ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/devel_omp/src/parallel/ForceMatrixDecomposition.cpp
Revision: 1562
Committed: Thu May 12 17:00:14 2011 UTC (13 years, 11 months ago) by gezelter
Original Path: branches/development/src/parallel/ForceMatrixDecomposition.cpp
File size: 16416 byte(s)
Log Message:
changes for cell linked lists

File Contents

# User Rev Content
1 gezelter 1539 /*
2     * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 chuckv 1538 *
4     * The University of Notre Dame grants you ("Licensee") a
5     * non-exclusive, royalty free, license to use, modify and
6     * redistribute this software in source and binary code form, provided
7     * that the following conditions are met:
8     *
9     * 1. Redistributions of source code must retain the above copyright
10     * notice, this list of conditions and the following disclaimer.
11     *
12     * 2. Redistributions in binary form must reproduce the above copyright
13     * notice, this list of conditions and the following disclaimer in the
14     * documentation and/or other materials provided with the
15     * distribution.
16     *
17     * This software is provided "AS IS," without a warranty of any
18     * kind. All express or implied conditions, representations and
19     * warranties, including any implied warranty of merchantability,
20     * fitness for a particular purpose or non-infringement, are hereby
21     * excluded. The University of Notre Dame and its licensors shall not
22     * be liable for any damages suffered by licensee as a result of
23     * using, modifying or distributing the software or its
24     * derivatives. In no event will the University of Notre Dame or its
25     * licensors be liable for any lost revenue, profit or data, or for
26     * direct, indirect, special, consequential, incidental or punitive
27     * damages, however caused and regardless of the theory of liability,
28     * arising out of the use of or inability to use software, even if the
29     * University of Notre Dame has been advised of the possibility of
30     * such damages.
31     *
32     * SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your
33     * research, please cite the appropriate papers when you publish your
34     * work. Good starting points are:
35     *
36     * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).
37     * [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).
38     * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).
39     * [4] Vardeman & Gezelter, in progress (2009).
40     */
41 gezelter 1549 #include "parallel/ForceMatrixDecomposition.hpp"
42 gezelter 1539 #include "math/SquareMatrix3.hpp"
43 gezelter 1544 #include "nonbonded/NonBondedInteraction.hpp"
44     #include "brains/SnapshotManager.hpp"
45 chuckv 1538
46 gezelter 1541 using namespace std;
47 gezelter 1539 namespace OpenMD {
48 chuckv 1538
49 gezelter 1544 /**
50     * distributeInitialData is essentially a copy of the older fortran
51     * SimulationSetup
52     */
53    
54 gezelter 1549 void ForceMatrixDecomposition::distributeInitialData() {
55 gezelter 1551 snap_ = sman_->getCurrentSnapshot();
56     storageLayout_ = sman_->getStorageLayout();
57 gezelter 1544 #ifdef IS_MPI
58 gezelter 1551 int nLocal = snap_->getNumberOfAtoms();
59     int nGroups = snap_->getNumberOfCutoffGroups();
60    
61 gezelter 1549 AtomCommIntRow = new Communicator<Row,int>(nLocal);
62     AtomCommRealRow = new Communicator<Row,RealType>(nLocal);
63     AtomCommVectorRow = new Communicator<Row,Vector3d>(nLocal);
64     AtomCommMatrixRow = new Communicator<Row,Mat3x3d>(nLocal);
65 chuckv 1538
66 gezelter 1549 AtomCommIntColumn = new Communicator<Column,int>(nLocal);
67     AtomCommRealColumn = new Communicator<Column,RealType>(nLocal);
68     AtomCommVectorColumn = new Communicator<Column,Vector3d>(nLocal);
69     AtomCommMatrixColumn = new Communicator<Column,Mat3x3d>(nLocal);
70 chuckv 1538
71 gezelter 1549 cgCommIntRow = new Communicator<Row,int>(nGroups);
72     cgCommVectorRow = new Communicator<Row,Vector3d>(nGroups);
73     cgCommIntColumn = new Communicator<Column,int>(nGroups);
74     cgCommVectorColumn = new Communicator<Column,Vector3d>(nGroups);
75 gezelter 1541
76 gezelter 1549 int nAtomsInRow = AtomCommIntRow->getSize();
77     int nAtomsInCol = AtomCommIntColumn->getSize();
78     int nGroupsInRow = cgCommIntRow->getSize();
79     int nGroupsInCol = cgCommIntColumn->getSize();
80 gezelter 1551
81     // Modify the data storage objects with the correct layouts and sizes:
82     atomRowData.resize(nAtomsInRow);
83     atomRowData.setStorageLayout(storageLayout_);
84     atomColData.resize(nAtomsInCol);
85     atomColData.setStorageLayout(storageLayout_);
86     cgRowData.resize(nGroupsInRow);
87     cgRowData.setStorageLayout(DataStorage::dslPosition);
88     cgColData.resize(nGroupsInCol);
89     cgColData.setStorageLayout(DataStorage::dslPosition);
90 gezelter 1549
91 gezelter 1544 vector<vector<RealType> > pot_row(N_INTERACTION_FAMILIES,
92     vector<RealType> (nAtomsInRow, 0.0));
93     vector<vector<RealType> > pot_col(N_INTERACTION_FAMILIES,
94     vector<RealType> (nAtomsInCol, 0.0));
95 gezelter 1551
96    
97 gezelter 1544 vector<RealType> pot_local(N_INTERACTION_FAMILIES, 0.0);
98 gezelter 1549
99 gezelter 1544 // gather the information for atomtype IDs (atids):
100 gezelter 1547 vector<int> identsLocal = info_->getIdentArray();
101     identsRow.reserve(nAtomsInRow);
102     identsCol.reserve(nAtomsInCol);
103 gezelter 1549
104     AtomCommIntRow->gather(identsLocal, identsRow);
105     AtomCommIntColumn->gather(identsLocal, identsCol);
106    
107     AtomLocalToGlobal = info_->getGlobalAtomIndices();
108     AtomCommIntRow->gather(AtomLocalToGlobal, AtomRowToGlobal);
109     AtomCommIntColumn->gather(AtomLocalToGlobal, AtomColToGlobal);
110    
111     cgLocalToGlobal = info_->getGlobalGroupIndices();
112     cgCommIntRow->gather(cgLocalToGlobal, cgRowToGlobal);
113     cgCommIntColumn->gather(cgLocalToGlobal, cgColToGlobal);
114 gezelter 1541
115 gezelter 1544 // still need:
116     // topoDist
117     // exclude
118 chuckv 1538 #endif
119 gezelter 1539 }
120    
121 chuckv 1538
122    
123 gezelter 1549 void ForceMatrixDecomposition::distributeData() {
124 gezelter 1551 snap_ = sman_->getCurrentSnapshot();
125     storageLayout_ = sman_->getStorageLayout();
126 chuckv 1538 #ifdef IS_MPI
127 gezelter 1540
128 gezelter 1539 // gather up the atomic positions
129 gezelter 1551 AtomCommVectorRow->gather(snap_->atomData.position,
130     atomRowData.position);
131     AtomCommVectorColumn->gather(snap_->atomData.position,
132     atomColData.position);
133 gezelter 1539
134     // gather up the cutoff group positions
135 gezelter 1551 cgCommVectorRow->gather(snap_->cgData.position,
136     cgRowData.position);
137     cgCommVectorColumn->gather(snap_->cgData.position,
138     cgColData.position);
139 gezelter 1539
140     // if needed, gather the atomic rotation matrices
141 gezelter 1551 if (storageLayout_ & DataStorage::dslAmat) {
142     AtomCommMatrixRow->gather(snap_->atomData.aMat,
143     atomRowData.aMat);
144     AtomCommMatrixColumn->gather(snap_->atomData.aMat,
145     atomColData.aMat);
146 gezelter 1539 }
147    
148     // if needed, gather the atomic eletrostatic frames
149 gezelter 1551 if (storageLayout_ & DataStorage::dslElectroFrame) {
150     AtomCommMatrixRow->gather(snap_->atomData.electroFrame,
151     atomRowData.electroFrame);
152     AtomCommMatrixColumn->gather(snap_->atomData.electroFrame,
153     atomColData.electroFrame);
154 gezelter 1539 }
155     #endif
156     }
157    
158 gezelter 1549 void ForceMatrixDecomposition::collectIntermediateData() {
159 gezelter 1551 snap_ = sman_->getCurrentSnapshot();
160     storageLayout_ = sman_->getStorageLayout();
161 gezelter 1539 #ifdef IS_MPI
162    
163 gezelter 1551 if (storageLayout_ & DataStorage::dslDensity) {
164    
165     AtomCommRealRow->scatter(atomRowData.density,
166     snap_->atomData.density);
167    
168     int n = snap_->atomData.density.size();
169 gezelter 1541 std::vector<RealType> rho_tmp(n, 0.0);
170 gezelter 1551 AtomCommRealColumn->scatter(atomColData.density, rho_tmp);
171 gezelter 1539 for (int i = 0; i < n; i++)
172 gezelter 1551 snap_->atomData.density[i] += rho_tmp[i];
173 gezelter 1539 }
174 chuckv 1538 #endif
175 gezelter 1539 }
176    
177 gezelter 1549 void ForceMatrixDecomposition::distributeIntermediateData() {
178 gezelter 1551 snap_ = sman_->getCurrentSnapshot();
179     storageLayout_ = sman_->getStorageLayout();
180 chuckv 1538 #ifdef IS_MPI
181 gezelter 1551 if (storageLayout_ & DataStorage::dslFunctional) {
182     AtomCommRealRow->gather(snap_->atomData.functional,
183     atomRowData.functional);
184     AtomCommRealColumn->gather(snap_->atomData.functional,
185     atomColData.functional);
186 gezelter 1539 }
187    
188 gezelter 1551 if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
189     AtomCommRealRow->gather(snap_->atomData.functionalDerivative,
190     atomRowData.functionalDerivative);
191     AtomCommRealColumn->gather(snap_->atomData.functionalDerivative,
192     atomColData.functionalDerivative);
193 gezelter 1539 }
194 chuckv 1538 #endif
195     }
196 gezelter 1539
197    
198 gezelter 1549 void ForceMatrixDecomposition::collectData() {
199 gezelter 1551 snap_ = sman_->getCurrentSnapshot();
200     storageLayout_ = sman_->getStorageLayout();
201     #ifdef IS_MPI
202     int n = snap_->atomData.force.size();
203 gezelter 1544 vector<Vector3d> frc_tmp(n, V3Zero);
204 gezelter 1541
205 gezelter 1551 AtomCommVectorRow->scatter(atomRowData.force, frc_tmp);
206 gezelter 1541 for (int i = 0; i < n; i++) {
207 gezelter 1551 snap_->atomData.force[i] += frc_tmp[i];
208 gezelter 1541 frc_tmp[i] = 0.0;
209     }
210 gezelter 1540
211 gezelter 1551 AtomCommVectorColumn->scatter(atomColData.force, frc_tmp);
212 gezelter 1540 for (int i = 0; i < n; i++)
213 gezelter 1551 snap_->atomData.force[i] += frc_tmp[i];
214 gezelter 1540
215    
216 gezelter 1551 if (storageLayout_ & DataStorage::dslTorque) {
217 gezelter 1541
218 gezelter 1551 int nt = snap_->atomData.force.size();
219 gezelter 1544 vector<Vector3d> trq_tmp(nt, V3Zero);
220 gezelter 1541
221 gezelter 1551 AtomCommVectorRow->scatter(atomRowData.torque, trq_tmp);
222 gezelter 1541 for (int i = 0; i < n; i++) {
223 gezelter 1551 snap_->atomData.torque[i] += trq_tmp[i];
224 gezelter 1541 trq_tmp[i] = 0.0;
225     }
226 gezelter 1540
227 gezelter 1551 AtomCommVectorColumn->scatter(atomColData.torque, trq_tmp);
228 gezelter 1540 for (int i = 0; i < n; i++)
229 gezelter 1551 snap_->atomData.torque[i] += trq_tmp[i];
230 gezelter 1540 }
231    
232 gezelter 1551 int nLocal = snap_->getNumberOfAtoms();
233 gezelter 1544
234     vector<vector<RealType> > pot_temp(N_INTERACTION_FAMILIES,
235     vector<RealType> (nLocal, 0.0));
236 gezelter 1540
237 gezelter 1544 for (int i = 0; i < N_INTERACTION_FAMILIES; i++) {
238 gezelter 1549 AtomCommRealRow->scatter(pot_row[i], pot_temp[i]);
239 gezelter 1541 for (int ii = 0; ii < pot_temp[i].size(); ii++ ) {
240     pot_local[i] += pot_temp[i][ii];
241     }
242     }
243 gezelter 1539 #endif
244 chuckv 1538 }
245 gezelter 1551
246 chuckv 1538
247 gezelter 1551 Vector3d ForceMatrixDecomposition::getIntergroupVector(int cg1, int cg2){
248     Vector3d d;
249    
250     #ifdef IS_MPI
251     d = cgColData.position[cg2] - cgRowData.position[cg1];
252     #else
253     d = snap_->cgData.position[cg2] - snap_->cgData.position[cg1];
254     #endif
255    
256     snap_->wrapVector(d);
257     return d;
258     }
259    
260    
261     Vector3d ForceMatrixDecomposition::getAtomToGroupVectorRow(int atom1, int cg1){
262    
263     Vector3d d;
264    
265     #ifdef IS_MPI
266     d = cgRowData.position[cg1] - atomRowData.position[atom1];
267     #else
268     d = snap_->cgData.position[cg1] - snap_->atomData.position[atom1];
269     #endif
270    
271     snap_->wrapVector(d);
272     return d;
273     }
274    
275     Vector3d ForceMatrixDecomposition::getAtomToGroupVectorColumn(int atom2, int cg2){
276     Vector3d d;
277    
278     #ifdef IS_MPI
279     d = cgColData.position[cg2] - atomColData.position[atom2];
280     #else
281     d = snap_->cgData.position[cg2] - snap_->atomData.position[atom2];
282     #endif
283    
284     snap_->wrapVector(d);
285     return d;
286     }
287    
288     Vector3d ForceMatrixDecomposition::getInteratomicVector(int atom1, int atom2){
289     Vector3d d;
290    
291     #ifdef IS_MPI
292     d = atomColData.position[atom2] - atomRowData.position[atom1];
293     #else
294     d = snap_->atomData.position[atom2] - snap_->atomData.position[atom1];
295     #endif
296    
297     snap_->wrapVector(d);
298     return d;
299     }
300    
301     void ForceMatrixDecomposition::addForceToAtomRow(int atom1, Vector3d fg){
302     #ifdef IS_MPI
303     atomRowData.force[atom1] += fg;
304     #else
305     snap_->atomData.force[atom1] += fg;
306     #endif
307     }
308    
309     void ForceMatrixDecomposition::addForceToAtomColumn(int atom2, Vector3d fg){
310     #ifdef IS_MPI
311     atomColData.force[atom2] += fg;
312     #else
313     snap_->atomData.force[atom2] += fg;
314     #endif
315    
316     }
317    
318     // filling interaction blocks with pointers
319     InteractionData ForceMatrixDecomposition::fillInteractionData(int atom1, int atom2) {
320    
321     InteractionData idat;
322     #ifdef IS_MPI
323     if (storageLayout_ & DataStorage::dslAmat) {
324 gezelter 1554 idat.A1 = &(atomRowData.aMat[atom1]);
325     idat.A2 = &(atomColData.aMat[atom2]);
326 gezelter 1551 }
327    
328     if (storageLayout_ & DataStorage::dslElectroFrame) {
329 gezelter 1554 idat.eFrame1 = &(atomRowData.electroFrame[atom1]);
330     idat.eFrame2 = &(atomColData.electroFrame[atom2]);
331 gezelter 1551 }
332    
333     if (storageLayout_ & DataStorage::dslTorque) {
334 gezelter 1554 idat.t1 = &(atomRowData.torque[atom1]);
335     idat.t2 = &(atomColData.torque[atom2]);
336 gezelter 1551 }
337    
338     if (storageLayout_ & DataStorage::dslDensity) {
339 gezelter 1554 idat.rho1 = &(atomRowData.density[atom1]);
340     idat.rho2 = &(atomColData.density[atom2]);
341 gezelter 1551 }
342    
343     if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
344 gezelter 1554 idat.dfrho1 = &(atomRowData.functionalDerivative[atom1]);
345     idat.dfrho2 = &(atomColData.functionalDerivative[atom2]);
346 gezelter 1551 }
347 gezelter 1562 #else
348     if (storageLayout_ & DataStorage::dslAmat) {
349     idat.A1 = &(snap_->atomData.aMat[atom1]);
350     idat.A2 = &(snap_->atomData.aMat[atom2]);
351     }
352    
353     if (storageLayout_ & DataStorage::dslElectroFrame) {
354     idat.eFrame1 = &(snap_->atomData.electroFrame[atom1]);
355     idat.eFrame2 = &(snap_->atomData.electroFrame[atom2]);
356     }
357    
358     if (storageLayout_ & DataStorage::dslTorque) {
359     idat.t1 = &(snap_->atomData.torque[atom1]);
360     idat.t2 = &(snap_->atomData.torque[atom2]);
361     }
362    
363     if (storageLayout_ & DataStorage::dslDensity) {
364     idat.rho1 = &(snap_->atomData.density[atom1]);
365     idat.rho2 = &(snap_->atomData.density[atom2]);
366     }
367    
368     if (storageLayout_ & DataStorage::dslFunctionalDerivative) {
369     idat.dfrho1 = &(snap_->atomData.functionalDerivative[atom1]);
370     idat.dfrho2 = &(snap_->atomData.functionalDerivative[atom2]);
371     }
372 gezelter 1551 #endif
373    
374     }
375     InteractionData ForceMatrixDecomposition::fillSkipData(int atom1, int atom2){
376 gezelter 1562 InteractionData idat;
377     skippedCharge1
378     skippedCharge2
379     rij
380     d
381     electroMult
382     sw
383     f
384     #ifdef IS_MPI
385    
386     if (storageLayout_ & DataStorage::dslElectroFrame) {
387     idat.eFrame1 = &(atomRowData.electroFrame[atom1]);
388     idat.eFrame2 = &(atomColData.electroFrame[atom2]);
389     }
390     if (storageLayout_ & DataStorage::dslTorque) {
391     idat.t1 = &(atomRowData.torque[atom1]);
392     idat.t2 = &(atomColData.torque[atom2]);
393     }
394    
395    
396 gezelter 1551 }
397     SelfData ForceMatrixDecomposition::fillSelfData(int atom1) {
398     }
399    
400 gezelter 1562
401     /*
402     * buildNeighborList
403     *
404     * first element of pair is row-indexed CutoffGroup
405     * second element of pair is column-indexed CutoffGroup
406     */
407     vector<pair<int, int> > buildNeighborList() {
408     Vector3d dr, invWid, rs, shift;
409     Vector3i cc, m1v, m2s;
410     RealType rrNebr;
411     int c, j1, j2, m1, m1x, m1y, m1z, m2, n, offset;
412    
413    
414     vector<pair<int, int> > neighborList;
415     Vector3i nCells;
416     Vector3d invWid, r;
417    
418     rList_ = (rCut_ + skinThickness_);
419     rl2 = rList_ * rList_;
420    
421     snap_ = sman_->getCurrentSnapshot();
422     Mat3x3d Hmat = snap_->getHmat();
423     Vector3d Hx = Hmat.getColumn(0);
424     Vector3d Hy = Hmat.getColumn(1);
425     Vector3d Hz = Hmat.getColumn(2);
426    
427     nCells.x() = (int) ( Hx.length() )/ rList_;
428     nCells.y() = (int) ( Hy.length() )/ rList_;
429     nCells.z() = (int) ( Hz.length() )/ rList_;
430    
431     for (i = 0; i < nGroupsInRow; i++) {
432     rs = cgRowData.position[i];
433     snap_->scaleVector(rs);
434     }
435    
436    
437     VDiv (invWid, cells, region);
438     for (n = nMol; n < nMol + cells.componentProduct(); n ++) cellList[n] = -1;
439     for (n = 0; n < nMol; n ++) {
440     VSAdd (rs, mol[n].r, 0.5, region);
441     VMul (cc, rs, invWid);
442     c = VLinear (cc, cells) + nMol;
443     cellList[n] = cellList[c];
444     cellList[c] = n;
445     }
446     nebrTabLen = 0;
447     for (m1z = 0; m1z < cells.z(); m1z++) {
448     for (m1y = 0; m1y < cells.y(); m1y++) {
449     for (m1x = 0; m1x < cells.x(); m1x++) {
450     Vector3i m1v(m1x, m1y, m1z);
451     m1 = VLinear(m1v, cells) + nMol;
452     for (offset = 0; offset < nOffset_; offset++) {
453     m2v = m1v + cellOffsets_[offset];
454     shift = V3Zero();
455    
456     if (m2v.x() >= cells.x) {
457     m2v.x() = 0;
458     shift.x() = region.x();
459     } else if (m2v.x() < 0) {
460     m2v.x() = cells.x() - 1;
461     shift.x() = - region.x();
462     }
463    
464     if (m2v.y() >= cells.y()) {
465     m2v.y() = 0;
466     shift.y() = region.y();
467     } else if (m2v.y() < 0) {
468     m2v.y() = cells.y() - 1;
469     shift.y() = - region.y();
470     }
471    
472     m2 = VLinear (m2v, cells) + nMol;
473     for (j1 = cellList[m1]; j1 >= 0; j1 = cellList[j1]) {
474     for (j2 = cellList[m2]; j2 >= 0; j2 = cellList[j2]) {
475     if (m1 != m2 || j2 < j1) {
476     dr = mol[j1].r - mol[j2].r;
477     VSub (dr, mol[j1].r, mol[j2].r);
478     VVSub (dr, shift);
479     if (VLenSq (dr) < rrNebr) {
480     neighborList.push_back(make_pair(j1, j2));
481     }
482     }
483     }
484     }
485     }
486     }
487     }
488     }
489     }
490    
491 gezelter 1551
492 gezelter 1539 } //end namespace OpenMD