ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/devel_omp/src/nonbonded/SHAPES.cpp
Revision: 1614
Committed: Tue Aug 23 20:55:51 2011 UTC (13 years, 8 months ago) by mciznick
File size: 14088 byte(s)
Log Message:
Updated scalability of OpenMP threads.

File Contents

# Content
1 /*
2 * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 *
4 * The University of Notre Dame grants you ("Licensee") a
5 * non-exclusive, royalty free, license to use, modify and
6 * redistribute this software in source and binary code form, provided
7 * that the following conditions are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 *
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the
15 * distribution.
16 *
17 * This software is provided "AS IS," without a warranty of any
18 * kind. All express or implied conditions, representations and
19 * warranties, including any implied warranty of merchantability,
20 * fitness for a particular purpose or non-infringement, are hereby
21 * excluded. The University of Notre Dame and its licensors shall not
22 * be liable for any damages suffered by licensee as a result of
23 * using, modifying or distributing the software or its
24 * derivatives. In no event will the University of Notre Dame or its
25 * licensors be liable for any lost revenue, profit or data, or for
26 * direct, indirect, special, consequential, incidental or punitive
27 * damages, however caused and regardless of the theory of liability,
28 * arising out of the use of or inability to use software, even if the
29 * University of Notre Dame has been advised of the possibility of
30 * such damages.
31 *
32 * SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your
33 * research, please cite the appropriate papers when you publish your
34 * work. Good starting points are:
35 *
36 * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).
37 * [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).
38 * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).
39 * [4] Vardeman & Gezelter, in progress (2009).
40 */
41
42 #include <stdio.h>
43 #include <string.h>
44
45 #include <cmath>
46 #include "nonbonded/SHAPES.hpp"
47 #include "nonbonded/LJ.hpp"
48 #include "utils/simError.h"
49
50 using namespace std;
51 namespace OpenMD {
52
53 SHAPES::SHAPES() {
54 initialized_ = false;
55 lMax_ = 64;
56 mMax_ = 64;
57 forceField_ = NULL;
58 }
59
60 void SHAPES::initialize() {
61
62 ForceFieldOptions& fopts = forceField_->getForceFieldOptions();
63 ForceField::AtomTypeContainer* atomTypes = forceField_->getAtomTypes();
64 ForceField::AtomTypeContainer::MapTypeIterator i;
65 AtomType* at;
66
67 // SHAPES handles all of the SHAPES-SHAPES interactions as well as
68 // SHAPES-LJ cross interactions:
69
70 for (at = atomTypes->beginType(i); at != NULL;
71 at = atomTypes->nextType(i)) {
72
73 if (at->isShape())
74 addShape(dynamic_cast<ShapeAtomType*>(at));
75
76 if (at->isLennardJones())
77 addLJ(at);
78
79 }
80
81 initialized_ = true;
82 }
83
84 void SHAPES::addShape(ShapeAtomType* atomType){
85 // add it to the map:
86 AtomTypeProperties atp = atomType->getATP();
87
88 pair<map<int,ShapeAtomType*>::iterator, bool> ret;
89 ret = shapesMap.insert( pair<int, ShapeAtomType*>(atp.ident, atomType));
90 if (ret.second == false) {
91 sprintf( painCave.errmsg,
92 "SHAPES already had a previous entry with ident %d\n",
93 atp.ident);
94 painCave.severity = OPENMD_INFO;
95 painCave.isFatal = 0;
96 simError();
97 }
98
99 ShapesMap.insert( pair<int, ShapeAtomType*>(atp.ident, sAtomType) );
100
101 } else if (atomType->isLennardJones()) {
102 d1 = getLJSigma(atomType) / sqrt(2.0);
103 e1 = getLJEpsilon(atomType);
104 } else {
105 sprintf( painCave.errMsg,
106 "SHAPES::addType was passed an atomType (%s) that does not\n"
107 "\tappear to be a SHAPES or Lennard-Jones atom.\n",
108 atomType->getName().c_str());
109 painCave.severity = OPENMD_ERROR;
110 painCave.isFatal = 1;
111 simError();
112 }
113 }
114
115
116 LJParam SHAPES::getLJParam(AtomType* atomType) {
117
118 // Do sanity checking on the AtomType we were passed before
119 // building any data structures:
120 if (!atomType->isLennardJones()) {
121 sprintf( painCave.errMsg,
122 "SHAPES::getLJParam was passed an atomType (%s) that does not\n"
123 "\tappear to be a Lennard-Jones atom.\n",
124 atomType->getName().c_str());
125 painCave.severity = OPENMD_ERROR;
126 painCave.isFatal = 1;
127 simError();
128 }
129
130 GenericData* data = atomType->getPropertyByName("LennardJones");
131 if (data == NULL) {
132 sprintf( painCave.errMsg, "SHAPES::getLJParam could not find Lennard-Jones\n"
133 "\tparameters for atomType %s.\n", atomType->getName().c_str());
134 painCave.severity = OPENMD_ERROR;
135 painCave.isFatal = 1;
136 simError();
137 }
138
139 LJParamGenericData* ljData = dynamic_cast<LJParamGenericData*>(data);
140 if (ljData == NULL) {
141 sprintf( painCave.errMsg,
142 "SHAPES::getLJParam could not convert GenericData to LJParam for\n"
143 "\tatom type %s\n", atomType->getName().c_str());
144 painCave.severity = OPENMD_ERROR;
145 painCave.isFatal = 1;
146 simError();
147 }
148
149 return ljData->getData();
150 }
151
152 RealType SHAPES::getLJEpsilon(AtomType* atomType) {
153 LJParam ljParam = getLJParam(atomType);
154 return ljParam.epsilon;
155 }
156 RealType SHAPES::getLJSigma(AtomType* atomType) {
157 LJParam ljParam = getLJParam(atomType);
158 return ljParam.sigma;
159 }
160
161 RealType SHAPES::getGayBerneCut(int atid) {
162 if (!initialized_) initialize();
163 std::map<int, AtomType*> :: const_iterator it;
164 it = SHAPESMap.find(atid);
165 if (it == SHAPESMap.end()) {
166 sprintf( painCave.errMsg,
167 "SHAPES::getGayBerneCut could not find atid %d in SHAPESMap\n",
168 (atid));
169 painCave.severity = OPENMD_ERROR;
170 painCave.isFatal = 1;
171 simError();
172 }
173
174 AtomType* atype = it->second;
175
176 RealType gbCut;
177
178 if (atype->isGayBerne()) {
179 GayBerneParam gb = getGayBerneParam(atype);
180
181 // sigma is actually sqrt(2) * l for prolate ellipsoids
182 gbCut = 2.5 * sqrt(2.0) * max(gb.SHAPES_l, gb.SHAPES_d);
183
184 } else if (atype->isLennardJones()) {
185 gbCut = 2.5 * LJ::Instance()->getSigma(atype);
186 }
187
188 return gbCut;
189 }
190
191 void SHAPES::initForce() {
192 if (!initialized_) initialize();
193 }
194
195 void SHAPES::calcForce(AtomType* at1, AtomType* at2, Vector3d d,
196 RealType r, RealType r2, RealType sw,
197 RealType &vpair, RealType &pot,
198 RotMat3x3d A1, RotMat3x3d A2, Vector3d &f1,
199 Vector3d &t1, Vector3d &t2) {
200
201 if (!initialized_) initialize();
202
203 pair<AtomType*, AtomType*> key = make_pair(at1, at2);
204 SHAPESInteractionData mixer = MixingMap[key];
205
206 RealType r3 = r2 * r;
207 RealType r5 = r3 * r2;
208
209 Vector3d drdi = -d / r;
210 Vector3d drdui = V3Zero;
211 Vector3d drdj = d / r;
212 Vector3d drduj = V3Zero;
213
214 bool i_is_LJ = at1->isLennardJones();
215 bool j_is_LJ = at2->isLennardJones();
216
217 RealType sigma_i;
218 RealType s_i;
219 RealType eps_i;
220 Vector3d dsigmaidr;
221 Vector3d disgmaidu;
222 Vector3d dsidr;
223 Vector3d dsidu;
224 Vector3d depsidr;
225 Vector3d depsidu;
226
227 if (i_is_LJ) {
228 sigma_i = LJ::Instance()->getSigma(at1);
229 s_i = sigma_i;
230 epsilon_i = LJ::Instance()->getEpsilon(at1);
231 dsigmaidr = V3Zero;
232 dsigmaidu = V3Zero;
233 dsidr = V3Zero;
234 dsidu = V3Zero;
235 depsidr = V3Zero;
236 depsidu = V3Zero;
237 } else {
238
239 // rotate the inter-particle separation into the two different
240 // body-fixed coordinate systems:
241
242 Vector3d ri = A1 * d;
243
244 RealType xi = ri.x() / r;
245 RealType yi = ri.y() / r;
246 RealType zi = ri.z() / r;
247 RealType xi2 = xi * xi;
248 RealType yi2 = yi * yi;
249 RealType zi2 = zi * zi;
250 RealType cti = zi / r;
251
252 if (cti > 1.0) cti = 1.0;
253 if (cti < -1.0_dp) cti = -1.0;
254
255 Vector3d dctidr(-zi * xi / r3,
256 -zi * yi / r3,
257 1.0 / r - zi2 / r3);
258
259 Vector3d dctidu(yi / r,
260 -zi / r,
261 0.0);
262
263 // this is an attempt to try to truncate the singularity when
264 // sin(theta) is near 0.0:
265
266 RealType sti2 = 1.0 - cti*cti;
267 if (fabs(sti2) < 1.0e-12) {
268 RealType proji = sqrt(r * 1.0e-12);
269 Vector3d dcpidx(1.0 / proji,
270 0.0,
271
272 dcpidx = 1.0_dp / proji
273 dcpidy = 0.0_dp
274 dcpidux = xi / proji
275 dcpiduy = 0.0_dp
276 dspidx = 0.0_dp
277 dspidy = 1.0_dp / proji
278 dspidux = 0.0_dp
279 dspiduy = yi / proji
280 else
281 proji = sqrt(xi2 + yi2)
282 proji3 = proji*proji*proji
283 dcpidx = 1.0_dp / proji - xi2 / proji3
284 dcpidy = - xi * yi / proji3
285 dcpidux = xi / proji - (xi2 * xi) / proji3
286 dcpiduy = - (xi * yi2) / proji3
287 dspidx = - xi * yi / proji3
288 dspidy = 1.0_dp / proji - yi2 / proji3
289 dspidux = - (yi * xi2) / proji3
290 dspiduy = yi / proji - (yi2 * yi) / proji3
291 endif
292
293 cpi = xi / proji
294 dcpidz = 0.0_dp
295 dcpiduz = 0.0_dp
296
297 spi = yi / proji
298 dspidz = 0.0_dp
299 dspiduz = 0.0_dp
300
301
302
303
304 RealType sigma0 = mixer.sigma0;
305 RealType dw = mixer.dw;
306 RealType eps0 = mixer.eps0;
307 RealType x2 = mixer.x2;
308 RealType xa2 = mixer.xa2;
309 RealType xai2 = mixer.xai2;
310 RealType xp2 = mixer.xp2;
311 RealType xpap2 = mixer.xpap2;
312 RealType xpapi2 = mixer.xpapi2;
313
314 Vector3d ul1 = A1.getRow(2);
315 Vector3d ul2 = A2.getRow(2);
316
317 RealType a, b, g;
318
319
320 if (i_is_LJ) {
321 a = 0.0;
322 ul1 = V3Zero;
323 } else {
324 a = dot(d, ul1);
325 }
326
327 if (j_is_LJ) {
328 b = 0.0;
329 ul2 = V3Zero;
330 } else {
331 b = dot(d, ul2);
332 }
333
334 if (i_is_LJ || j_is_LJ)
335 g = 0.0;
336 else
337 g = dot(ul1, ul2);
338
339 RealType au = a / r;
340 RealType bu = b / r;
341
342 RealType au2 = au * au;
343 RealType bu2 = bu * bu;
344 RealType g2 = g * g;
345
346 RealType H = (xa2 * au2 + xai2 * bu2 - 2.0*x2*au*bu*g) / (1.0 - x2*g2);
347 RealType Hp = (xpap2*au2 + xpapi2*bu2 - 2.0*xp2*au*bu*g) / (1.0 - xp2*g2);
348
349 RealType sigma = sigma0 / sqrt(1.0 - H);
350 RealType e1 = 1.0 / sqrt(1.0 - x2*g2);
351 RealType e2 = 1.0 - Hp;
352 RealType eps = eps0 * pow(e1,nu_) * pow(e2,mu_);
353 RealType BigR = dw*sigma0 / (r - sigma + dw*sigma0);
354
355 RealType R3 = BigR*BigR*BigR;
356 RealType R6 = R3*R3;
357 RealType R7 = R6 * BigR;
358 RealType R12 = R6*R6;
359 RealType R13 = R6*R7;
360
361 RealType U = vdwMult * 4.0 * eps * (R12 - R6);
362
363 RealType s3 = sigma*sigma*sigma;
364 RealType s03 = sigma0*sigma0*sigma0;
365
366 RealType pref1 = - vdwMult * 8.0 * eps * mu_ * (R12 - R6) / (e2 * r);
367
368 RealType pref2 = vdwMult * 8.0 * eps * s3 * (6.0*R13 - 3.0*R7) /(dw*r*s03);
369
370 RealType dUdr = - (pref1 * Hp + pref2 * (sigma0*sigma0*r/s3 + H));
371
372 RealType dUda = pref1 * (xpap2*au - xp2*bu*g) / (1.0 - xp2 * g2)
373 + pref2 * (xa2 * au - x2 *bu*g) / (1.0 - x2 * g2);
374
375 RealType dUdb = pref1 * (xpapi2*bu - xp2*au*g) / (1.0 - xp2 * g2)
376 + pref2 * (xai2 * bu - x2 *au*g) / (1.0 - x2 * g2);
377
378 RealType dUdg = 4.0 * eps * nu_ * (R12 - R6) * x2 * g / (1.0 - x2*g2)
379 + 8.0 * eps * mu_ * (R12 - R6) * (xp2*au*bu - Hp*xp2*g) /
380 (1.0 - xp2 * g2) / e2 + 8.0 * eps * s3 * (3.0 * R7 - 6.0 * R13) *
381 (x2 * au * bu - H * x2 * g) / (1.0 - x2 * g2) / (dw * s03);
382
383
384 Vector3d rhat = d / r;
385 Vector3d rxu1 = cross(d, ul1);
386 Vector3d rxu2 = cross(d, ul2);
387 Vector3d uxu = cross(ul1, ul2);
388
389 pot += U*sw;
390 f1 += dUdr * rhat + dUda * ul1 + dUdb * ul2;
391 t1 += dUda * rxu1 - dUdg * uxu;
392 t2 += dUdb * rxu2 - dUdg * uxu;
393 vpair += U*sw;
394
395 return;
396
397 }
398
399 void SHAPES::do_gb_pair(int *atid1, int *atid2, RealType *d, RealType *r,
400 RealType *r2, RealType *sw, RealType *vdwMult,
401 RealType *vpair, RealType *pot, RealType *A1,
402 RealType *A2, RealType *f1, RealType *t1, RealType *t2) {
403
404 if (!initialized_) initialize();
405
406 AtomType* atype1 = SHAPESMap[*atid1];
407 AtomType* atype2 = SHAPESMap[*atid2];
408
409 Vector3d disp(d);
410 Vector3d frc(f1);
411 Vector3d trq1(t1);
412 Vector3d trq2(t2);
413 RotMat3x3d Ai(A1);
414 RotMat3x3d Aj(A2);
415
416 // Fortran has the opposite matrix ordering from c++, so we'll use
417 // transpose here. When we finish the conversion to C++, this wrapper
418 // will disappear, as will the transpose below:
419
420 calcForce(atype1, atype2, disp, *r, *r2, *sw, *vdwMult, *vpair, *pot,
421 Ai, Aj, frc, trq1, trq1);
422
423 f1[0] = frc.x();
424 f1[1] = frc.y();
425 f1[2] = frc.z();
426
427 t1[0] = trq1.x();
428 t1[1] = trq1.y();
429 t1[2] = trq1.z();
430
431 t2[0] = trq2.x();
432 t2[1] = trq2.y();
433 t2[2] = trq2.z();
434
435 return;
436 }
437 }
438
439 extern "C" {
440
441 #define fortranGetGayBerneCut FC_FUNC(getgaybernecut, GETGAYBERNECUT)
442 #define fortranDoSHAPESPair FC_FUNC(do_gb_pair, DO_SHAPES_PAIR)
443
444 RealType fortranGetGayBerneCut(int* atid) {
445 return OpenMD::SHAPES::Instance()->getGayBerneCut(*atid);
446 }
447
448 void fortranDoSHAPESPair(int *atid1, int *atid2, RealType *d, RealType *r,
449 RealType *r2, RealType *sw, RealType *vdwMult,
450 RealType *vpair, RealType *pot, RealType *A1,
451 RealType *A2, RealType *f1, RealType *t1, RealType *t2){
452
453 return OpenMD::SHAPES::Instance()->do_gb_pair(atid1, atid2, d, r, r2, sw,
454 vdwMult, vpair, pot, A1, A2, f1,
455 t1, t2);
456 }
457 }

Properties

Name Value
svn:eol-style native