ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/devel_omp/src/nonbonded/MAW.cpp
Revision: 1614
Committed: Tue Aug 23 20:55:51 2011 UTC (13 years, 11 months ago) by mciznick
File size: 10405 byte(s)
Log Message:
Updated scalability of OpenMP threads.

File Contents

# User Rev Content
1 gezelter 1532 /*
2     * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3     *
4     * The University of Notre Dame grants you ("Licensee") a
5     * non-exclusive, royalty free, license to use, modify and
6     * redistribute this software in source and binary code form, provided
7     * that the following conditions are met:
8     *
9     * 1. Redistributions of source code must retain the above copyright
10     * notice, this list of conditions and the following disclaimer.
11     *
12     * 2. Redistributions in binary form must reproduce the above copyright
13     * notice, this list of conditions and the following disclaimer in the
14     * documentation and/or other materials provided with the
15     * distribution.
16     *
17     * This software is provided "AS IS," without a warranty of any
18     * kind. All express or implied conditions, representations and
19     * warranties, including any implied warranty of merchantability,
20     * fitness for a particular purpose or non-infringement, are hereby
21     * excluded. The University of Notre Dame and its licensors shall not
22     * be liable for any damages suffered by licensee as a result of
23     * using, modifying or distributing the software or its
24     * derivatives. In no event will the University of Notre Dame or its
25     * licensors be liable for any lost revenue, profit or data, or for
26     * direct, indirect, special, consequential, incidental or punitive
27     * damages, however caused and regardless of the theory of liability,
28     * arising out of the use of or inability to use software, even if the
29     * University of Notre Dame has been advised of the possibility of
30     * such damages.
31     *
32     * SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your
33     * research, please cite the appropriate papers when you publish your
34     * work. Good starting points are:
35     *
36     * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).
37     * [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).
38     * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).
39     * [4] Vardeman & Gezelter, in progress (2009).
40     */
41    
42     #include <stdio.h>
43     #include <string.h>
44     #include <cmath>
45    
46     #include "nonbonded/MAW.hpp"
47     #include "utils/simError.h"
48    
49     using namespace std;
50    
51     namespace OpenMD {
52    
53 gezelter 1583 MAW::MAW() : name_("MAW"), initialized_(false), forceField_(NULL) {}
54 gezelter 1532
55     void MAW::initialize() {
56    
57     ForceField::NonBondedInteractionTypeContainer* nbiTypes = forceField_->getNonBondedInteractionTypes();
58     ForceField::NonBondedInteractionTypeContainer::MapTypeIterator j;
59     NonBondedInteractionType* nbt;
60    
61     for (nbt = nbiTypes->beginType(j); nbt != NULL;
62     nbt = nbiTypes->nextType(j)) {
63    
64     if (nbt->isMAW()) {
65     pair<AtomType*, AtomType*> atypes = nbt->getAtomTypes();
66    
67     GenericData* data = nbt->getPropertyByName("MAW");
68     if (data == NULL) {
69     sprintf( painCave.errMsg, "MAW::initialize could not find\n"
70     "\tMAW parameters for %s - %s interaction.\n",
71     atypes.first->getName().c_str(),
72     atypes.second->getName().c_str());
73     painCave.severity = OPENMD_ERROR;
74     painCave.isFatal = 1;
75     simError();
76     }
77    
78     MAWData* mawData = dynamic_cast<MAWData*>(data);
79     if (mawData == NULL) {
80     sprintf( painCave.errMsg,
81     "MAW::initialize could not convert GenericData to\n"
82     "\tMAWData for %s - %s interaction.\n",
83     atypes.first->getName().c_str(),
84     atypes.second->getName().c_str());
85     painCave.severity = OPENMD_ERROR;
86     painCave.isFatal = 1;
87     simError();
88     }
89    
90     MAWParam mawParam = mawData->getData();
91    
92     RealType De = mawParam.De;
93     RealType beta = mawParam.beta;
94     RealType Re = mawParam.Re;
95     RealType ca1 = mawParam.ca1;
96     RealType cb1 = mawParam.cb1;
97    
98     addExplicitInteraction(atypes.first, atypes.second,
99     De, beta, Re, ca1, cb1);
100     }
101     }
102     initialized_ = true;
103     }
104    
105     void MAW::addExplicitInteraction(AtomType* atype1, AtomType* atype2,
106     RealType De, RealType beta, RealType Re,
107     RealType ca1, RealType cb1) {
108    
109     MAWInteractionData mixer;
110     mixer.De = De;
111     mixer.beta = beta;
112     mixer.Re = Re;
113     mixer.ca1 = ca1;
114     mixer.cb1 = cb1;
115    
116     pair<AtomType*, AtomType*> key1, key2;
117     key1 = make_pair(atype1, atype2);
118     key2 = make_pair(atype2, atype1);
119    
120     MixingMap[key1] = mixer;
121     if (key2 != key1) {
122     MixingMap[key2] = mixer;
123     }
124     }
125    
126 mciznick 1614 void MAW::initForce() {
127     if (!initialized_) initialize();
128     }
129    
130 gezelter 1536 void MAW::calcForce(InteractionData &idat) {
131 gezelter 1532
132     if (!initialized_) initialize();
133    
134     map<pair<AtomType*, AtomType*>, MAWInteractionData>::iterator it;
135 gezelter 1571 it = MixingMap.find( idat.atypes );
136 gezelter 1532 if (it != MixingMap.end()) {
137     MAWInteractionData mixer = (*it).second;
138    
139     RealType myPot = 0.0;
140     RealType myPotC = 0.0;
141     RealType myDeriv = 0.0;
142     RealType myDerivC = 0.0;
143    
144     RealType D_e = mixer.De;
145     RealType R_e = mixer.Re;
146     RealType beta = mixer.beta;
147     RealType ca1 = mixer.ca1;
148     RealType cb1 = mixer.cb1;
149    
150 gezelter 1571 bool j_is_Metal = idat.atypes.second->isMetal();
151 gezelter 1532
152     Vector3d r;
153     RotMat3x3d Atrans;
154     if (j_is_Metal) {
155     // rotate the inter-particle separation into the two different
156     // body-fixed coordinate systems:
157 gezelter 1554 r = *(idat.A1) * *(idat.d);
158     Atrans = idat.A1->transpose();
159 gezelter 1532 } else {
160     // negative sign because this is the vector from j to i:
161 gezelter 1554 r = -*(idat.A2) * *(idat.d);
162     Atrans = idat.A2->transpose();
163 gezelter 1532 }
164    
165     // V(r) = D_e exp(-a(r-re)(exp(-a(r-re))-2)
166    
167 gezelter 1554 RealType expt = -beta*( *(idat.rij) - R_e);
168 gezelter 1532 RealType expfnc = exp(expt);
169     RealType expfnc2 = expfnc*expfnc;
170    
171     RealType exptC = 0.0;
172     RealType expfncC = 0.0;
173     RealType expfnc2C = 0.0;
174    
175     myPot = D_e * (expfnc2 - 2.0 * expfnc);
176     myDeriv = 2.0 * D_e * beta * (expfnc - expfnc2);
177    
178 gezelter 1583 if (idat.shiftedPot || idat.shiftedForce) {
179 gezelter 1554 exptC = -beta*( *(idat.rcut) - R_e);
180 gezelter 1532 expfncC = exp(exptC);
181     expfnc2C = expfncC*expfncC;
182     }
183    
184 gezelter 1583 if (idat.shiftedPot) {
185 gezelter 1532 myPotC = D_e * (expfnc2C - 2.0 * expfncC);
186     myDerivC = 0.0;
187 gezelter 1583 } else if (idat.shiftedForce) {
188 gezelter 1532 myPotC = D_e * (expfnc2C - 2.0 * expfncC);
189     myDerivC = 2.0 * D_e * beta * (expfnc2C - expfnc2C);
190 gezelter 1554 myPotC += myDerivC * ( *(idat.rij) - *(idat.rcut) );
191 gezelter 1532 } else {
192     myPotC = 0.0;
193     myDerivC = 0.0;
194     }
195    
196     RealType x = r.x();
197     RealType y = r.y();
198     RealType z = r.z();
199     RealType x2 = x * x;
200     RealType y2 = y * y;
201     RealType z2 = z * z;
202    
203 gezelter 1554 RealType r3 = *(idat.r2) * *(idat.rij) ;
204     RealType r4 = *(idat.r2) * *(idat.r2);
205 gezelter 1532
206     // angular modulation of morse part of potential to approximate
207     // the squares of the two HOMO lone pair orbitals in water:
208     //********************** old form*************************
209     // s = 1 / (4 pi)
210     // ta1 = (s - pz)^2 = (1 - sqrt(3)*cos(theta))^2 / (4 pi)
211     // b1 = px^2 = 3 * (sin(theta)*cos(phi))^2 / (4 pi)
212     //********************** old form*************************
213     // we'll leave out the 4 pi for now
214    
215     // new functional form just using the p orbitals.
216     // Vmorse(r)*[a*p_x + b p_z + (1-a-b)]
217     // which is
218     // Vmorse(r)*[a sin^2(theta) cos^2(phi) + b cos(theta) + (1-a-b)]
219     // Vmorse(r)*[a*x2/r2 + b*z/r + (1-a-b)]
220    
221     RealType Vmorse = (myPot - myPotC);
222 gezelter 1554 RealType Vang = ca1 * x2 / *(idat.r2) +
223     cb1 * z / *(idat.rij) + (0.8 - ca1 / 3.0);
224    
225     RealType pot_temp = *(idat.vdwMult) * Vmorse * Vang;
226     *(idat.vpair) += pot_temp;
227 gezelter 1582 (*(idat.pot))[VANDERWAALS_FAMILY] += *(idat.sw) * pot_temp;
228 gezelter 1532
229 gezelter 1554 Vector3d dVmorsedr = (myDeriv - myDerivC) * Vector3d(x, y, z) / *(idat.rij) ;
230 gezelter 1532
231 gezelter 1554 Vector3d dVangdr = Vector3d(-2.0 * ca1 * x2 * x / r4 + 2.0 * ca1 * x / *(idat.r2) - cb1 * x * z / r3,
232     -2.0 * ca1 * x2 * y / r4 - cb1 * z * y / r3,
233     -2.0 * ca1 * x2 * z / r4 + cb1 / *(idat.rij) - cb1 * z2 / r3);
234    
235 gezelter 1532 // chain rule to put these back on x, y, z
236    
237     Vector3d dvdr = Vang * dVmorsedr + Vmorse * dVangdr;
238    
239     // Torques for Vang using method of Price:
240     // S. L. Price, A. J. Stone, and M. Alderton, Mol. Phys. 52, 987 (1984).
241    
242 gezelter 1554 Vector3d dVangdu = Vector3d(cb1 * y / *(idat.rij) ,
243     2.0 * ca1 * x * z / *(idat.r2) - cb1 * x / *(idat.rij),
244     -2.0 * ca1 * y * x / *(idat.r2));
245 gezelter 1532
246     // do the torques first since they are easy:
247     // remember that these are still in the body fixed axes
248    
249 gezelter 1554 Vector3d trq = *(idat.vdwMult) * Vmorse * dVangdu * *(idat.sw);
250 gezelter 1532
251     // go back to lab frame using transpose of rotation matrix:
252    
253     if (j_is_Metal) {
254 gezelter 1554 *(idat.t1) += Atrans * trq;
255 gezelter 1532 } else {
256 gezelter 1554 *(idat.t2) += Atrans * trq;
257 gezelter 1532 }
258    
259     // Now, on to the forces (still in body frame of water)
260    
261 gezelter 1554 Vector3d ftmp = *(idat.vdwMult) * *(idat.sw) * dvdr;
262 gezelter 1532
263     // rotate the terms back into the lab frame:
264     Vector3d flab;
265     if (j_is_Metal) {
266     flab = Atrans * ftmp;
267     } else {
268     flab = - Atrans * ftmp;
269     }
270    
271 gezelter 1554 *(idat.f1) += flab;
272 gezelter 1532 }
273     return;
274    
275     }
276    
277 gezelter 1545 RealType MAW::getSuggestedCutoffRadius(pair<AtomType*, AtomType*> atypes) {
278 gezelter 1532 if (!initialized_) initialize();
279     map<pair<AtomType*, AtomType*>, MAWInteractionData>::iterator it;
280 gezelter 1545 it = MixingMap.find(atypes);
281 gezelter 1532 if (it == MixingMap.end())
282     return 0.0;
283     else {
284     MAWInteractionData mixer = (*it).second;
285    
286     RealType R_e = mixer.Re;
287     RealType beta = mixer.beta;
288     // This value of the r corresponds to an energy about 1.48% of
289     // the energy at the bottom of the Morse well. For comparison, the
290     // Lennard-Jones function is about 1.63% of it's minimum value at
291     // a distance of 2.5 sigma.
292     return (4.9 + beta * R_e) / beta;
293     }
294     }
295     }
296    

Properties

Name Value
svn:eol-style native