ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/devel_omp/src/parallel/ForceMatrixDecomposition.cpp
Revision: 1568
Committed: Wed May 25 16:20:37 2011 UTC (13 years, 11 months ago) by gezelter
Original Path: branches/development/src/parallel/ForceMatrixDecomposition.cpp
File size: 20524 byte(s)
Log Message:
Added neighbor list check, and migrated skinThickness into
ForceDecomposition (and out of the InteractionManager).  Removed a
spurious inline.


File Contents

# User Rev Content
1 gezelter 1539 /*
2     * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 chuckv 1538 *
4     * The University of Notre Dame grants you ("Licensee") a
5     * non-exclusive, royalty free, license to use, modify and
6     * redistribute this software in source and binary code form, provided
7     * that the following conditions are met:
8     *
9     * 1. Redistributions of source code must retain the above copyright
10     * notice, this list of conditions and the following disclaimer.
11     *
12     * 2. Redistributions in binary form must reproduce the above copyright
13     * notice, this list of conditions and the following disclaimer in the
14     * documentation and/or other materials provided with the
15     * distribution.
16     *
17     * This software is provided "AS IS," without a warranty of any
18     * kind. All express or implied conditions, representations and
19     * warranties, including any implied warranty of merchantability,
20     * fitness for a particular purpose or non-infringement, are hereby
21     * excluded. The University of Notre Dame and its licensors shall not
22     * be liable for any damages suffered by licensee as a result of
23     * using, modifying or distributing the software or its
24     * derivatives. In no event will the University of Notre Dame or its
25     * licensors be liable for any lost revenue, profit or data, or for
26     * direct, indirect, special, consequential, incidental or punitive
27     * damages, however caused and regardless of the theory of liability,
28     * arising out of the use of or inability to use software, even if the
29     * University of Notre Dame has been advised of the possibility of
30     * such damages.
31     *
32     * SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your
33     * research, please cite the appropriate papers when you publish your
34     * work. Good starting points are:
35     *
36     * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).
37     * [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).
38     * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).
39     * [4] Vardeman & Gezelter, in progress (2009).
40     */
41 gezelter 1549 #include "parallel/ForceMatrixDecomposition.hpp"
42 gezelter 1539 #include "math/SquareMatrix3.hpp"
43 gezelter 1544 #include "nonbonded/NonBondedInteraction.hpp"
44     #include "brains/SnapshotManager.hpp"
45 chuckv 1538
46 gezelter 1541 using namespace std;
47 gezelter 1539 namespace OpenMD {
48 chuckv 1538
49 gezelter 1544 /**
50     * distributeInitialData is essentially a copy of the older fortran
51     * SimulationSetup
52     */
53    
54 gezelter 1549 void ForceMatrixDecomposition::distributeInitialData() {
55 gezelter 1551 snap_ = sman_->getCurrentSnapshot();
56     storageLayout_ = sman_->getStorageLayout();
57 gezelter 1567 nLocal_ = snap_->getNumberOfAtoms();
58     nGroups_ = snap_->getNumberOfCutoffGroups();
59 chuckv 1538
60 gezelter 1567 #ifdef IS_MPI
61    
62     AtomCommIntRow = new Communicator<Row,int>(nLocal_);
63     AtomCommRealRow = new Communicator<Row,RealType>(nLocal_);
64     AtomCommVectorRow = new Communicator<Row,Vector3d>(nLocal_);
65     AtomCommMatrixRow = new Communicator<Row,Mat3x3d>(nLocal_);
66 chuckv 1538
67 gezelter 1567 AtomCommIntColumn = new Communicator<Column,int>(nLocal_);
68     AtomCommRealColumn = new Communicator<Column,RealType>(nLocal_);
69     AtomCommVectorColumn = new Communicator<Column,Vector3d>(nLocal_);
70     AtomCommMatrixColumn = new Communicator<Column,Mat3x3d>(nLocal_);
71 gezelter 1541
72 gezelter 1567 cgCommIntRow = new Communicator<Row,int>(nGroups_);
73     cgCommVectorRow = new Communicator<Row,Vector3d>(nGroups_);
74     cgCommIntColumn = new Communicator<Column,int>(nGroups_);
75     cgCommVectorColumn = new Communicator<Column,Vector3d>(nGroups_);
76 gezelter 1551
77 gezelter 1567 nAtomsInRow_ = AtomCommIntRow->getSize();
78     nAtomsInCol_ = AtomCommIntColumn->getSize();
79     nGroupsInRow_ = cgCommIntRow->getSize();
80     nGroupsInCol_ = cgCommIntColumn->getSize();
81    
82 gezelter 1551 // Modify the data storage objects with the correct layouts and sizes:
83 gezelter 1567 atomRowData.resize(nAtomsInRow_);
84 gezelter 1551 atomRowData.setStorageLayout(storageLayout_);
85 gezelter 1567 atomColData.resize(nAtomsInCol_);
86 gezelter 1551 atomColData.setStorageLayout(storageLayout_);
87 gezelter 1567 cgRowData.resize(nGroupsInRow_);
88 gezelter 1551 cgRowData.setStorageLayout(DataStorage::dslPosition);
89 gezelter 1567 cgColData.resize(nGroupsInCol_);
90 gezelter 1551 cgColData.setStorageLayout(DataStorage::dslPosition);
91 gezelter 1549
92 gezelter 1544 vector<vector<RealType> > pot_row(N_INTERACTION_FAMILIES,
93 gezelter 1567 vector<RealType> (nAtomsInRow_, 0.0));
94 gezelter 1544 vector<vector<RealType> > pot_col(N_INTERACTION_FAMILIES,
95 gezelter 1567 vector<RealType> (nAtomsInCol_, 0.0));
96 gezelter 1551
97    
98 gezelter 1544 vector<RealType> pot_local(N_INTERACTION_FAMILIES, 0.0);
99 gezelter 1549
100 gezelter 1544 // gather the information for atomtype IDs (atids):
101 gezelter 1547 vector<int> identsLocal = info_->getIdentArray();
102 gezelter 1567 identsRow.reserve(nAtomsInRow_);
103     identsCol.reserve(nAtomsInCol_);
104 gezelter 1549
105     AtomCommIntRow->gather(identsLocal, identsRow);
106     AtomCommIntColumn->gather(identsLocal, identsCol);
107    
108     AtomLocalToGlobal = info_->getGlobalAtomIndices();
109     AtomCommIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal);
110     AtomCommIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal);
111    
112     cgLocalToGlobal = info_->getGlobalGroupIndices();
113     cgCommIntRow->gather(cgLocalToGlobal, cgRowToGlobal);
114     cgCommIntColumn->gather(cgLocalToGlobal, cgColToGlobal);
115 gezelter 1541
116 gezelter 1544 // still need:
117     // topoDist
118     // exclude
119 chuckv 1538 #endif
120 gezelter 1539 }
121    
122 chuckv 1538
123    
124 gezelter 1549 void ForceMatrixDecomposition::distributeData() {
125 gezelter 1551 snap_ = sman_->getCurrentSnapshot();
126     storageLayout_ = sman_->getStorageLayout();
127 chuckv 1538 #ifdef IS_MPI
128 gezelter 1540
129 gezelter 1539 // gather up the atomic positions
130 gezelter 1551 AtomCommVectorRow->gather(snap_->atomData.position,
131     atomRowData.position);
132     AtomCommVectorColumn->gather(snap_->atomData.position,
133     atomColData.position);
134 gezelter 1539
135     // gather up the cutoff group positions
136 gezelter 1551 cgCommVectorRow->gather(snap_->cgData.position,
137     cgRowData.position);
138     cgCommVectorColumn->gather(snap_->cgData.position,
139     cgColData.position);
140 gezelter 1539
141     // if needed, gather the atomic rotation matrices
142 gezelter 1551 if (storageLayout_ & DataStorage::dslAmat) {
143     AtomCommMatrixRow->gather(snap_->atomData.aMat,
144     atomRowData.aMat);
145     AtomCommMatrixColumn->gather(snap_->atomData.aMat,
146     atomColData.aMat);
147 gezelter 1539 }
148    
149     // if needed, gather the atomic eletrostatic frames
150 gezelter 1551 if (storageLayout_ & DataStorage::dslElectroFrame) {
151     AtomCommMatrixRow->gather(snap_->atomData.electroFrame,
152     atomRowData.electroFrame);
153     AtomCommMatrixColumn->gather(snap_->atomData.electroFrame,
154     atomColData.electroFrame);
155 gezelter 1539 }
156     #endif
157     }
158    
159 gezelter 1549 void ForceMatrixDecomposition::collectIntermediateData() {
160 gezelter 1551 snap_ = sman_->getCurrentSnapshot();
161     storageLayout_ = sman_->getStorageLayout();
162 gezelter 1539 #ifdef IS_MPI
163    
164 gezelter 1551 if (storageLayout_ & DataStorage::dslDensity) {
165    
166     AtomCommRealRow->scatter(atomRowData.density,
167     snap_->atomData.density);
168    
169     int n = snap_->atomData.density.size();
170 gezelter 1541 std::vector<RealType> rho_tmp(n, 0.0);
171 gezelter 1551 AtomCommRealColumn->scatter(atomColData.density, rho_tmp);
172 gezelter 1539 for (int i = 0; i < n; i++)
173 gezelter 1551 snap_->atomData.density[i] += rho_tmp[i];
174 gezelter 1539 }
175 chuckv 1538 #endif
176 gezelter 1539 }
177    
178 gezelter 1549 void ForceMatrixDecomposition::distributeIntermediateData() {
179 gezelter 1551 snap_ = sman_->getCurrentSnapshot();
180     storageLayout_ = sman_->getStorageLayout();
181 chuckv 1538 #ifdef IS_MPI
182 gezelter 1551 if (storageLayout_ & DataStorage::dslFunctional) {
183     AtomCommRealRow->gather(snap_->atomData.functional,
184     atomRowData.functional);
185     AtomCommRealColumn->gather(snap_->atomData.functional,
186     atomColData.functional);
187 gezelter 1539 }
188    
189 gezelter 1551 if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
190     AtomCommRealRow->gather(snap_->atomData.functionalDerivative,
191     atomRowData.functionalDerivative);
192     AtomCommRealColumn->gather(snap_->atomData.functionalDerivative,
193     atomColData.functionalDerivative);
194 gezelter 1539 }
195 chuckv 1538 #endif
196     }
197 gezelter 1539
198    
199 gezelter 1549 void ForceMatrixDecomposition::collectData() {
200 gezelter 1551 snap_ = sman_->getCurrentSnapshot();
201     storageLayout_ = sman_->getStorageLayout();
202     #ifdef IS_MPI
203     int n = snap_->atomData.force.size();
204 gezelter 1544 vector<Vector3d> frc_tmp(n, V3Zero);
205 gezelter 1541
206 gezelter 1551 AtomCommVectorRow->scatter(atomRowData.force, frc_tmp);
207 gezelter 1541 for (int i = 0; i < n; i++) {
208 gezelter 1551 snap_->atomData.force[i] += frc_tmp[i];
209 gezelter 1541 frc_tmp[i] = 0.0;
210     }
211 gezelter 1540
212 gezelter 1551 AtomCommVectorColumn->scatter(atomColData.force, frc_tmp);
213 gezelter 1540 for (int i = 0; i < n; i++)
214 gezelter 1551 snap_->atomData.force[i] += frc_tmp[i];
215 gezelter 1540
216    
217 gezelter 1551 if (storageLayout_ & DataStorage::dslTorque) {
218 gezelter 1541
219 gezelter 1551 int nt = snap_->atomData.force.size();
220 gezelter 1544 vector<Vector3d> trq_tmp(nt, V3Zero);
221 gezelter 1541
222 gezelter 1551 AtomCommVectorRow->scatter(atomRowData.torque, trq_tmp);
223 gezelter 1541 for (int i = 0; i < n; i++) {
224 gezelter 1551 snap_->atomData.torque[i] += trq_tmp[i];
225 gezelter 1541 trq_tmp[i] = 0.0;
226     }
227 gezelter 1540
228 gezelter 1551 AtomCommVectorColumn->scatter(atomColData.torque, trq_tmp);
229 gezelter 1540 for (int i = 0; i < n; i++)
230 gezelter 1551 snap_->atomData.torque[i] += trq_tmp[i];
231 gezelter 1540 }
232    
233 gezelter 1567 nLocal_ = snap_->getNumberOfAtoms();
234 gezelter 1544
235     vector<vector<RealType> > pot_temp(N_INTERACTION_FAMILIES,
236 gezelter 1567 vector<RealType> (nLocal_, 0.0));
237 gezelter 1540
238 gezelter 1544 for (int i = 0; i < N_INTERACTION_FAMILIES; i++) {
239 gezelter 1549 AtomCommRealRow->scatter(pot_row[i], pot_temp[i]);
240 gezelter 1541 for (int ii = 0; ii < pot_temp[i].size(); ii++ ) {
241     pot_local[i] += pot_temp[i][ii];
242     }
243     }
244 gezelter 1539 #endif
245 chuckv 1538 }
246 gezelter 1551
247 chuckv 1538
248 gezelter 1551 Vector3d ForceMatrixDecomposition::getIntergroupVector(int cg1, int cg2){
249     Vector3d d;
250    
251     #ifdef IS_MPI
252     d = cgColData.position[cg2] - cgRowData.position[cg1];
253     #else
254     d = snap_->cgData.position[cg2] - snap_->cgData.position[cg1];
255     #endif
256    
257     snap_->wrapVector(d);
258     return d;
259     }
260    
261    
262     Vector3d ForceMatrixDecomposition::getAtomToGroupVectorRow(int atom1, int cg1){
263    
264     Vector3d d;
265    
266     #ifdef IS_MPI
267     d = cgRowData.position[cg1] - atomRowData.position[atom1];
268     #else
269     d = snap_->cgData.position[cg1] - snap_->atomData.position[atom1];
270     #endif
271    
272     snap_->wrapVector(d);
273     return d;
274     }
275    
276     Vector3d ForceMatrixDecomposition::getAtomToGroupVectorColumn(int atom2, int cg2){
277     Vector3d d;
278    
279     #ifdef IS_MPI
280     d = cgColData.position[cg2] - atomColData.position[atom2];
281     #else
282     d = snap_->cgData.position[cg2] - snap_->atomData.position[atom2];
283     #endif
284    
285     snap_->wrapVector(d);
286     return d;
287     }
288    
289     Vector3d ForceMatrixDecomposition::getInteratomicVector(int atom1, int atom2){
290     Vector3d d;
291    
292     #ifdef IS_MPI
293     d = atomColData.position[atom2] - atomRowData.position[atom1];
294     #else
295     d = snap_->atomData.position[atom2] - snap_->atomData.position[atom1];
296     #endif
297    
298     snap_->wrapVector(d);
299     return d;
300     }
301    
302     void ForceMatrixDecomposition::addForceToAtomRow(int atom1, Vector3d fg){
303     #ifdef IS_MPI
304     atomRowData.force[atom1] += fg;
305     #else
306     snap_->atomData.force[atom1] += fg;
307     #endif
308     }
309    
310     void ForceMatrixDecomposition::addForceToAtomColumn(int atom2, Vector3d fg){
311     #ifdef IS_MPI
312     atomColData.force[atom2] += fg;
313     #else
314     snap_->atomData.force[atom2] += fg;
315     #endif
316     }
317    
318     // filling interaction blocks with pointers
319     InteractionData ForceMatrixDecomposition::fillInteractionData(int atom1, int atom2) {
320 gezelter 1567 InteractionData idat;
321 gezelter 1551
322     #ifdef IS_MPI
323     if (storageLayout_ & DataStorage::dslAmat) {
324 gezelter 1554 idat.A1 = &(atomRowData.aMat[atom1]);
325     idat.A2 = &(atomColData.aMat[atom2]);
326 gezelter 1551 }
327 gezelter 1567
328 gezelter 1551 if (storageLayout_ & DataStorage::dslElectroFrame) {
329 gezelter 1554 idat.eFrame1 = &(atomRowData.electroFrame[atom1]);
330     idat.eFrame2 = &(atomColData.electroFrame[atom2]);
331 gezelter 1551 }
332    
333     if (storageLayout_ & DataStorage::dslTorque) {
334 gezelter 1554 idat.t1 = &(atomRowData.torque[atom1]);
335     idat.t2 = &(atomColData.torque[atom2]);
336 gezelter 1551 }
337    
338     if (storageLayout_ & DataStorage::dslDensity) {
339 gezelter 1554 idat.rho1 = &(atomRowData.density[atom1]);
340     idat.rho2 = &(atomColData.density[atom2]);
341 gezelter 1551 }
342    
343     if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
344 gezelter 1554 idat.dfrho1 = &(atomRowData.functionalDerivative[atom1]);
345     idat.dfrho2 = &(atomColData.functionalDerivative[atom2]);
346 gezelter 1551 }
347 gezelter 1562 #else
348     if (storageLayout_ & DataStorage::dslAmat) {
349     idat.A1 = &(snap_->atomData.aMat[atom1]);
350     idat.A2 = &(snap_->atomData.aMat[atom2]);
351     }
352    
353     if (storageLayout_ & DataStorage::dslElectroFrame) {
354     idat.eFrame1 = &(snap_->atomData.electroFrame[atom1]);
355     idat.eFrame2 = &(snap_->atomData.electroFrame[atom2]);
356     }
357    
358     if (storageLayout_ & DataStorage::dslTorque) {
359     idat.t1 = &(snap_->atomData.torque[atom1]);
360     idat.t2 = &(snap_->atomData.torque[atom2]);
361     }
362    
363     if (storageLayout_ & DataStorage::dslDensity) {
364     idat.rho1 = &(snap_->atomData.density[atom1]);
365     idat.rho2 = &(snap_->atomData.density[atom2]);
366     }
367    
368     if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
369     idat.dfrho1 = &(snap_->atomData.functionalDerivative[atom1]);
370     idat.dfrho2 = &(snap_->atomData.functionalDerivative[atom2]);
371     }
372 gezelter 1551 #endif
373 gezelter 1567 return idat;
374 gezelter 1551 }
375 gezelter 1567
376 gezelter 1551 InteractionData ForceMatrixDecomposition::fillSkipData(int atom1, int atom2){
377 gezelter 1567
378 gezelter 1562 InteractionData idat;
379     #ifdef IS_MPI
380     if (storageLayout_ & DataStorage::dslElectroFrame) {
381     idat.eFrame1 = &(atomRowData.electroFrame[atom1]);
382     idat.eFrame2 = &(atomColData.electroFrame[atom2]);
383     }
384     if (storageLayout_ & DataStorage::dslTorque) {
385     idat.t1 = &(atomRowData.torque[atom1]);
386     idat.t2 = &(atomColData.torque[atom2]);
387     }
388 gezelter 1567 if (storageLayout_ & DataStorage::dslForce) {
389     idat.t1 = &(atomRowData.force[atom1]);
390     idat.t2 = &(atomColData.force[atom2]);
391     }
392     #else
393     if (storageLayout_ & DataStorage::dslElectroFrame) {
394     idat.eFrame1 = &(snap_->atomData.electroFrame[atom1]);
395     idat.eFrame2 = &(snap_->atomData.electroFrame[atom2]);
396     }
397     if (storageLayout_ & DataStorage::dslTorque) {
398     idat.t1 = &(snap_->atomData.torque[atom1]);
399     idat.t2 = &(snap_->atomData.torque[atom2]);
400     }
401     if (storageLayout_ & DataStorage::dslForce) {
402     idat.t1 = &(snap_->atomData.force[atom1]);
403     idat.t2 = &(snap_->atomData.force[atom2]);
404     }
405     #endif
406 gezelter 1562
407 gezelter 1551 }
408 gezelter 1567
409    
410 gezelter 1551
411 gezelter 1562
412     /*
413     * buildNeighborList
414     *
415     * first element of pair is row-indexed CutoffGroup
416     * second element of pair is column-indexed CutoffGroup
417     */
418 gezelter 1567 vector<pair<int, int> > ForceMatrixDecomposition::buildNeighborList() {
419    
420     vector<pair<int, int> > neighborList;
421     #ifdef IS_MPI
422 gezelter 1568 cellListRow_.clear();
423     cellListCol_.clear();
424 gezelter 1567 #else
425 gezelter 1568 cellList_.clear();
426 gezelter 1567 #endif
427 gezelter 1562
428 gezelter 1567 // dangerous to not do error checking.
429     RealType rCut_;
430    
431     RealType rList_ = (rCut_ + skinThickness_);
432     RealType rl2 = rList_ * rList_;
433     Snapshot* snap_ = sman_->getCurrentSnapshot();
434 gezelter 1562 Mat3x3d Hmat = snap_->getHmat();
435     Vector3d Hx = Hmat.getColumn(0);
436     Vector3d Hy = Hmat.getColumn(1);
437     Vector3d Hz = Hmat.getColumn(2);
438    
439 gezelter 1568 nCells_.x() = (int) ( Hx.length() )/ rList_;
440     nCells_.y() = (int) ( Hy.length() )/ rList_;
441     nCells_.z() = (int) ( Hz.length() )/ rList_;
442 gezelter 1562
443 gezelter 1567 Mat3x3d invHmat = snap_->getInvHmat();
444     Vector3d rs, scaled, dr;
445     Vector3i whichCell;
446     int cellIndex;
447    
448     #ifdef IS_MPI
449     for (int i = 0; i < nGroupsInRow_; i++) {
450 gezelter 1562 rs = cgRowData.position[i];
451 gezelter 1567 // scaled positions relative to the box vectors
452     scaled = invHmat * rs;
453     // wrap the vector back into the unit box by subtracting integer box
454     // numbers
455     for (int j = 0; j < 3; j++)
456     scaled[j] -= roundMe(scaled[j]);
457    
458     // find xyz-indices of cell that cutoffGroup is in.
459 gezelter 1568 whichCell.x() = nCells_.x() * scaled.x();
460     whichCell.y() = nCells_.y() * scaled.y();
461     whichCell.z() = nCells_.z() * scaled.z();
462 gezelter 1567
463     // find single index of this cell:
464 gezelter 1568 cellIndex = Vlinear(whichCell, nCells_);
465 gezelter 1567 // add this cutoff group to the list of groups in this cell;
466 gezelter 1568 cellListRow_[cellIndex].push_back(i);
467 gezelter 1562 }
468    
469 gezelter 1567 for (int i = 0; i < nGroupsInCol_; i++) {
470     rs = cgColData.position[i];
471     // scaled positions relative to the box vectors
472     scaled = invHmat * rs;
473     // wrap the vector back into the unit box by subtracting integer box
474     // numbers
475     for (int j = 0; j < 3; j++)
476     scaled[j] -= roundMe(scaled[j]);
477    
478     // find xyz-indices of cell that cutoffGroup is in.
479 gezelter 1568 whichCell.x() = nCells_.x() * scaled.x();
480     whichCell.y() = nCells_.y() * scaled.y();
481     whichCell.z() = nCells_.z() * scaled.z();
482 gezelter 1567
483     // find single index of this cell:
484 gezelter 1568 cellIndex = Vlinear(whichCell, nCells_);
485 gezelter 1567 // add this cutoff group to the list of groups in this cell;
486 gezelter 1568 cellListCol_[cellIndex].push_back(i);
487 gezelter 1562 }
488 gezelter 1567 #else
489     for (int i = 0; i < nGroups_; i++) {
490     rs = snap_->cgData.position[i];
491     // scaled positions relative to the box vectors
492     scaled = invHmat * rs;
493     // wrap the vector back into the unit box by subtracting integer box
494     // numbers
495     for (int j = 0; j < 3; j++)
496     scaled[j] -= roundMe(scaled[j]);
497    
498     // find xyz-indices of cell that cutoffGroup is in.
499 gezelter 1568 whichCell.x() = nCells_.x() * scaled.x();
500     whichCell.y() = nCells_.y() * scaled.y();
501     whichCell.z() = nCells_.z() * scaled.z();
502 gezelter 1567
503     // find single index of this cell:
504 gezelter 1568 cellIndex = Vlinear(whichCell, nCells_);
505 gezelter 1567 // add this cutoff group to the list of groups in this cell;
506 gezelter 1568 cellList_[cellIndex].push_back(i);
507 gezelter 1567 }
508     #endif
509    
510    
511    
512 gezelter 1568 for (int m1z = 0; m1z < nCells_.z(); m1z++) {
513     for (int m1y = 0; m1y < nCells_.y(); m1y++) {
514     for (int m1x = 0; m1x < nCells_.x(); m1x++) {
515 gezelter 1562 Vector3i m1v(m1x, m1y, m1z);
516 gezelter 1568 int m1 = Vlinear(m1v, nCells_);
517 gezelter 1562
518 gezelter 1568 for (vector<Vector3i>::iterator os = cellOffsets_.begin();
519     os != cellOffsets_.end(); ++os) {
520    
521     Vector3i m2v = m1v + (*os);
522    
523     if (m2v.x() >= nCells_.x()) {
524 gezelter 1562 m2v.x() = 0;
525     } else if (m2v.x() < 0) {
526 gezelter 1568 m2v.x() = nCells_.x() - 1;
527 gezelter 1562 }
528 gezelter 1568
529     if (m2v.y() >= nCells_.y()) {
530 gezelter 1562 m2v.y() = 0;
531     } else if (m2v.y() < 0) {
532 gezelter 1568 m2v.y() = nCells_.y() - 1;
533 gezelter 1562 }
534 gezelter 1568
535     if (m2v.z() >= nCells_.z()) {
536 gezelter 1567 m2v.z() = 0;
537     } else if (m2v.z() < 0) {
538 gezelter 1568 m2v.z() = nCells_.z() - 1;
539 gezelter 1567 }
540 gezelter 1568
541     int m2 = Vlinear (m2v, nCells_);
542 gezelter 1567
543     #ifdef IS_MPI
544 gezelter 1568 for (vector<int>::iterator j1 = cellListRow_[m1].begin();
545     j1 != cellListRow_[m1].end(); ++j1) {
546     for (vector<int>::iterator j2 = cellListCol_[m2].begin();
547     j2 != cellListCol_[m2].end(); ++j2) {
548 gezelter 1567
549     // Always do this if we're in different cells or if
550     // we're in the same cell and the global index of the
551     // j2 cutoff group is less than the j1 cutoff group
552    
553     if (m2 != m1 || cgColToGlobal[(*j2)] < cgRowToGlobal[(*j1)]) {
554     dr = cgColData.position[(*j2)] - cgRowData.position[(*j1)];
555     snap_->wrapVector(dr);
556     if (dr.lengthSquare() < rl2) {
557     neighborList.push_back(make_pair((*j1), (*j2)));
558 gezelter 1562 }
559     }
560     }
561     }
562 gezelter 1567 #else
563 gezelter 1568 for (vector<int>::iterator j1 = cellList_[m1].begin();
564     j1 != cellList_[m1].end(); ++j1) {
565     for (vector<int>::iterator j2 = cellList_[m2].begin();
566     j2 != cellList_[m2].end(); ++j2) {
567 gezelter 1567
568     // Always do this if we're in different cells or if
569     // we're in the same cell and the global index of the
570     // j2 cutoff group is less than the j1 cutoff group
571    
572     if (m2 != m1 || (*j2) < (*j1)) {
573     dr = snap_->cgData.position[(*j2)] - snap_->cgData.position[(*j1)];
574     snap_->wrapVector(dr);
575     if (dr.lengthSquare() < rl2) {
576     neighborList.push_back(make_pair((*j1), (*j2)));
577     }
578     }
579     }
580     }
581     #endif
582 gezelter 1562 }
583     }
584     }
585     }
586 gezelter 1568
587     // save the local cutoff group positions for the check that is
588     // done on each loop:
589     saved_CG_positions_.clear();
590     for (int i = 0; i < nGroups_; i++)
591     saved_CG_positions_.push_back(snap_->cgData.position[i]);
592    
593 gezelter 1567 return neighborList;
594 gezelter 1562 }
595 gezelter 1539 } //end namespace OpenMD