ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/devel_omp/src/parallel/ForceMatrixDecomposition.cpp
Revision: 1579
Committed: Thu Jun 9 20:26:29 2011 UTC (13 years, 10 months ago) by gezelter
Original Path: branches/development/src/parallel/ForceMatrixDecomposition.cpp
File size: 36437 byte(s)
Log Message:
bug fixes (not done yet)

File Contents

# User Rev Content
1 gezelter 1539 /*
2     * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 chuckv 1538 *
4     * The University of Notre Dame grants you ("Licensee") a
5     * non-exclusive, royalty free, license to use, modify and
6     * redistribute this software in source and binary code form, provided
7     * that the following conditions are met:
8     *
9     * 1. Redistributions of source code must retain the above copyright
10     * notice, this list of conditions and the following disclaimer.
11     *
12     * 2. Redistributions in binary form must reproduce the above copyright
13     * notice, this list of conditions and the following disclaimer in the
14     * documentation and/or other materials provided with the
15     * distribution.
16     *
17     * This software is provided "AS IS," without a warranty of any
18     * kind. All express or implied conditions, representations and
19     * warranties, including any implied warranty of merchantability,
20     * fitness for a particular purpose or non-infringement, are hereby
21     * excluded. The University of Notre Dame and its licensors shall not
22     * be liable for any damages suffered by licensee as a result of
23     * using, modifying or distributing the software or its
24     * derivatives. In no event will the University of Notre Dame or its
25     * licensors be liable for any lost revenue, profit or data, or for
26     * direct, indirect, special, consequential, incidental or punitive
27     * damages, however caused and regardless of the theory of liability,
28     * arising out of the use of or inability to use software, even if the
29     * University of Notre Dame has been advised of the possibility of
30     * such damages.
31     *
32     * SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your
33     * research, please cite the appropriate papers when you publish your
34     * work. Good starting points are:
35     *
36     * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).
37     * [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).
38     * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).
39     * [4] Vardeman & Gezelter, in progress (2009).
40     */
41 gezelter 1549 #include "parallel/ForceMatrixDecomposition.hpp"
42 gezelter 1539 #include "math/SquareMatrix3.hpp"
43 gezelter 1544 #include "nonbonded/NonBondedInteraction.hpp"
44     #include "brains/SnapshotManager.hpp"
45 gezelter 1570 #include "brains/PairList.hpp"
46 chuckv 1538
47 gezelter 1541 using namespace std;
48 gezelter 1539 namespace OpenMD {
49 chuckv 1538
50 gezelter 1544 /**
51     * distributeInitialData is essentially a copy of the older fortran
52     * SimulationSetup
53     */
54    
55 gezelter 1549 void ForceMatrixDecomposition::distributeInitialData() {
56 gezelter 1551 snap_ = sman_->getCurrentSnapshot();
57     storageLayout_ = sman_->getStorageLayout();
58 gezelter 1571 ff_ = info_->getForceField();
59 gezelter 1567 nLocal_ = snap_->getNumberOfAtoms();
60 chuckv 1538
61 gezelter 1577 nGroups_ = info_->getNLocalCutoffGroups();
62 gezelter 1579 cerr << "in dId, nGroups = " << nGroups_ << "\n";
63 gezelter 1569 // gather the information for atomtype IDs (atids):
64 gezelter 1571 identsLocal = info_->getIdentArray();
65 gezelter 1569 AtomLocalToGlobal = info_->getGlobalAtomIndices();
66     cgLocalToGlobal = info_->getGlobalGroupIndices();
67     vector<int> globalGroupMembership = info_->getGlobalGroupMembership();
68     vector<RealType> massFactorsLocal = info_->getMassFactors();
69 gezelter 1570 PairList excludes = info_->getExcludedInteractions();
70     PairList oneTwo = info_->getOneTwoInteractions();
71     PairList oneThree = info_->getOneThreeInteractions();
72     PairList oneFour = info_->getOneFourInteractions();
73 gezelter 1569
74 gezelter 1567 #ifdef IS_MPI
75    
76     AtomCommIntRow = new Communicator<Row,int>(nLocal_);
77     AtomCommRealRow = new Communicator<Row,RealType>(nLocal_);
78     AtomCommVectorRow = new Communicator<Row,Vector3d>(nLocal_);
79     AtomCommMatrixRow = new Communicator<Row,Mat3x3d>(nLocal_);
80 gezelter 1575 AtomCommPotRow = new Communicator<Row,potVec>(nLocal_);
81 chuckv 1538
82 gezelter 1567 AtomCommIntColumn = new Communicator<Column,int>(nLocal_);
83     AtomCommRealColumn = new Communicator<Column,RealType>(nLocal_);
84     AtomCommVectorColumn = new Communicator<Column,Vector3d>(nLocal_);
85     AtomCommMatrixColumn = new Communicator<Column,Mat3x3d>(nLocal_);
86 gezelter 1575 AtomCommPotColumn = new Communicator<Column,potVec>(nLocal_);
87 gezelter 1541
88 gezelter 1567 cgCommIntRow = new Communicator<Row,int>(nGroups_);
89     cgCommVectorRow = new Communicator<Row,Vector3d>(nGroups_);
90     cgCommIntColumn = new Communicator<Column,int>(nGroups_);
91     cgCommVectorColumn = new Communicator<Column,Vector3d>(nGroups_);
92 gezelter 1551
93 gezelter 1567 nAtomsInRow_ = AtomCommIntRow->getSize();
94     nAtomsInCol_ = AtomCommIntColumn->getSize();
95     nGroupsInRow_ = cgCommIntRow->getSize();
96     nGroupsInCol_ = cgCommIntColumn->getSize();
97    
98 gezelter 1551 // Modify the data storage objects with the correct layouts and sizes:
99 gezelter 1567 atomRowData.resize(nAtomsInRow_);
100 gezelter 1551 atomRowData.setStorageLayout(storageLayout_);
101 gezelter 1567 atomColData.resize(nAtomsInCol_);
102 gezelter 1551 atomColData.setStorageLayout(storageLayout_);
103 gezelter 1567 cgRowData.resize(nGroupsInRow_);
104 gezelter 1551 cgRowData.setStorageLayout(DataStorage::dslPosition);
105 gezelter 1567 cgColData.resize(nGroupsInCol_);
106 gezelter 1551 cgColData.setStorageLayout(DataStorage::dslPosition);
107 gezelter 1575
108 gezelter 1577 identsRow.resize(nAtomsInRow_);
109     identsCol.resize(nAtomsInCol_);
110 gezelter 1549
111     AtomCommIntRow->gather(identsLocal, identsRow);
112     AtomCommIntColumn->gather(identsLocal, identsCol);
113    
114     AtomCommIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal);
115     AtomCommIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal);
116    
117     cgCommIntRow->gather(cgLocalToGlobal, cgRowToGlobal);
118     cgCommIntColumn->gather(cgLocalToGlobal, cgColToGlobal);
119 gezelter 1541
120 gezelter 1569 AtomCommRealRow->gather(massFactorsLocal, massFactorsRow);
121     AtomCommRealColumn->gather(massFactorsLocal, massFactorsCol);
122    
123     groupListRow_.clear();
124 gezelter 1577 groupListRow_.resize(nGroupsInRow_);
125 gezelter 1569 for (int i = 0; i < nGroupsInRow_; i++) {
126     int gid = cgRowToGlobal[i];
127     for (int j = 0; j < nAtomsInRow_; j++) {
128     int aid = AtomRowToGlobal[j];
129     if (globalGroupMembership[aid] == gid)
130     groupListRow_[i].push_back(j);
131     }
132     }
133    
134     groupListCol_.clear();
135 gezelter 1577 groupListCol_.resize(nGroupsInCol_);
136 gezelter 1569 for (int i = 0; i < nGroupsInCol_; i++) {
137     int gid = cgColToGlobal[i];
138     for (int j = 0; j < nAtomsInCol_; j++) {
139     int aid = AtomColToGlobal[j];
140     if (globalGroupMembership[aid] == gid)
141     groupListCol_[i].push_back(j);
142     }
143     }
144    
145 gezelter 1579 skipsForAtom.clear();
146     skipsForAtom.resize(nAtomsInRow_);
147     toposForAtom.clear();
148     toposForAtom.resize(nAtomsInRow_);
149     topoDist.clear();
150     topoDist.resize(nAtomsInRow_);
151 gezelter 1570 for (int i = 0; i < nAtomsInRow_; i++) {
152 gezelter 1571 int iglob = AtomRowToGlobal[i];
153 gezelter 1579
154 gezelter 1570 for (int j = 0; j < nAtomsInCol_; j++) {
155 gezelter 1579 int jglob = AtomColToGlobal[j];
156    
157 gezelter 1570 if (excludes.hasPair(iglob, jglob))
158 gezelter 1579 skipsForAtom[i].push_back(j);
159    
160 gezelter 1570 if (oneTwo.hasPair(iglob, jglob)) {
161 gezelter 1579 toposForAtom[i].push_back(j);
162     topoDist[i].push_back(1);
163     } else {
164     if (oneThree.hasPair(iglob, jglob)) {
165     toposForAtom[i].push_back(j);
166     topoDist[i].push_back(2);
167     } else {
168     if (oneFour.hasPair(iglob, jglob)) {
169     toposForAtom[i].push_back(j);
170     topoDist[i].push_back(3);
171     }
172     }
173 gezelter 1570 }
174     }
175     }
176    
177 gezelter 1569 #endif
178 gezelter 1579
179 gezelter 1569 groupList_.clear();
180 gezelter 1577 groupList_.resize(nGroups_);
181 gezelter 1569 for (int i = 0; i < nGroups_; i++) {
182     int gid = cgLocalToGlobal[i];
183     for (int j = 0; j < nLocal_; j++) {
184     int aid = AtomLocalToGlobal[j];
185 gezelter 1577 if (globalGroupMembership[aid] == gid) {
186 gezelter 1569 groupList_[i].push_back(j);
187 gezelter 1577 }
188 gezelter 1569 }
189     }
190    
191 gezelter 1579 skipsForAtom.clear();
192     skipsForAtom.resize(nLocal_);
193     toposForAtom.clear();
194     toposForAtom.resize(nLocal_);
195     topoDist.clear();
196     topoDist.resize(nLocal_);
197 gezelter 1569
198 gezelter 1570 for (int i = 0; i < nLocal_; i++) {
199     int iglob = AtomLocalToGlobal[i];
200 gezelter 1579
201 gezelter 1570 for (int j = 0; j < nLocal_; j++) {
202 gezelter 1579 int jglob = AtomLocalToGlobal[j];
203    
204 gezelter 1570 if (excludes.hasPair(iglob, jglob))
205 gezelter 1579 skipsForAtom[i].push_back(j);
206    
207 gezelter 1570 if (oneTwo.hasPair(iglob, jglob)) {
208 gezelter 1579 toposForAtom[i].push_back(j);
209     topoDist[i].push_back(1);
210     } else {
211     if (oneThree.hasPair(iglob, jglob)) {
212     toposForAtom[i].push_back(j);
213     topoDist[i].push_back(2);
214     } else {
215     if (oneFour.hasPair(iglob, jglob)) {
216     toposForAtom[i].push_back(j);
217     topoDist[i].push_back(3);
218     }
219     }
220 gezelter 1570 }
221     }
222 gezelter 1579 }
223    
224     createGtypeCutoffMap();
225 gezelter 1576 }
226    
227     void ForceMatrixDecomposition::createGtypeCutoffMap() {
228    
229     RealType tol = 1e-6;
230     RealType rc;
231     int atid;
232     set<AtomType*> atypes = info_->getSimulatedAtomTypes();
233     vector<RealType> atypeCutoff;
234 gezelter 1577 atypeCutoff.resize( atypes.size() );
235 gezelter 1576
236 gezelter 1579 for (set<AtomType*>::iterator at = atypes.begin();
237     at != atypes.end(); ++at){
238 gezelter 1576 rc = interactionMan_->getSuggestedCutoffRadius(*at);
239     atid = (*at)->getIdent();
240     atypeCutoff[atid] = rc;
241 gezelter 1570 }
242 gezelter 1576
243     vector<RealType> gTypeCutoffs;
244    
245     // first we do a single loop over the cutoff groups to find the
246     // largest cutoff for any atypes present in this group.
247     #ifdef IS_MPI
248     vector<RealType> groupCutoffRow(nGroupsInRow_, 0.0);
249 gezelter 1579 groupRowToGtype.resize(nGroupsInRow_);
250 gezelter 1576 for (int cg1 = 0; cg1 < nGroupsInRow_; cg1++) {
251     vector<int> atomListRow = getAtomsInGroupRow(cg1);
252     for (vector<int>::iterator ia = atomListRow.begin();
253     ia != atomListRow.end(); ++ia) {
254     int atom1 = (*ia);
255     atid = identsRow[atom1];
256     if (atypeCutoff[atid] > groupCutoffRow[cg1]) {
257     groupCutoffRow[cg1] = atypeCutoff[atid];
258     }
259     }
260    
261     bool gTypeFound = false;
262     for (int gt = 0; gt < gTypeCutoffs.size(); gt++) {
263     if (abs(groupCutoffRow[cg1] - gTypeCutoffs[gt]) < tol) {
264     groupRowToGtype[cg1] = gt;
265     gTypeFound = true;
266     }
267     }
268     if (!gTypeFound) {
269     gTypeCutoffs.push_back( groupCutoffRow[cg1] );
270     groupRowToGtype[cg1] = gTypeCutoffs.size() - 1;
271     }
272    
273     }
274     vector<RealType> groupCutoffCol(nGroupsInCol_, 0.0);
275 gezelter 1579 groupColToGtype.resize(nGroupsInCol_);
276 gezelter 1576 for (int cg2 = 0; cg2 < nGroupsInCol_; cg2++) {
277     vector<int> atomListCol = getAtomsInGroupColumn(cg2);
278     for (vector<int>::iterator jb = atomListCol.begin();
279     jb != atomListCol.end(); ++jb) {
280     int atom2 = (*jb);
281     atid = identsCol[atom2];
282     if (atypeCutoff[atid] > groupCutoffCol[cg2]) {
283     groupCutoffCol[cg2] = atypeCutoff[atid];
284     }
285     }
286     bool gTypeFound = false;
287     for (int gt = 0; gt < gTypeCutoffs.size(); gt++) {
288     if (abs(groupCutoffCol[cg2] - gTypeCutoffs[gt]) < tol) {
289     groupColToGtype[cg2] = gt;
290     gTypeFound = true;
291     }
292     }
293     if (!gTypeFound) {
294     gTypeCutoffs.push_back( groupCutoffCol[cg2] );
295     groupColToGtype[cg2] = gTypeCutoffs.size() - 1;
296     }
297     }
298     #else
299 gezelter 1579
300 gezelter 1576 vector<RealType> groupCutoff(nGroups_, 0.0);
301 gezelter 1579 groupToGtype.resize(nGroups_);
302    
303     cerr << "nGroups = " << nGroups_ << "\n";
304 gezelter 1576 for (int cg1 = 0; cg1 < nGroups_; cg1++) {
305 gezelter 1579
306 gezelter 1576 groupCutoff[cg1] = 0.0;
307     vector<int> atomList = getAtomsInGroupRow(cg1);
308 gezelter 1579
309 gezelter 1576 for (vector<int>::iterator ia = atomList.begin();
310     ia != atomList.end(); ++ia) {
311     int atom1 = (*ia);
312     atid = identsLocal[atom1];
313     if (atypeCutoff[atid] > groupCutoff[cg1]) {
314     groupCutoff[cg1] = atypeCutoff[atid];
315     }
316     }
317    
318     bool gTypeFound = false;
319     for (int gt = 0; gt < gTypeCutoffs.size(); gt++) {
320     if (abs(groupCutoff[cg1] - gTypeCutoffs[gt]) < tol) {
321     groupToGtype[cg1] = gt;
322     gTypeFound = true;
323     }
324     }
325     if (!gTypeFound) {
326     gTypeCutoffs.push_back( groupCutoff[cg1] );
327     groupToGtype[cg1] = gTypeCutoffs.size() - 1;
328     }
329     }
330     #endif
331    
332 gezelter 1579 cerr << "gTypeCutoffs.size() = " << gTypeCutoffs.size() << "\n";
333 gezelter 1576 // Now we find the maximum group cutoff value present in the simulation
334    
335 gezelter 1579 RealType groupMax = *max_element(gTypeCutoffs.begin(), gTypeCutoffs.end());
336 gezelter 1576
337     #ifdef IS_MPI
338     MPI::COMM_WORLD.Allreduce(&groupMax, &groupMax, 1, MPI::REALTYPE, MPI::MAX);
339     #endif
340    
341     RealType tradRcut = groupMax;
342    
343     for (int i = 0; i < gTypeCutoffs.size(); i++) {
344 gezelter 1579 for (int j = 0; j < gTypeCutoffs.size(); j++) {
345 gezelter 1576 RealType thisRcut;
346     switch(cutoffPolicy_) {
347     case TRADITIONAL:
348     thisRcut = tradRcut;
349 gezelter 1579 break;
350 gezelter 1576 case MIX:
351     thisRcut = 0.5 * (gTypeCutoffs[i] + gTypeCutoffs[j]);
352 gezelter 1579 break;
353 gezelter 1576 case MAX:
354     thisRcut = max(gTypeCutoffs[i], gTypeCutoffs[j]);
355 gezelter 1579 break;
356 gezelter 1576 default:
357     sprintf(painCave.errMsg,
358     "ForceMatrixDecomposition::createGtypeCutoffMap "
359     "hit an unknown cutoff policy!\n");
360     painCave.severity = OPENMD_ERROR;
361     painCave.isFatal = 1;
362 gezelter 1579 simError();
363     break;
364 gezelter 1576 }
365    
366     pair<int,int> key = make_pair(i,j);
367     gTypeCutoffMap[key].first = thisRcut;
368    
369     if (thisRcut > largestRcut_) largestRcut_ = thisRcut;
370    
371     gTypeCutoffMap[key].second = thisRcut*thisRcut;
372    
373     gTypeCutoffMap[key].third = pow(thisRcut + skinThickness_, 2);
374    
375     // sanity check
376    
377     if (userChoseCutoff_) {
378     if (abs(gTypeCutoffMap[key].first - userCutoff_) > 0.0001) {
379     sprintf(painCave.errMsg,
380     "ForceMatrixDecomposition::createGtypeCutoffMap "
381     "user-specified rCut does not match computed group Cutoff\n");
382     painCave.severity = OPENMD_ERROR;
383     painCave.isFatal = 1;
384     simError();
385     }
386     }
387     }
388     }
389 gezelter 1539 }
390 gezelter 1576
391    
392     groupCutoffs ForceMatrixDecomposition::getGroupCutoffs(int cg1, int cg2) {
393 gezelter 1579 int i, j;
394 gezelter 1576 #ifdef IS_MPI
395     i = groupRowToGtype[cg1];
396     j = groupColToGtype[cg2];
397     #else
398     i = groupToGtype[cg1];
399     j = groupToGtype[cg2];
400 gezelter 1579 #endif
401 gezelter 1576 return gTypeCutoffMap[make_pair(i,j)];
402     }
403    
404 gezelter 1579 int ForceMatrixDecomposition::getTopologicalDistance(int atom1, int atom2) {
405     for (int j = 0; j < toposForAtom[atom1].size(); j++) {
406     if (toposForAtom[atom1][j] == atom2)
407     return topoDist[atom1][j];
408     }
409     return 0;
410     }
411 gezelter 1576
412 gezelter 1575 void ForceMatrixDecomposition::zeroWorkArrays() {
413    
414     for (int j = 0; j < N_INTERACTION_FAMILIES; j++) {
415     longRangePot_[j] = 0.0;
416     }
417    
418     #ifdef IS_MPI
419     if (storageLayout_ & DataStorage::dslForce) {
420     fill(atomRowData.force.begin(), atomRowData.force.end(), V3Zero);
421     fill(atomColData.force.begin(), atomColData.force.end(), V3Zero);
422     }
423    
424     if (storageLayout_ & DataStorage::dslTorque) {
425     fill(atomRowData.torque.begin(), atomRowData.torque.end(), V3Zero);
426     fill(atomColData.torque.begin(), atomColData.torque.end(), V3Zero);
427     }
428    
429     fill(pot_row.begin(), pot_row.end(),
430     Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
431    
432     fill(pot_col.begin(), pot_col.end(),
433     Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
434    
435     pot_local = Vector<RealType, N_INTERACTION_FAMILIES>(0.0);
436    
437     if (storageLayout_ & DataStorage::dslParticlePot) {
438     fill(atomRowData.particlePot.begin(), atomRowData.particlePot.end(), 0.0);
439     fill(atomColData.particlePot.begin(), atomColData.particlePot.end(), 0.0);
440     }
441    
442     if (storageLayout_ & DataStorage::dslDensity) {
443     fill(atomRowData.density.begin(), atomRowData.density.end(), 0.0);
444     fill(atomColData.density.begin(), atomColData.density.end(), 0.0);
445     }
446    
447     if (storageLayout_ & DataStorage::dslFunctional) {
448     fill(atomRowData.functional.begin(), atomRowData.functional.end(), 0.0);
449     fill(atomColData.functional.begin(), atomColData.functional.end(), 0.0);
450     }
451    
452     if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
453     fill(atomRowData.functionalDerivative.begin(),
454     atomRowData.functionalDerivative.end(), 0.0);
455     fill(atomColData.functionalDerivative.begin(),
456     atomColData.functionalDerivative.end(), 0.0);
457     }
458    
459     #else
460    
461     if (storageLayout_ & DataStorage::dslParticlePot) {
462     fill(snap_->atomData.particlePot.begin(),
463     snap_->atomData.particlePot.end(), 0.0);
464     }
465    
466     if (storageLayout_ & DataStorage::dslDensity) {
467     fill(snap_->atomData.density.begin(),
468     snap_->atomData.density.end(), 0.0);
469     }
470     if (storageLayout_ & DataStorage::dslFunctional) {
471     fill(snap_->atomData.functional.begin(),
472     snap_->atomData.functional.end(), 0.0);
473     }
474     if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
475     fill(snap_->atomData.functionalDerivative.begin(),
476     snap_->atomData.functionalDerivative.end(), 0.0);
477     }
478     #endif
479    
480     }
481    
482    
483 gezelter 1549 void ForceMatrixDecomposition::distributeData() {
484 gezelter 1551 snap_ = sman_->getCurrentSnapshot();
485     storageLayout_ = sman_->getStorageLayout();
486 chuckv 1538 #ifdef IS_MPI
487 gezelter 1540
488 gezelter 1539 // gather up the atomic positions
489 gezelter 1551 AtomCommVectorRow->gather(snap_->atomData.position,
490     atomRowData.position);
491     AtomCommVectorColumn->gather(snap_->atomData.position,
492     atomColData.position);
493 gezelter 1539
494     // gather up the cutoff group positions
495 gezelter 1551 cgCommVectorRow->gather(snap_->cgData.position,
496     cgRowData.position);
497     cgCommVectorColumn->gather(snap_->cgData.position,
498     cgColData.position);
499 gezelter 1539
500     // if needed, gather the atomic rotation matrices
501 gezelter 1551 if (storageLayout_ & DataStorage::dslAmat) {
502     AtomCommMatrixRow->gather(snap_->atomData.aMat,
503     atomRowData.aMat);
504     AtomCommMatrixColumn->gather(snap_->atomData.aMat,
505     atomColData.aMat);
506 gezelter 1539 }
507    
508     // if needed, gather the atomic eletrostatic frames
509 gezelter 1551 if (storageLayout_ & DataStorage::dslElectroFrame) {
510     AtomCommMatrixRow->gather(snap_->atomData.electroFrame,
511     atomRowData.electroFrame);
512     AtomCommMatrixColumn->gather(snap_->atomData.electroFrame,
513     atomColData.electroFrame);
514 gezelter 1539 }
515     #endif
516     }
517    
518 gezelter 1575 /* collects information obtained during the pre-pair loop onto local
519     * data structures.
520     */
521 gezelter 1549 void ForceMatrixDecomposition::collectIntermediateData() {
522 gezelter 1551 snap_ = sman_->getCurrentSnapshot();
523     storageLayout_ = sman_->getStorageLayout();
524 gezelter 1539 #ifdef IS_MPI
525    
526 gezelter 1551 if (storageLayout_ & DataStorage::dslDensity) {
527    
528     AtomCommRealRow->scatter(atomRowData.density,
529     snap_->atomData.density);
530    
531     int n = snap_->atomData.density.size();
532 gezelter 1575 vector<RealType> rho_tmp(n, 0.0);
533 gezelter 1551 AtomCommRealColumn->scatter(atomColData.density, rho_tmp);
534 gezelter 1539 for (int i = 0; i < n; i++)
535 gezelter 1551 snap_->atomData.density[i] += rho_tmp[i];
536 gezelter 1539 }
537 chuckv 1538 #endif
538 gezelter 1539 }
539 gezelter 1575
540     /*
541     * redistributes information obtained during the pre-pair loop out to
542     * row and column-indexed data structures
543     */
544 gezelter 1549 void ForceMatrixDecomposition::distributeIntermediateData() {
545 gezelter 1551 snap_ = sman_->getCurrentSnapshot();
546     storageLayout_ = sman_->getStorageLayout();
547 chuckv 1538 #ifdef IS_MPI
548 gezelter 1551 if (storageLayout_ & DataStorage::dslFunctional) {
549     AtomCommRealRow->gather(snap_->atomData.functional,
550     atomRowData.functional);
551     AtomCommRealColumn->gather(snap_->atomData.functional,
552     atomColData.functional);
553 gezelter 1539 }
554    
555 gezelter 1551 if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
556     AtomCommRealRow->gather(snap_->atomData.functionalDerivative,
557     atomRowData.functionalDerivative);
558     AtomCommRealColumn->gather(snap_->atomData.functionalDerivative,
559     atomColData.functionalDerivative);
560 gezelter 1539 }
561 chuckv 1538 #endif
562     }
563 gezelter 1539
564    
565 gezelter 1549 void ForceMatrixDecomposition::collectData() {
566 gezelter 1551 snap_ = sman_->getCurrentSnapshot();
567     storageLayout_ = sman_->getStorageLayout();
568     #ifdef IS_MPI
569     int n = snap_->atomData.force.size();
570 gezelter 1544 vector<Vector3d> frc_tmp(n, V3Zero);
571 gezelter 1541
572 gezelter 1551 AtomCommVectorRow->scatter(atomRowData.force, frc_tmp);
573 gezelter 1541 for (int i = 0; i < n; i++) {
574 gezelter 1551 snap_->atomData.force[i] += frc_tmp[i];
575 gezelter 1541 frc_tmp[i] = 0.0;
576     }
577 gezelter 1540
578 gezelter 1551 AtomCommVectorColumn->scatter(atomColData.force, frc_tmp);
579 gezelter 1540 for (int i = 0; i < n; i++)
580 gezelter 1551 snap_->atomData.force[i] += frc_tmp[i];
581 gezelter 1540
582    
583 gezelter 1551 if (storageLayout_ & DataStorage::dslTorque) {
584 gezelter 1541
585 gezelter 1551 int nt = snap_->atomData.force.size();
586 gezelter 1544 vector<Vector3d> trq_tmp(nt, V3Zero);
587 gezelter 1541
588 gezelter 1551 AtomCommVectorRow->scatter(atomRowData.torque, trq_tmp);
589 gezelter 1541 for (int i = 0; i < n; i++) {
590 gezelter 1551 snap_->atomData.torque[i] += trq_tmp[i];
591 gezelter 1541 trq_tmp[i] = 0.0;
592     }
593 gezelter 1540
594 gezelter 1551 AtomCommVectorColumn->scatter(atomColData.torque, trq_tmp);
595 gezelter 1540 for (int i = 0; i < n; i++)
596 gezelter 1551 snap_->atomData.torque[i] += trq_tmp[i];
597 gezelter 1540 }
598    
599 gezelter 1567 nLocal_ = snap_->getNumberOfAtoms();
600 gezelter 1544
601 gezelter 1575 vector<potVec> pot_temp(nLocal_,
602     Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
603    
604     // scatter/gather pot_row into the members of my column
605    
606     AtomCommPotRow->scatter(pot_row, pot_temp);
607    
608     for (int ii = 0; ii < pot_temp.size(); ii++ )
609     pot_local += pot_temp[ii];
610 gezelter 1540
611 gezelter 1575 fill(pot_temp.begin(), pot_temp.end(),
612     Vector<RealType, N_INTERACTION_FAMILIES> (0.0));
613    
614     AtomCommPotColumn->scatter(pot_col, pot_temp);
615    
616     for (int ii = 0; ii < pot_temp.size(); ii++ )
617     pot_local += pot_temp[ii];
618    
619 gezelter 1539 #endif
620 chuckv 1538 }
621 gezelter 1551
622 gezelter 1570 int ForceMatrixDecomposition::getNAtomsInRow() {
623     #ifdef IS_MPI
624     return nAtomsInRow_;
625     #else
626     return nLocal_;
627     #endif
628     }
629    
630 gezelter 1569 /**
631     * returns the list of atoms belonging to this group.
632     */
633     vector<int> ForceMatrixDecomposition::getAtomsInGroupRow(int cg1){
634     #ifdef IS_MPI
635     return groupListRow_[cg1];
636     #else
637     return groupList_[cg1];
638     #endif
639     }
640    
641     vector<int> ForceMatrixDecomposition::getAtomsInGroupColumn(int cg2){
642     #ifdef IS_MPI
643     return groupListCol_[cg2];
644     #else
645     return groupList_[cg2];
646     #endif
647     }
648 chuckv 1538
649 gezelter 1551 Vector3d ForceMatrixDecomposition::getIntergroupVector(int cg1, int cg2){
650     Vector3d d;
651    
652     #ifdef IS_MPI
653     d = cgColData.position[cg2] - cgRowData.position[cg1];
654     #else
655     d = snap_->cgData.position[cg2] - snap_->cgData.position[cg1];
656     #endif
657    
658     snap_->wrapVector(d);
659     return d;
660     }
661    
662    
663     Vector3d ForceMatrixDecomposition::getAtomToGroupVectorRow(int atom1, int cg1){
664    
665     Vector3d d;
666    
667     #ifdef IS_MPI
668     d = cgRowData.position[cg1] - atomRowData.position[atom1];
669     #else
670     d = snap_->cgData.position[cg1] - snap_->atomData.position[atom1];
671     #endif
672    
673     snap_->wrapVector(d);
674     return d;
675     }
676    
677     Vector3d ForceMatrixDecomposition::getAtomToGroupVectorColumn(int atom2, int cg2){
678     Vector3d d;
679    
680     #ifdef IS_MPI
681     d = cgColData.position[cg2] - atomColData.position[atom2];
682     #else
683     d = snap_->cgData.position[cg2] - snap_->atomData.position[atom2];
684     #endif
685    
686     snap_->wrapVector(d);
687     return d;
688     }
689 gezelter 1569
690     RealType ForceMatrixDecomposition::getMassFactorRow(int atom1) {
691     #ifdef IS_MPI
692     return massFactorsRow[atom1];
693     #else
694     return massFactorsLocal[atom1];
695     #endif
696     }
697    
698     RealType ForceMatrixDecomposition::getMassFactorColumn(int atom2) {
699     #ifdef IS_MPI
700     return massFactorsCol[atom2];
701     #else
702     return massFactorsLocal[atom2];
703     #endif
704    
705     }
706 gezelter 1551
707     Vector3d ForceMatrixDecomposition::getInteratomicVector(int atom1, int atom2){
708     Vector3d d;
709    
710     #ifdef IS_MPI
711     d = atomColData.position[atom2] - atomRowData.position[atom1];
712     #else
713     d = snap_->atomData.position[atom2] - snap_->atomData.position[atom1];
714     #endif
715    
716     snap_->wrapVector(d);
717     return d;
718     }
719    
720 gezelter 1579 vector<int> ForceMatrixDecomposition::getSkipsForAtom(int atom1) {
721     return skipsForAtom[atom1];
722 gezelter 1570 }
723    
724     /**
725 gezelter 1575 * There are a number of reasons to skip a pair or a
726     * particle. Mostly we do this to exclude atoms who are involved in
727     * short range interactions (bonds, bends, torsions), but we also
728     * need to exclude some overcounted interactions that result from
729     * the parallel decomposition.
730 gezelter 1570 */
731     bool ForceMatrixDecomposition::skipAtomPair(int atom1, int atom2) {
732     int unique_id_1, unique_id_2;
733    
734     #ifdef IS_MPI
735     // in MPI, we have to look up the unique IDs for each atom
736     unique_id_1 = AtomRowToGlobal[atom1];
737     unique_id_2 = AtomColToGlobal[atom2];
738    
739     // this situation should only arise in MPI simulations
740     if (unique_id_1 == unique_id_2) return true;
741    
742     // this prevents us from doing the pair on multiple processors
743     if (unique_id_1 < unique_id_2) {
744     if ((unique_id_1 + unique_id_2) % 2 == 0) return true;
745     } else {
746     if ((unique_id_1 + unique_id_2) % 2 == 1) return true;
747     }
748     #else
749     // in the normal loop, the atom numbers are unique
750     unique_id_1 = atom1;
751     unique_id_2 = atom2;
752     #endif
753    
754 gezelter 1579 for (vector<int>::iterator i = skipsForAtom[atom1].begin();
755     i != skipsForAtom[atom1].end(); ++i) {
756 gezelter 1570 if ( (*i) == unique_id_2 ) return true;
757     }
758 gezelter 1579
759 gezelter 1570 }
760    
761    
762 gezelter 1551 void ForceMatrixDecomposition::addForceToAtomRow(int atom1, Vector3d fg){
763     #ifdef IS_MPI
764     atomRowData.force[atom1] += fg;
765     #else
766     snap_->atomData.force[atom1] += fg;
767     #endif
768     }
769    
770     void ForceMatrixDecomposition::addForceToAtomColumn(int atom2, Vector3d fg){
771     #ifdef IS_MPI
772     atomColData.force[atom2] += fg;
773     #else
774     snap_->atomData.force[atom2] += fg;
775     #endif
776     }
777    
778     // filling interaction blocks with pointers
779     InteractionData ForceMatrixDecomposition::fillInteractionData(int atom1, int atom2) {
780 gezelter 1567 InteractionData idat;
781 gezelter 1551
782     #ifdef IS_MPI
783 gezelter 1571
784     idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]),
785     ff_->getAtomType(identsCol[atom2]) );
786    
787 gezelter 1575
788 gezelter 1551 if (storageLayout_ & DataStorage::dslAmat) {
789 gezelter 1554 idat.A1 = &(atomRowData.aMat[atom1]);
790     idat.A2 = &(atomColData.aMat[atom2]);
791 gezelter 1551 }
792 gezelter 1567
793 gezelter 1551 if (storageLayout_ & DataStorage::dslElectroFrame) {
794 gezelter 1554 idat.eFrame1 = &(atomRowData.electroFrame[atom1]);
795     idat.eFrame2 = &(atomColData.electroFrame[atom2]);
796 gezelter 1551 }
797    
798     if (storageLayout_ & DataStorage::dslTorque) {
799 gezelter 1554 idat.t1 = &(atomRowData.torque[atom1]);
800     idat.t2 = &(atomColData.torque[atom2]);
801 gezelter 1551 }
802    
803     if (storageLayout_ & DataStorage::dslDensity) {
804 gezelter 1554 idat.rho1 = &(atomRowData.density[atom1]);
805     idat.rho2 = &(atomColData.density[atom2]);
806 gezelter 1551 }
807    
808 gezelter 1575 if (storageLayout_ & DataStorage::dslFunctional) {
809     idat.frho1 = &(atomRowData.functional[atom1]);
810     idat.frho2 = &(atomColData.functional[atom2]);
811     }
812    
813 gezelter 1551 if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
814 gezelter 1554 idat.dfrho1 = &(atomRowData.functionalDerivative[atom1]);
815     idat.dfrho2 = &(atomColData.functionalDerivative[atom2]);
816 gezelter 1551 }
817 gezelter 1570
818 gezelter 1575 if (storageLayout_ & DataStorage::dslParticlePot) {
819     idat.particlePot1 = &(atomRowData.particlePot[atom1]);
820     idat.particlePot2 = &(atomColData.particlePot[atom2]);
821     }
822    
823 gezelter 1562 #else
824 gezelter 1571
825     idat.atypes = make_pair( ff_->getAtomType(identsLocal[atom1]),
826     ff_->getAtomType(identsLocal[atom2]) );
827    
828 gezelter 1562 if (storageLayout_ & DataStorage::dslAmat) {
829     idat.A1 = &(snap_->atomData.aMat[atom1]);
830     idat.A2 = &(snap_->atomData.aMat[atom2]);
831     }
832    
833     if (storageLayout_ & DataStorage::dslElectroFrame) {
834     idat.eFrame1 = &(snap_->atomData.electroFrame[atom1]);
835     idat.eFrame2 = &(snap_->atomData.electroFrame[atom2]);
836     }
837    
838     if (storageLayout_ & DataStorage::dslTorque) {
839     idat.t1 = &(snap_->atomData.torque[atom1]);
840     idat.t2 = &(snap_->atomData.torque[atom2]);
841     }
842    
843     if (storageLayout_ & DataStorage::dslDensity) {
844     idat.rho1 = &(snap_->atomData.density[atom1]);
845     idat.rho2 = &(snap_->atomData.density[atom2]);
846     }
847    
848 gezelter 1575 if (storageLayout_ & DataStorage::dslFunctional) {
849     idat.frho1 = &(snap_->atomData.functional[atom1]);
850     idat.frho2 = &(snap_->atomData.functional[atom2]);
851     }
852    
853 gezelter 1562 if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
854     idat.dfrho1 = &(snap_->atomData.functionalDerivative[atom1]);
855     idat.dfrho2 = &(snap_->atomData.functionalDerivative[atom2]);
856     }
857 gezelter 1575
858     if (storageLayout_ & DataStorage::dslParticlePot) {
859     idat.particlePot1 = &(snap_->atomData.particlePot[atom1]);
860     idat.particlePot2 = &(snap_->atomData.particlePot[atom2]);
861     }
862    
863 gezelter 1551 #endif
864 gezelter 1567 return idat;
865 gezelter 1551 }
866 gezelter 1567
867 gezelter 1575
868     void ForceMatrixDecomposition::unpackInteractionData(InteractionData idat, int atom1, int atom2) {
869     #ifdef IS_MPI
870     pot_row[atom1] += 0.5 * *(idat.pot);
871     pot_col[atom2] += 0.5 * *(idat.pot);
872    
873     atomRowData.force[atom1] += *(idat.f1);
874     atomColData.force[atom2] -= *(idat.f1);
875     #else
876     longRangePot_ += *(idat.pot);
877    
878     snap_->atomData.force[atom1] += *(idat.f1);
879     snap_->atomData.force[atom2] -= *(idat.f1);
880     #endif
881    
882     }
883    
884    
885 gezelter 1551 InteractionData ForceMatrixDecomposition::fillSkipData(int atom1, int atom2){
886 gezelter 1567
887 gezelter 1562 InteractionData idat;
888     #ifdef IS_MPI
889 gezelter 1571 idat.atypes = make_pair( ff_->getAtomType(identsRow[atom1]),
890     ff_->getAtomType(identsCol[atom2]) );
891    
892 gezelter 1562 if (storageLayout_ & DataStorage::dslElectroFrame) {
893     idat.eFrame1 = &(atomRowData.electroFrame[atom1]);
894     idat.eFrame2 = &(atomColData.electroFrame[atom2]);
895     }
896     if (storageLayout_ & DataStorage::dslTorque) {
897     idat.t1 = &(atomRowData.torque[atom1]);
898     idat.t2 = &(atomColData.torque[atom2]);
899     }
900 gezelter 1567 #else
901 gezelter 1571 idat.atypes = make_pair( ff_->getAtomType(identsLocal[atom1]),
902     ff_->getAtomType(identsLocal[atom2]) );
903    
904 gezelter 1567 if (storageLayout_ & DataStorage::dslElectroFrame) {
905     idat.eFrame1 = &(snap_->atomData.electroFrame[atom1]);
906     idat.eFrame2 = &(snap_->atomData.electroFrame[atom2]);
907     }
908     if (storageLayout_ & DataStorage::dslTorque) {
909     idat.t1 = &(snap_->atomData.torque[atom1]);
910     idat.t2 = &(snap_->atomData.torque[atom2]);
911     }
912 gezelter 1571 #endif
913 gezelter 1551 }
914 gezelter 1567
915 gezelter 1562 /*
916     * buildNeighborList
917     *
918     * first element of pair is row-indexed CutoffGroup
919     * second element of pair is column-indexed CutoffGroup
920     */
921 gezelter 1567 vector<pair<int, int> > ForceMatrixDecomposition::buildNeighborList() {
922    
923     vector<pair<int, int> > neighborList;
924 gezelter 1576 groupCutoffs cuts;
925 gezelter 1567 #ifdef IS_MPI
926 gezelter 1568 cellListRow_.clear();
927     cellListCol_.clear();
928 gezelter 1567 #else
929 gezelter 1568 cellList_.clear();
930 gezelter 1567 #endif
931 gezelter 1562
932 gezelter 1576 RealType rList_ = (largestRcut_ + skinThickness_);
933 gezelter 1567 RealType rl2 = rList_ * rList_;
934     Snapshot* snap_ = sman_->getCurrentSnapshot();
935 gezelter 1562 Mat3x3d Hmat = snap_->getHmat();
936     Vector3d Hx = Hmat.getColumn(0);
937     Vector3d Hy = Hmat.getColumn(1);
938     Vector3d Hz = Hmat.getColumn(2);
939    
940 gezelter 1568 nCells_.x() = (int) ( Hx.length() )/ rList_;
941     nCells_.y() = (int) ( Hy.length() )/ rList_;
942     nCells_.z() = (int) ( Hz.length() )/ rList_;
943 gezelter 1562
944 gezelter 1567 Mat3x3d invHmat = snap_->getInvHmat();
945     Vector3d rs, scaled, dr;
946     Vector3i whichCell;
947     int cellIndex;
948 gezelter 1579 int nCtot = nCells_.x() * nCells_.y() * nCells_.z();
949 gezelter 1567
950     #ifdef IS_MPI
951 gezelter 1579 cellListRow_.resize(nCtot);
952     cellListCol_.resize(nCtot);
953     #else
954     cellList_.resize(nCtot);
955     #endif
956    
957     #ifdef IS_MPI
958 gezelter 1567 for (int i = 0; i < nGroupsInRow_; i++) {
959 gezelter 1562 rs = cgRowData.position[i];
960 gezelter 1567 // scaled positions relative to the box vectors
961     scaled = invHmat * rs;
962     // wrap the vector back into the unit box by subtracting integer box
963     // numbers
964     for (int j = 0; j < 3; j++)
965     scaled[j] -= roundMe(scaled[j]);
966    
967     // find xyz-indices of cell that cutoffGroup is in.
968 gezelter 1568 whichCell.x() = nCells_.x() * scaled.x();
969     whichCell.y() = nCells_.y() * scaled.y();
970     whichCell.z() = nCells_.z() * scaled.z();
971 gezelter 1567
972     // find single index of this cell:
973 gezelter 1568 cellIndex = Vlinear(whichCell, nCells_);
974 gezelter 1567 // add this cutoff group to the list of groups in this cell;
975 gezelter 1568 cellListRow_[cellIndex].push_back(i);
976 gezelter 1562 }
977    
978 gezelter 1567 for (int i = 0; i < nGroupsInCol_; i++) {
979     rs = cgColData.position[i];
980     // scaled positions relative to the box vectors
981     scaled = invHmat * rs;
982     // wrap the vector back into the unit box by subtracting integer box
983     // numbers
984     for (int j = 0; j < 3; j++)
985     scaled[j] -= roundMe(scaled[j]);
986    
987     // find xyz-indices of cell that cutoffGroup is in.
988 gezelter 1568 whichCell.x() = nCells_.x() * scaled.x();
989     whichCell.y() = nCells_.y() * scaled.y();
990     whichCell.z() = nCells_.z() * scaled.z();
991 gezelter 1567
992     // find single index of this cell:
993 gezelter 1568 cellIndex = Vlinear(whichCell, nCells_);
994 gezelter 1567 // add this cutoff group to the list of groups in this cell;
995 gezelter 1568 cellListCol_[cellIndex].push_back(i);
996 gezelter 1562 }
997 gezelter 1567 #else
998     for (int i = 0; i < nGroups_; i++) {
999     rs = snap_->cgData.position[i];
1000     // scaled positions relative to the box vectors
1001     scaled = invHmat * rs;
1002     // wrap the vector back into the unit box by subtracting integer box
1003     // numbers
1004     for (int j = 0; j < 3; j++)
1005     scaled[j] -= roundMe(scaled[j]);
1006    
1007     // find xyz-indices of cell that cutoffGroup is in.
1008 gezelter 1568 whichCell.x() = nCells_.x() * scaled.x();
1009     whichCell.y() = nCells_.y() * scaled.y();
1010     whichCell.z() = nCells_.z() * scaled.z();
1011 gezelter 1567
1012     // find single index of this cell:
1013 gezelter 1568 cellIndex = Vlinear(whichCell, nCells_);
1014 gezelter 1567 // add this cutoff group to the list of groups in this cell;
1015 gezelter 1568 cellList_[cellIndex].push_back(i);
1016 gezelter 1567 }
1017     #endif
1018    
1019 gezelter 1568 for (int m1z = 0; m1z < nCells_.z(); m1z++) {
1020     for (int m1y = 0; m1y < nCells_.y(); m1y++) {
1021     for (int m1x = 0; m1x < nCells_.x(); m1x++) {
1022 gezelter 1562 Vector3i m1v(m1x, m1y, m1z);
1023 gezelter 1568 int m1 = Vlinear(m1v, nCells_);
1024 gezelter 1562
1025 gezelter 1568 for (vector<Vector3i>::iterator os = cellOffsets_.begin();
1026     os != cellOffsets_.end(); ++os) {
1027    
1028     Vector3i m2v = m1v + (*os);
1029    
1030     if (m2v.x() >= nCells_.x()) {
1031 gezelter 1562 m2v.x() = 0;
1032     } else if (m2v.x() < 0) {
1033 gezelter 1568 m2v.x() = nCells_.x() - 1;
1034 gezelter 1562 }
1035 gezelter 1568
1036     if (m2v.y() >= nCells_.y()) {
1037 gezelter 1562 m2v.y() = 0;
1038     } else if (m2v.y() < 0) {
1039 gezelter 1568 m2v.y() = nCells_.y() - 1;
1040 gezelter 1562 }
1041 gezelter 1568
1042     if (m2v.z() >= nCells_.z()) {
1043 gezelter 1567 m2v.z() = 0;
1044     } else if (m2v.z() < 0) {
1045 gezelter 1568 m2v.z() = nCells_.z() - 1;
1046 gezelter 1567 }
1047 gezelter 1568
1048     int m2 = Vlinear (m2v, nCells_);
1049 gezelter 1567
1050     #ifdef IS_MPI
1051 gezelter 1568 for (vector<int>::iterator j1 = cellListRow_[m1].begin();
1052     j1 != cellListRow_[m1].end(); ++j1) {
1053     for (vector<int>::iterator j2 = cellListCol_[m2].begin();
1054     j2 != cellListCol_[m2].end(); ++j2) {
1055 gezelter 1567
1056     // Always do this if we're in different cells or if
1057     // we're in the same cell and the global index of the
1058     // j2 cutoff group is less than the j1 cutoff group
1059    
1060     if (m2 != m1 || cgColToGlobal[(*j2)] < cgRowToGlobal[(*j1)]) {
1061     dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)];
1062     snap_->wrapVector(dr);
1063 gezelter 1576 cuts = getGroupCutoffs( (*j1), (*j2) );
1064     if (dr.lengthSquare() < cuts.third) {
1065 gezelter 1567 neighborList.push_back(make_pair((*j1), (*j2)));
1066 gezelter 1562 }
1067     }
1068     }
1069     }
1070 gezelter 1567 #else
1071 gezelter 1568 for (vector<int>::iterator j1 = cellList_[m1].begin();
1072     j1 != cellList_[m1].end(); ++j1) {
1073     for (vector<int>::iterator j2 = cellList_[m2].begin();
1074     j2 != cellList_[m2].end(); ++j2) {
1075 gezelter 1567
1076     // Always do this if we're in different cells or if
1077     // we're in the same cell and the global index of the
1078     // j2 cutoff group is less than the j1 cutoff group
1079    
1080     if (m2 != m1 || (*j2) < (*j1)) {
1081     dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)];
1082     snap_->wrapVector(dr);
1083 gezelter 1576 cuts = getGroupCutoffs( (*j1), (*j2) );
1084     if (dr.lengthSquare() < cuts.third) {
1085 gezelter 1567 neighborList.push_back(make_pair((*j1), (*j2)));
1086     }
1087     }
1088     }
1089     }
1090     #endif
1091 gezelter 1562 }
1092     }
1093     }
1094     }
1095 gezelter 1568
1096     // save the local cutoff group positions for the check that is
1097     // done on each loop:
1098     saved_CG_positions_.clear();
1099     for (int i = 0; i < nGroups_; i++)
1100     saved_CG_positions_.push_back(snap_->cgData.position[i]);
1101    
1102 gezelter 1567 return neighborList;
1103 gezelter 1562 }
1104 gezelter 1539 } //end namespace OpenMD