize(nGroupsInRow_);
262 gezelter 1576 for (int cg1 = 0; cg1 < nGroupsInRow_; cg1++) {
263     vector<int> atomListRow = getAtomsInGroupRow(cg1);
264     for (vector<int>::iterator ia = atomListRow.begin();
265     ia != atomListRow.end(); ++ia) {
266     int atom1 = (*ia);
267     atid = identsRow[atom1];
268     if (atypeCutoff[atid] > groupCutoffRow[cg1]) {
269     groupCutoffRow[cg1] = atypeCutoff[atid];
270     }
271     }
272    
273     bool gTypeFound = false;
274     for (int gt = 0; gt < gTypeCutoffs.size(); gt++) {
275     if (abs(groupCutoffRow[cg1] - gTypeCutoffs[gt]) < tol) {
276     groupRowToGtype[cg1] = gt;
277     gTypeFound = true;
278     }
279     }
280     if (!gTypeFound) {
281     gTypeCutoffs.push_back( groupCutoffRow[cg1] );
282     groupRowToGtype[cg1] = gTypeCutoffs.size() - 1;
283     }
284    
285     }
286     vector<RealType> groupCutoffCol(nGroupsInCol_, 0.0);
287 gezelter 1579 groupColToGtype.resize(nGroupsInCol_);
288 gezelter 1576 for (int cg2 = 0; cg2 < nGroupsInCol_; cg2++) {
289     vector<int> atomListCol = getAtomsInGroupColumn(cg2);
290     for (vector<int>::iterator jb = atomListCol.begin();
291     jb != atomListCol.end(); ++jb) {
292     int atom2 = (*jb);
293     atid = identsCol[atom2];
294     if (atypeCutoff[atid] > groupCutoffCol[cg2]) {
295     groupCutoffCol[cg2] = atypeCutoff[atid];
296     }
297     }
298     bool gTypeFound = false;
299     for (int gt = 0; gt < gTypeCutoffs.size(); gt++) {
300     if (abs(groupCutoffCol[cg2] - gTypeCutoffs[gt]) < tol) {
301     groupColToGtype[cg2] = gt;
302     gTypeFound = true;
303     }
304     }
305     if (!gTypeFound) {
306     gTypeCutoffs.push_back( groupCutoffCol[cg2] );
307     groupColToGtype[cg2] = gTypeCutoffs.size() - 1;
308     }
309     }
310     #else
311 gezelter 1579
312 gezelter 1576 vector<RealType> groupCutoff(nGroups_, 0.0);
313 gezelter 1579 groupToGtype.resize(nGroups_);
314 gezelter 1576 for (int cg1 = 0; cg1 < nGroups_; cg1++) {
315 gezelter 1579
316 gezelter 1576 groupCutoff[cg1] = 0.0;
317     vector<int> atomList = getAtomsInGroupRow(cg1);
318 gezelter 1579
319 gezelter 1576 for (vector<int>::iterator ia = atomList.begin();
320     ia != atomList.end(); ++ia) {
321     int atom1 = (*ia);
322 gezelter 1583 atid = idents[atom1];
323 gezelter 1576 if (atypeCutoff[atid] > groupCutoff[cg1]) {
324     groupCutoff[cg1] = atypeCutoff[atid];
325     }
326     }
327    
328     bool gTypeFound = false;
329     for (int gt = 0; gt < gTypeCutoffs.size(); gt++) {
330     if (abs(groupCutoff[cg1] - gTypeCutoffs[gt]) < tol) {
331     groupToGtype[cg1] = gt;
332     gTypeFound = true;
333     }
334     }
335     if (!gTypeFound) {
336     gTypeCutoffs.push_back( groupCutoff[cg1] );
337     groupToGtype[cg1] = gTypeCutoffs.size() - 1;
338     }
339     }
340     #endif
341    
342     // Now we find the maximum group cutoff value present in the simulation
343    
344 gezelter 1579 RealType groupMax = *max_element(gTypeCutoffs.begin(), gTypeCutoffs.end());
345 gezelter 1576
346     #ifdef IS_MPI
347     MPI::COMM_WORLD.Allreduce(&groupMax, &groupMax, 1, MPI::REALTYPE, MPI::MAX);
348     #endif
349    
350     RealType tradRcut = groupMax;
351    
352     for (int i = 0; i < gTypeCutoffs.size(); i++) {
353 gezelter 1579 for (int j = 0; j < gTypeCutoffs.size(); j++) {
354 gezelter 1576 RealType thisRcut;
355     switch(cutoffPolicy_) {
356     case TRADITIONAL:
357     thisRcut = tradRcut;
358 gezelter 1579 break;
359 gezelter 1576 case MIX:
360     thisRcut = 0.5 * (gTypeCutoffs[i] + gTypeCutoffs[j]);
361 gezelter 1579 break;
362 gezelter 1576 case MAX:
363     thisRcut = max(gTypeCutoffs[i], gTypeCutoffs[j]);
364 gezelter 1579 break;
365 gezelter 1576 default:
366     sprintf(painCave.errMsg,
367     "ForceMatrixDecomposition::createGtypeCutoffMap "
368     "hit an unknown cutoff policy!\n");
369     painCave.severity = OPENMD_ERROR;
370     painCave.isFatal = 1;
371 gezelter 1579 simError();
372     break;
373 gezelter 1576 }
374    
375     pair<int,int> key = make_pair(i,j);
376     gTypeCutoffMap[key].first = thisRcut;
377    
378     if (thisRcut > largestRcut_) largestRcut_ = thisRcut;
379    
380     gTypeCutoffMap[key].second = thisRcut*thisRcut;
381    
382     gTypeCutoffMap[key].third = pow(thisRcut + skinThickness_, 2);
383    
384     // sanity check
385    
386     if (userChoseCutoff_) {
387     if (abs(gTypeCutoffMap[key].first - userCutoff_) > 0.0001) {
388     sprintf(painCave.errMsg,
389     "ForceMatrixDecomposition::createGtypeCutoffMap "
390 gezelter 1583 "user-specified rCut (%lf) does not match computed group Cutoff\n", userCutoff_);
391 gezelter 1576 painCave.severity = OPENMD_ERROR;
392     painCave.isFatal = 1;
393     simError();
394     }
395     }
396     }
397     }
398 gezelter 1539 }
399 gezelter 1576
400    
401     groupCutoffs ForceMatrixDecomposition::getGroupCutoffs(int cg1, int cg2) {
402 gezelter 1579 int i, j;
403 gezelter 1576 #ifdef IS_MPI
404     i = groupRowToGtype[cg1];
405     j = groupColToGtype[cg2];
406     #else
407     i = groupToGtype[cg1];
408     j = groupToGtype[cg2];
409 gezelter 1579 #endif
410 gezelter 1576 return gTypeCutoffMap[make_pair(i,j)];
411     }
412    
413 gezelter 1579 int ForceMatrixDecomposition::getTopologicalDistance(int atom1, int atom2) {
414     for (int j = 0; j < toposForAtom[atom1].size(); j++) {
415     if (toposForAtom[atom1][j] == atom2)
416     return topoDist[atom1][j];
417     }
418     return 0;
419     }
420 gezelter 1576
421 gezelter 1575 void ForceMatrixDecomposition::zeroWorkArrays() {
422 gezelter 1583 pairwisePot = 0.0;
423     embeddingPot = 0.0;
424 gezelter 1575
425     #ifdef IS_MPI
426     if (storageLayout_ & DataStorage::dslForce) {
427     fill(atomRowData.force.begin(), atomRowData.force.end(), V3Zero);
428     fill(atomColData.force.begin(), atomColData.force.end(), V3Zero);
429     }
430    
431     if (storageLayout_ & DataStorage::dslTorque) {
432     fill(atomRowData.torque.begin(), atomRowData.torque.end(), V3Zero);
433     fill(atomColData.torque.begin(), atomColData.torque.end(), V3Zero);
434     }
435    
436     fill(pot_row.begin(), pot_row.end(),
437     Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
438    
439     fill(pot_col.begin(), pot_col.end(),
440 gezelter 1583 Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
441 gezelter 1575
442     if (storageLayout_ & DataStorage::dslParticlePot) {
443     fill(atomRowData.particlePot.begin(), atomRowData.particlePot.end(), 0.0);
444     fill(atomColData.particlePot.begin(), atomColData.particlePot.end(), 0.0);
445     }
446    
447     if (storageLayout_ & DataStorage::dslDensity) {
448     fill(atomRowData.density.begin(), atomRowData.density.end(), 0.0);
449     fill(atomColData.density.begin(), atomColData.density.end(), 0.0);
450     }
451    
452     if (storageLayout_ & DataStorage::dslFunctional) {
453     fill(atomRowData.functional.begin(), atomRowData.functional.end(), 0.0);
454     fill(atomColData.functional.begin(), atomColData.functional.end(), 0.0);
455     }
456    
457     if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
458     fill(atomRowData.functionalDerivative.begin(),
459     atomRowData.functionalDerivative.end(), 0.0);
460     fill(atomColData.functionalDerivative.begin(),
461     atomColData.functionalDerivative.end(), 0.0);
462     }
463    
464 gezelter 1586 if (storageLayout_ & DataStorage::dslSkippedCharge) {
465 gezelter 1587 fill(atomRowData.skippedCharge.begin(),
466     atomRowData.skippedCharge.end(), 0.0);
467     fill(atomColData.skippedCharge.begin(),
468     atomColData.skippedCharge.end(), 0.0);
469 gezelter 1586 }
470    
471 gezelter 1575 #else
472    
473     if (storageLayout_ & DataStorage::dslParticlePot) {
474     fill(snap_->atomData.particlePot.begin(),
475     snap_->atomData.particlePot.end(), 0.0);
476     }
477    
478     if (storageLayout_ & DataStorage::dslDensity) {
479     fill(snap_->atomData.density.begin(),
480     snap_->atomData.density.end(), 0.0);
481     }
482     if (storageLayout_ & DataStorage::dslFunctional) {
483     fill(snap_->atomData.functional.begin(),
484     snap_->atomData.functional.end(), 0.0);
485     }
486     if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
487     fill(snap_->atomData.functionalDerivative.begin(),
488     snap_->atomData.functionalDerivative.end(), 0.0);
489     }
490 gezelter 1586 if (storageLayout_ & DataStorage::dslSkippedCharge) {
491     fill(snap_->atomData.skippedCharge.begin(),
492     snap_->atomData.skippedCharge.end(), 0.0);
493     }
494 gezelter 1575 #endif
495    
496     }
497    
498    
499 gezelter 1549 void ForceMatrixDecomposition::distributeData() {
500 gezelter 1551 snap_ = sman_->getCurrentSnapshot();
501     storageLayout_ = sman_->getStorageLayout();
502 chuckv 1538 #ifdef IS_MPI
503 gezelter 1540
504 gezelter 1539 // gather up the atomic positions
505 gezelter 1551 AtomCommVectorRow->gather(snap_->atomData.position,
506     atomRowData.position);
507     AtomCommVectorColumn->gather(snap_->atomData.position,
508     atomColData.position);
509 gezelter 1539
510     // gather up the cutoff group positions
511 gezelter 1551 cgCommVectorRow->gather(snap_->cgData.position,
512     cgRowData.position);
513     cgCommVectorColumn->gather(snap_->cgData.position,
514     cgColData.position);
515 gezelter 1539
516     // if needed, gather the atomic rotation matrices
517 gezelter 1551 if (storageLayout_ & DataStorage::dslAmat) {
518     AtomCommMatrixRow->gather(snap_->atomData.aMat,
519     atomRowData.aMat);
520     AtomCommMatrixColumn->gather(snap_->atomData.aMat,
521     atomColData.aMat);
522 gezelter 1539 }
523    
524     // if needed, gather the atomic eletrostatic frames
525 gezelter 1551 if (storageLayout_ & DataStorage::dslElectroFrame) {
526     AtomCommMatrixRow->gather(snap_->atomData.electroFrame,
527     atomRowData.electroFrame);
528     AtomCommMatrixColumn->gather(snap_->atomData.electroFrame,
529     atomColData.electroFrame);
530 gezelter 1539 }
531     #endif
532     }
533    
534 gezelter 1575 /* collects information obtained during the pre-pair loop onto local
535     * data structures.
536     */
537 gezelter 1549 void ForceMatrixDecomposition::collectIntermediateData() {
538 gezelter 1551 snap_ = sman_->getCurrentSnapshot();
539     storageLayout_ = sman_->getStorageLayout();
540 gezelter 1539 #ifdef IS_MPI
541    
542 gezelter 1551 if (storageLayout_ & DataStorage::dslDensity) {
543    
544     AtomCommRealRow->scatter(atomRowData.density,
545     snap_->atomData.density);
546    
547     int n = snap_->atomData.density.size();
548 gezelter 1575 vector<RealType> rho_tmp(n, 0.0);
549 gezelter 1551 AtomCommRealColumn->scatter(atomColData.density, rho_tmp);
550 gezelter 1539 for (int i = 0; i < n; i++)
551 gezelter 1551 snap_->atomData.density[i] += rho_tmp[i];
552 gezelter 1539 }
553 chuckv 1538 #endif
554 gezelter 1539 }
555 gezelter 1575
556     /*
557     * redistributes information obtained during the pre-pair loop out to
558     * row and column-indexed data structures
559     */
560 gezelter 1549 void ForceMatrixDecomposition::distributeIntermediateData() {
561 gezelter 1551 snap_ = sman_->getCurrentSnapshot();
562     storageLayout_ = sman_->getStorageLayout();
563 chuckv 1538 #ifdef IS_MPI
564 gezelter 1551 if (storageLayout_ & DataStorage::dslFunctional) {
565     AtomCommRealRow->gather(snap_->atomData.functional,
566     atomRowData.functional);
567     AtomCommRealColumn->gather(snap_->atomData.functional,
568     atomColData.functional);
569 gezelter 1539 }
570    
571 gezelter 1551 if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
572     AtomCommRealRow->gather(snap_->atomData.functionalDerivative,
573     atomRowData.functionalDerivative);
574     AtomCommRealColumn->gather(snap_->atomData.functionalDerivative,
575     atomColData.functionalDerivative);
576 gezelter 1539 }
577 chuckv 1538 #endif
578     }
579 gezelter 1539
580    
581 gezelter 1549 void ForceMatrixDecomposition::collectData() {
582 gezelter 1551 snap_ = sman_->getCurrentSnapshot();
583     storageLayout_ = sman_->getStorageLayout();
584     #ifdef IS_MPI
585     int n = snap_->atomData.force.size();
586 gezelter 1544 vector<Vector3d> frc_tmp(n, V3Zero);
587 gezelter 1541
588 gezelter 1551 AtomCommVectorRow->scatter(atomRowData.force, frc_tmp);
589 gezelter 1541 for (int i = 0; i < n; i++) {
590 gezelter 1551 snap_->atomData.force[i] += frc_tmp[i];
591 gezelter 1541 frc_tmp[i] = 0.0;
592     }
593 gezelter 1540
594 gezelter 1551 AtomCommVectorColumn->scatter(atomColData.force, frc_tmp);
595 gezelter 1540 for (int i = 0; i < n; i++)
596 gezelter 1551 snap_->atomData.force[i] += frc_tmp[i];
597 gezelter 1540
598    
599 gezelter 1551 if (storageLayout_ & DataStorage::dslTorque) {
600 gezelter 1541
601 gezelter 1587 int nt = snap_->atomData.torque.size();
602 gezelter 1544 vector<Vector3d> trq_tmp(nt, V3Zero);
603 gezelter 1541
604 gezelter 1551 AtomCommVectorRow->scatter(atomRowData.torque, trq_tmp);
605 gezelter 1587 for (int i = 0; i < nt; i++) {
606 gezelter 1551 snap_->atomData.torque[i] += trq_tmp[i];
607 gezelter 1541 trq_tmp[i] = 0.0;
608     }
609 gezelter 1540
610 gezelter 1551 AtomCommVectorColumn->scatter(atomColData.torque, trq_tmp);
611 gezelter 1587 for (int i = 0; i < nt; i++)
612 gezelter 1551 snap_->atomData.torque[i] += trq_tmp[i];
613 gezelter 1540 }
614 gezelter 1587
615     if (storageLayout_ & DataStorage::dslSkippedCharge) {
616    
617     int ns = snap_->atomData.skippedCharge.size();
618     vector<RealType> skch_tmp(ns, 0.0);
619    
620     AtomCommRealRow->scatter(atomRowData.skippedCharge, skch_tmp);
621     for (int i = 0; i < ns; i++) {
622     snap_->atomData.skippedCharge[i] = skch_tmp[i];
623     skch_tmp[i] = 0.0;
624     }
625    
626     AtomCommRealColumn->scatter(atomColData.skippedCharge, skch_tmp);
627     for (int i = 0; i < ns; i++)
628     snap_->atomData.skippedCharge[i] += skch_tmp[i];
629     }
630 gezelter 1540
631 gezelter 1567 nLocal_ = snap_->getNumberOfAtoms();
632 gezelter 1544
633 gezelter 1575 vector<potVec> pot_temp(nLocal_,
634     Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
635    
636     // scatter/gather pot_row into the members of my column
637    
638     AtomCommPotRow->scatter(pot_row, pot_temp);
639    
640     for (int ii = 0; ii < pot_temp.size(); ii++ )
641 gezelter 1583 pairwisePot += pot_temp[ii];
642 gezelter 1540
643 gezelter 1575 fill(pot_temp.begin(), pot_temp.end(),
644     Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
645    
646     AtomCommPotColumn->scatter(pot_col, pot_temp);
647    
648     for (int ii = 0; ii < pot_temp.size(); ii++ )
649 gezelter 1583 pairwisePot += pot_temp[ii];
650 gezelter 1539 #endif
651 gezelter 1583
652 chuckv 1538 }
653 gezelter 1551
654 gezelter 1570 int ForceMatrixDecomposition::getNAtomsInRow() {
655     #ifdef IS_MPI
656     return nAtomsInRow_;
657     #else
658     return nLocal_;
659     #endif
660     }
661    
662 gezelter 1569 /**
663     * returns the list of atoms belonging to this group.
664     */
665     vector<int> ForceMatrixDecomposition::getAtomsInGroupRow(int cg1){
666     #ifdef IS_MPI
667     return groupListRow_[cg1];
668     #else
669     return groupList_[cg1];
670     #endif
671     }
672    
673     vector<int> ForceMatrixDecomposition::getAtomsInGroupColumn(int cg2){
674     #ifdef IS_MPI
675     return groupListCol_[cg2];
676     #else
677     return groupList_[cg2];
678     #endif
679     }
680 chuckv 1538
681 gezelter 1551 Vector3d ForceMatrixDecomposition::getIntergroupVector(int cg1, int cg2){
682     Vector3d d;
683    
684     #ifdef IS_MPI
685     d = cgColData.position[cg2] - cgRowData.position[cg1];
686     #else
687     d = snap_->cgData.position[cg2] - snap_->cgData.position[cg1];
688     #endif
689    
690     snap_->wrapVector(d);
691     return d;
692     }
693    
694    
695     Vector3d ForceMatrixDecomposition::getAtomToGroupVectorRow(int atom1, int cg1){
696    
697     Vector3d d;
698    
699     #ifdef IS_MPI
700     d = cgRowData.position[cg1] - atomRowData.position[atom1];
701     #else
702     d = snap_->cgData.position[cg1] - snap_->atomData.position[atom1];
703     #endif
704    
705     snap_->wrapVector(d);
706     return d;
707     }
708    
709     Vector3d ForceMatrixDecomposition::getAtomToGroupVectorColumn(int atom2, int cg2){
710     Vector3d d;
711    
712     #ifdef IS_MPI
713     d = cgColData.position[cg2] - atomColData.position[atom2];
714     #else
715     d = snap_->cgData.position[cg2] - snap_->atomData.position[atom2];
716     #endif
717    
718     snap_->wrapVector(d);
719     return d;
720     }
721 gezelter 1569
722     RealType ForceMatrixDecomposition::getMassFactorRow(int atom1) {
723     #ifdef IS_MPI
724     return massFactorsRow[atom1];
725     #else
726 gezelter 1581 return massFactors[atom1];
727 gezelter 1569 #endif
728     }
729    
730     RealType ForceMatrixDecomposition::getMassFactorColumn(int atom2) {
731     #ifdef IS_MPI
732     return massFactorsCol[atom2];
733     #else
734 gezelter 1581 return massFactors[atom2];
735 gezelter 1569 #endif
736    
737     }
738 gezelter 1551
739     Vector3d ForceMatrixDecomposition::getInteratomicVector(int atom1, int atom2){
740     Vector3d d;
741    
742     #ifdef IS_MPI
743     d = atomColData.position[atom2] - atomRowData.position[atom1];
744     #else
745     d = snap_->atomData.position[atom2] - snap_->atomData.position[atom1];
746     #endif
747    
748     snap_->wrapVector(d);
749     return d;
750     }
751    
752 gezelter 1587 vector<int> ForceMatrixDecomposition::getExcludesForAtom(int atom1) {
753     return excludesForAtom[atom1];
754 gezelter 1570 }
755    
756     /**
757 gezelter 1587 * We need to exclude some overcounted interactions that result from
758 gezelter 1575 * the parallel decomposition.
759 gezelter 1570 */
760     bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2) {
761     int unique_id_1, unique_id_2;
762    
763     #ifdef IS_MPI
764     // in MPI, we have to look up the unique IDs for each atom
765     unique_id_1 = AtomRowToGlobal[atom1];
766     unique_id_2 = AtomColToGlobal[atom2];
767    
768     // this situation should only arise in MPI simulations
769     if (unique_id_1 == unique_id_2) return true;
770    
771     // this prevents us from doing the pair on multiple processors
772     if (unique_id_1 < unique_id_2) {
773     if ((unique_id_1 + unique_id_2) % 2 == 0) return true;
774     } else {
775     if ((unique_id_1 + unique_id_2) % 2 == 1) return true;
776     }
777 gezelter 1587 #endif
778     return false;
779     }
780    
781     /**
782     * We need to handle the interactions for atoms who are involved in
783     * the same rigid body as well as some short range interactions
784     * (bonds, bends, torsions) differently from other interactions.
785     * We'll still visit the pairwise routines, but with a flag that
786     * tells those routines to exclude the pair from direct long range
787     * interactions. Some indirect interactions (notably reaction
788     * field) must still be handled for these pairs.
789     */
790     bool ForceMatrixDecomposition::excludeAtomPair(int atom1, int atom2) {
791     int unique_id_2;
792    
793     #ifdef IS_MPI
794     // in MPI, we have to look up the unique IDs for the row atom.
795     unique_id_2 = AtomColToGlobal[atom2];
796 gezelter 1570 #else
797     // in the normal loop, the atom numbers are unique
798     unique_id_2 = atom2;
799     #endif
800    
801 gezelter 1587 for (vector<int>::iterator i = excludesForAtom[atom1].begin();
802     i != excludesForAtom[atom1].end(); ++i) {
803 gezelter 1570 if ( (*i) == unique_id_2 ) return true;
804 gezelter 1583 }
805 gezelter 1579
806 gezelter 1583 return false;
807 gezelter 1570 }
808    
809    
810 gezelter 1551 void ForceMatrixDecomposition::addForceToAtomRow(int atom1, Vector3d fg){
811     #ifdef IS_MPI
812     atomRowData.force[atom1] += fg;
813     #else
814     snap_->atomData.force[atom1] += fg;
815     #endif
816     }
817    
818     void ForceMatrixDecomposition::addForceToAtomColumn(int atom2, Vector3d fg){
819     #ifdef IS_MPI
820     atomColData.force[atom2] += fg;
821     #else
822     snap_->atomData.force[atom2] += fg;
823     #endif
824     }
825    
826     // filling interaction blocks with pointers
827 gezelter 1582 void ForceMatrixDecomposition::fillInteractionData(InteractionData &idat,
828 gezelter 1587 int atom1, int atom2) {
829    
830     idat.excluded = excludeAtomPair(atom1, atom2);
831    
832 gezelter 1551 #ifdef IS_MPI
833 gezelter 1571
834     idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]),
835     ff_->getAtomType(identsCol[atom2]) );
836 gezelter 1575
837 gezelter 1551 if (storageLayout_ & DataStorage::dslAmat) {
838 gezelter 1554 idat.A1 = &(atomRowData.aMat[atom1]);
839     idat.A2 = &(atomColData.aMat[atom2]);
840 gezelter 1551 }
841 gezelter 1567
842 gezelter 1551 if (storageLayout_ & DataStorage::dslElectroFrame) {
843 gezelter 1554 idat.eFrame1 = &(atomRowData.electroFrame[atom1]);
844     idat.eFrame2 = &(atomColData.electroFrame[atom2]);
845 gezelter 1551 }
846    
847     if (storageLayout_ & DataStorage::dslTorque) {
848 gezelter 1554 idat.t1 = &(atomRowData.torque[atom1]);
849     idat.t2 = &(atomColData.torque[atom2]);
850 gezelter 1551 }
851    
852     if (storageLayout_ & DataStorage::dslDensity) {
853 gezelter 1554 idat.rho1 = &(atomRowData.density[atom1]);
854     idat.rho2 = &(atomColData.density[atom2]);
855 gezelter 1551 }
856    
857 gezelter 1575 if (storageLayout_ & DataStorage::dslFunctional) {
858     idat.frho1 = &(atomRowData.functional[atom1]);
859     idat.frho2 = &(atomColData.functional[atom2]);
860     }
861    
862 gezelter 1551 if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
863 gezelter 1554 idat.dfrho1 = &(atomRowData.functionalDerivative[atom1]);
864     idat.dfrho2 = &(atomColData.functionalDerivative[atom2]);
865 gezelter 1551 }
866 gezelter 1570
867 gezelter 1575 if (storageLayout_ & DataStorage::dslParticlePot) {
868     idat.particlePot1 = &(atomRowData.particlePot[atom1]);
869     idat.particlePot2 = &(atomColData.particlePot[atom2]);
870     }
871    
872 gezelter 1587 if (storageLayout_ & DataStorage::dslSkippedCharge) {
873     idat.skippedCharge1 = &(atomRowData.skippedCharge[atom1]);
874     idat.skippedCharge2 = &(atomColData.skippedCharge[atom2]);
875     }
876    
877 gezelter 1562 #else
878 gezelter 1571
879 gezelter 1583 idat.atypes = make_pair( ff_->getAtomType(idents[atom1]),
880     ff_->getAtomType(idents[atom2]) );
881 gezelter 1571
882 gezelter 1562 if (storageLayout_ & DataStorage::dslAmat) {
883     idat.A1 = &(snap_->atomData.aMat[atom1]);
884     idat.A2 = &(snap_->atomData.aMat[atom2]);
885     }
886    
887     if (storageLayout_ & DataStorage::dslElectroFrame) {
888     idat.eFrame1 = &(snap_->atomData.electroFrame[atom1]);
889     idat.eFrame2 = &(snap_->atomData.electroFrame[atom2]);
890     }
891    
892     if (storageLayout_ & DataStorage::dslTorque) {
893     idat.t1 = &(snap_->atomData.torque[atom1]);
894     idat.t2 = &(snap_->atomData.torque[atom2]);
895     }
896    
897 gezelter 1583 if (storageLayout_ & DataStorage::dslDensity) {
898 gezelter 1562 idat.rho1 = &(snap_->atomData.density[atom1]);
899     idat.rho2 = &(snap_->atomData.density[atom2]);
900     }
901    
902 gezelter 1575 if (storageLayout_ & DataStorage::dslFunctional) {
903     idat.frho1 = &(snap_->atomData.functional[atom1]);
904     idat.frho2 = &(snap_->atomData.functional[atom2]);
905     }
906    
907 gezelter 1562 if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
908     idat.dfrho1 = &(snap_->atomData.functionalDerivative[atom1]);
909     idat.dfrho2 = &(snap_->atomData.functionalDerivative[atom2]);
910     }
911 gezelter 1575
912     if (storageLayout_ & DataStorage::dslParticlePot) {
913     idat.particlePot1 = &(snap_->atomData.particlePot[atom1]);
914     idat.particlePot2 = &(snap_->atomData.particlePot[atom2]);
915     }
916    
917 gezelter 1587 if (storageLayout_ & DataStorage::dslSkippedCharge) {
918     idat.skippedCharge1 = &(snap_->atomData.skippedCharge[atom1]);
919     idat.skippedCharge2 = &(snap_->atomData.skippedCharge[atom2]);
920     }
921 gezelter 1551 #endif
922     }
923 gezelter 1567
924 gezelter 1575
925 gezelter 1582 void ForceMatrixDecomposition::unpackInteractionData(InteractionData &idat, int atom1, int atom2) {
926 gezelter 1575 #ifdef IS_MPI
927     pot_row[atom1] += 0.5 * *(idat.pot);
928     pot_col[atom2] += 0.5 * *(idat.pot);
929    
930     atomRowData.force[atom1] += *(idat.f1);
931     atomColData.force[atom2] -= *(idat.f1);
932     #else
933 gezelter 1583 pairwisePot += *(idat.pot);
934    
935 gezelter 1575 snap_->atomData.force[atom1] += *(idat.f1);
936     snap_->atomData.force[atom2] -= *(idat.f1);
937     #endif
938 gezelter 1586
939 gezelter 1575 }
940    
941 gezelter 1562 /*
942     * buildNeighborList
943     *
944     * first element of pair is row-indexed CutoffGroup
945     * second element of pair is column-indexed CutoffGroup
946     */
947 gezelter 1567 vector<pair<int, int> > ForceMatrixDecomposition::buildNeighborList() {
948    
949     vector<pair<int, int> > neighborList;
950 gezelter 1576 groupCutoffs cuts;
951 gezelter 1587 bool doAllPairs = false;
952    
953 gezelter 1567 #ifdef IS_MPI
954 gezelter 1568 cellListRow_.clear();
955     cellListCol_.clear();
956 gezelter 1567 #else
957 gezelter 1568 cellList_.clear();
958 gezelter 1567 #endif
959 gezelter 1562
960 gezelter 1576 RealType rList_ = (largestRcut_ + skinThickness_);
961 gezelter 1567 RealType rl2 = rList_ * rList_;
962     Snapshot* snap_ = sman_->getCurrentSnapshot();
963 gezelter 1562 Mat3x3d Hmat = snap_->getHmat();
964     Vector3d Hx = Hmat.getColumn(0);
965     Vector3d Hy = Hmat.getColumn(1);
966     Vector3d Hz = Hmat.getColumn(2);
967    
968 gezelter 1568 nCells_.x() = (int) ( Hx.length() )/ rList_;
969     nCells_.y() = (int) ( Hy.length() )/ rList_;
970     nCells_.z() = (int) ( Hz.length() )/ rList_;
971 gezelter 1562
972 gezelter 1587 // handle small boxes where the cell offsets can end up repeating cells
973    
974     if (nCells_.x() < 3) doAllPairs = true;
975     if (nCells_.y() < 3) doAllPairs = true;
976     if (nCells_.z() < 3) doAllPairs = true;
977    
978 gezelter 1567 Mat3x3d invHmat = snap_->getInvHmat();
979     Vector3d rs, scaled, dr;
980     Vector3i whichCell;
981     int cellIndex;
982 gezelter 1579 int nCtot = nCells_.x() * nCells_.y() * nCells_.z();
983 gezelter 1567
984     #ifdef IS_MPI
985 gezelter 1579 cellListRow_.resize(nCtot);
986     cellListCol_.resize(nCtot);
987     #else
988     cellList_.resize(nCtot);
989     #endif
990 gezelter 1582
991 gezelter 1587 if (!doAllPairs) {
992 gezelter 1579 #ifdef IS_MPI
993 gezelter 1581
994 gezelter 1587 for (int i = 0; i < nGroupsInRow_; i++) {
995     rs = cgRowData.position[i];
996    
997     // scaled positions relative to the box vectors
998     scaled = invHmat * rs;
999    
1000     // wrap the vector back into the unit box by subtracting integer box
1001     // numbers
1002     for (int j = 0; j < 3; j++) {
1003     scaled[j] -= roundMe(scaled[j]);
1004     scaled[j] += 0.5;
1005     }
1006    
1007     // find xyz-indices of cell that cutoffGroup is in.
1008     whichCell.x() = nCells_.x() * scaled.x();
1009     whichCell.y() = nCells_.y() * scaled.y();
1010     whichCell.z() = nCells_.z() * scaled.z();
1011    
1012     // find single index of this cell:
1013     cellIndex = Vlinear(whichCell, nCells_);
1014    
1015     // add this cutoff group to the list of groups in this cell;
1016     cellListRow_[cellIndex].push_back(i);
1017 gezelter 1581 }
1018 gezelter 1587
1019     for (int i = 0; i < nGroupsInCol_; i++) {
1020     rs = cgColData.position[i];
1021    
1022     // scaled positions relative to the box vectors
1023     scaled = invHmat * rs;
1024    
1025     // wrap the vector back into the unit box by subtracting integer box
1026     // numbers
1027     for (int j = 0; j < 3; j++) {
1028     scaled[j] -= roundMe(scaled[j]);
1029     scaled[j] += 0.5;
1030     }
1031    
1032     // find xyz-indices of cell that cutoffGroup is in.
1033     whichCell.x() = nCells_.x() * scaled.x();
1034     whichCell.y() = nCells_.y() * scaled.y();
1035     whichCell.z() = nCells_.z() * scaled.z();
1036    
1037     // find single index of this cell:
1038     cellIndex = Vlinear(whichCell, nCells_);
1039    
1040     // add this cutoff group to the list of groups in this cell;
1041     cellListCol_[cellIndex].push_back(i);
1042 gezelter 1581 }
1043 gezelter 1567 #else
1044 gezelter 1587 for (int i = 0; i < nGroups_; i++) {
1045     rs = snap_->cgData.position[i];
1046    
1047     // scaled positions relative to the box vectors
1048     scaled = invHmat * rs;
1049    
1050     // wrap the vector back into the unit box by subtracting integer box
1051     // numbers
1052     for (int j = 0; j < 3; j++) {
1053     scaled[j] -= roundMe(scaled[j]);
1054     scaled[j] += 0.5;
1055     }
1056    
1057     // find xyz-indices of cell that cutoffGroup is in.
1058     whichCell.x() = nCells_.x() * scaled.x();
1059     whichCell.y() = nCells_.y() * scaled.y();
1060     whichCell.z() = nCells_.z() * scaled.z();
1061    
1062     // find single index of this cell:
1063     cellIndex = Vlinear(whichCell, nCells_);
1064    
1065     // add this cutoff group to the list of groups in this cell;
1066     cellList_[cellIndex].push_back(i);
1067 gezelter 1581 }
1068 gezelter 1567 #endif
1069    
1070 gezelter 1587 for (int m1z = 0; m1z < nCells_.z(); m1z++) {
1071     for (int m1y = 0; m1y < nCells_.y(); m1y++) {
1072     for (int m1x = 0; m1x < nCells_.x(); m1x++) {
1073     Vector3i m1v(m1x, m1y, m1z);
1074     int m1 = Vlinear(m1v, nCells_);
1075 gezelter 1568
1076 gezelter 1587 for (vector<Vector3i>::iterator os = cellOffsets_.begin();
1077     os != cellOffsets_.end(); ++os) {
1078    
1079     Vector3i m2v = m1v + (*os);
1080    
1081     if (m2v.x() >= nCells_.x()) {
1082     m2v.x() = 0;
1083     } else if (m2v.x() < 0) {
1084     m2v.x() = nCells_.x() - 1;
1085     }
1086    
1087     if (m2v.y() >= nCells_.y()) {
1088     m2v.y() = 0;
1089     } else if (m2v.y() < 0) {
1090     m2v.y() = nCells_.y() - 1;
1091     }
1092    
1093     if (m2v.z() >= nCells_.z()) {
1094     m2v.z() = 0;
1095     } else if (m2v.z() < 0) {
1096     m2v.z() = nCells_.z() - 1;
1097     }
1098    
1099     int m2 = Vlinear (m2v, nCells_);
1100    
1101 gezelter 1567 #ifdef IS_MPI
1102 gezelter 1587 for (vector<int>::iterator j1 = cellListRow_[m1].begin();
1103     j1 != cellListRow_[m1].end(); ++j1) {
1104     for (vector<int>::iterator j2 = cellListCol_[m2].begin();
1105     j2 != cellListCol_[m2].end(); ++j2) {
1106    
1107     // Always do this if we're in different cells or if
1108     // we're in the same cell and the global index of the
1109     // j2 cutoff group is less than the j1 cutoff group
1110    
1111     if (m2 != m1 || cgColToGlobal[(*j2)] < cgRowToGlobal[(*j1)]) {
1112     dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)];
1113     snap_->wrapVector(dr);
1114     cuts = getGroupCutoffs( (*j1), (*j2) );
1115     if (dr.lengthSquare() < cuts.third) {
1116     neighborList.push_back(make_pair((*j1), (*j2)));
1117     }
1118 gezelter 1562 }
1119     }
1120     }
1121 gezelter 1567 #else
1122 gezelter 1587
1123     for (vector<int>::iterator j1 = cellList_[m1].begin();
1124     j1 != cellList_[m1].end(); ++j1) {
1125     for (vector<int>::iterator j2 = cellList_[m2].begin();
1126     j2 != cellList_[m2].end(); ++j2) {
1127    
1128     // Always do this if we're in different cells or if
1129     // we're in the same cell and the global index of the
1130     // j2 cutoff group is less than the j1 cutoff group
1131    
1132     if (m2 != m1 || (*j2) < (*j1)) {
1133     dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)];
1134     snap_->wrapVector(dr);
1135     cuts = getGroupCutoffs( (*j1), (*j2) );
1136     if (dr.lengthSquare() < cuts.third) {
1137     neighborList.push_back(make_pair((*j1), (*j2)));
1138     }
1139 gezelter 1567 }
1140     }
1141     }
1142 gezelter 1587 #endif
1143 gezelter 1567 }
1144 gezelter 1562 }
1145     }
1146     }
1147 gezelter 1587 } else {
1148     // branch to do all cutoff group pairs
1149     #ifdef IS_MPI
1150     for (int j1 = 0; j1 < nGroupsInRow_; j1++) {
1151     for (int j2 = 0; j2 < nGroupsInCol_; j2++) {
1152     dr = cgColData.position[j2] - cgRowData.position[j1];
1153     snap_->wrapVector(dr);
1154     cuts = getGroupCutoffs( j1, j2 );
1155     if (dr.lengthSquare() < cuts.third) {
1156     neighborList.push_back(make_pair(j1, j2));
1157     }
1158     }
1159     }
1160     #else
1161     for (int j1 = 0; j1 < nGroups_ - 1; j1++) {
1162     for (int j2 = j1 + 1; j2 < nGroups_; j2++) {
1163     dr = snap_->cgData.position[j2] - snap_->cgData.position[j1];
1164     snap_->wrapVector(dr);
1165     cuts = getGroupCutoffs( j1, j2 );
1166     if (dr.lengthSquare() < cuts.third) {
1167     neighborList.push_back(make_pair(j1, j2));
1168     }
1169     }
1170     }
1171     #endif
1172 gezelter 1562 }
1173 gezelter 1587
1174 gezelter 1568 // save the local cutoff group positions for the check that is
1175     // done on each loop:
1176     saved_CG_positions_.clear();
1177     for (int i = 0; i < nGroups_; i++)
1178     saved_CG_positions_.push_back(snap_->cgData.position[i]);
1179 gezelter 1587
1180 gezelter 1567 return neighborList;
1181 gezelter 1562 }
1182 gezelter 1539 } //end namespace OpenMD