1 |
/* |
2 |
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
* |
4 |
* The University of Notre Dame grants you ("Licensee") a |
5 |
* non-exclusive, royalty free, license to use, modify and |
6 |
* redistribute this software in source and binary code form, provided |
7 |
* that the following conditions are met: |
8 |
* |
9 |
* 1. Redistributions of source code must retain the above copyright |
10 |
* notice, this list of conditions and the following disclaimer. |
11 |
* |
12 |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
* notice, this list of conditions and the following disclaimer in the |
14 |
* documentation and/or other materials provided with the |
15 |
* distribution. |
16 |
* |
17 |
* This software is provided "AS IS," without a warranty of any |
18 |
* kind. All express or implied conditions, representations and |
19 |
* warranties, including any implied warranty of merchantability, |
20 |
* fitness for a particular purpose or non-infringement, are hereby |
21 |
* excluded. The University of Notre Dame and its licensors shall not |
22 |
* be liable for any damages suffered by licensee as a result of |
23 |
* using, modifying or distributing the software or its |
24 |
* derivatives. In no event will the University of Notre Dame or its |
25 |
* licensors be liable for any lost revenue, profit or data, or for |
26 |
* direct, indirect, special, consequential, incidental or punitive |
27 |
* damages, however caused and regardless of the theory of liability, |
28 |
* arising out of the use of or inability to use software, even if the |
29 |
* University of Notre Dame has been advised of the possibility of |
30 |
* such damages. |
31 |
* |
32 |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
* research, please cite the appropriate papers when you publish your |
34 |
* work. Good starting points are: |
35 |
* |
36 |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 |
* [4] Vardeman & Gezelter, in progress (2009). |
40 |
*/ |
41 |
|
42 |
#include "math/CubicSpline.hpp" |
43 |
#include "utils/simError.h" |
44 |
#include <cmath> |
45 |
#include <algorithm> |
46 |
#include <stdio.h> |
47 |
|
48 |
using namespace OpenMD; |
49 |
using namespace std; |
50 |
|
51 |
CubicSpline::CubicSpline() : generated(false), isUniform(true) { |
52 |
data_.clear(); |
53 |
} |
54 |
|
55 |
void CubicSpline::addPoint(const RealType xp, const RealType yp) { |
56 |
data_.push_back(make_pair(xp, yp)); |
57 |
} |
58 |
|
59 |
void CubicSpline::addPoints(const vector<RealType>& xps, |
60 |
const vector<RealType>& yps) { |
61 |
|
62 |
if (xps.size() != yps.size()) { |
63 |
printf( painCave.errMsg, |
64 |
"CubicSpline::addPoints was passed vectors of different length!\n"); |
65 |
painCave.severity = OPENMD_ERROR; |
66 |
painCave.isFatal = 1; |
67 |
simError(); |
68 |
} |
69 |
|
70 |
for (int i = 0; i < xps.size(); i++) |
71 |
data_.push_back(make_pair(xps[i], yps[i])); |
72 |
} |
73 |
|
74 |
void CubicSpline::generate() { |
75 |
// Calculate coefficients defining a smooth cubic interpolatory spline. |
76 |
// |
77 |
// class values constructed: |
78 |
// n = number of data_ points. |
79 |
// x = vector of independent variable values |
80 |
// y = vector of dependent variable values |
81 |
// b = vector of S'(x[i]) values. |
82 |
// c = vector of S"(x[i])/2 values. |
83 |
// d = vector of S'''(x[i]+)/6 values (i < n). |
84 |
// Local variables: |
85 |
|
86 |
RealType fp1, fpn, h, p; |
87 |
|
88 |
// make sure the sizes match |
89 |
|
90 |
n = data_.size(); |
91 |
b.resize(n); |
92 |
c.resize(n); |
93 |
d.resize(n); |
94 |
|
95 |
// make sure we are monotonically increasing in x: |
96 |
|
97 |
bool sorted = true; |
98 |
|
99 |
for (int i = 1; i < n; i++) { |
100 |
if ( (data_[i].first - data_[i-1].first ) <= 0.0 ) sorted = false; |
101 |
} |
102 |
|
103 |
// sort if necessary |
104 |
|
105 |
if (!sorted) sort(data_.begin(), data_.end()); |
106 |
|
107 |
// Calculate coefficients for the tridiagonal system: store |
108 |
// sub-diagonal in B, diagonal in D, difference quotient in C. |
109 |
|
110 |
b[0] = data_[1].first - data_[0].first; |
111 |
c[0] = (data_[1].second - data_[0].second) / b[0]; |
112 |
|
113 |
if (n == 2) { |
114 |
|
115 |
// Assume the derivatives at both endpoints are zero. Another |
116 |
// assumption could be made to have a linear interpolant between |
117 |
// the two points. In that case, the b coefficients below would be |
118 |
// (data_[1].second - data_[0].second) / (data_[1].first - data_[0].first) |
119 |
// and the c and d coefficients would both be zero. |
120 |
b[0] = 0.0; |
121 |
c[0] = -3.0 * pow((data_[1].second - data_[0].second) / |
122 |
(data_[1].first-data_[0].first), 2); |
123 |
d[0] = -2.0 * pow((data_[1].second - data_[0].second) / |
124 |
(data_[1].first-data_[0].first), 3); |
125 |
b[1] = b[0]; |
126 |
c[1] = 0.0; |
127 |
d[1] = 0.0; |
128 |
dx = 1.0 / (data_[1].first - data_[0].first); |
129 |
isUniform = true; |
130 |
generated = true; |
131 |
return; |
132 |
} |
133 |
|
134 |
d[0] = 2.0 * b[0]; |
135 |
|
136 |
for (int i = 1; i < n-1; i++) { |
137 |
b[i] = data_[i+1].first - data_[i].first; |
138 |
if ( fabs( b[i] - b[0] ) / b[0] > 1.0e-5) isUniform = false; |
139 |
c[i] = (data_[i+1].second - data_[i].second) / b[i]; |
140 |
d[i] = 2.0 * (b[i] + b[i-1]); |
141 |
} |
142 |
|
143 |
d[n-1] = 2.0 * b[n-2]; |
144 |
|
145 |
// Calculate estimates for the end slopes using polynomials |
146 |
// that interpolate the data_ nearest the end. |
147 |
|
148 |
fp1 = c[0] - b[0]*(c[1] - c[0])/(b[0] + b[1]); |
149 |
if (n > 3) fp1 = fp1 + b[0]*((b[0] + b[1]) * (c[2] - c[1]) / |
150 |
(b[1] + b[2]) - |
151 |
c[1] + c[0]) / (data_[3].first - data_[0].first); |
152 |
|
153 |
fpn = c[n-2] + b[n-2]*(c[n-2] - c[n-3])/(b[n-3] + b[n-2]); |
154 |
|
155 |
if (n > 3) fpn = fpn + b[n-2] * |
156 |
(c[n-2] - c[n-3] - (b[n-3] + b[n-2]) * |
157 |
(c[n-3] - c[n-4])/(b[n-3] + b[n-4]))/(data_[n-1].first - data_[n-4].first); |
158 |
|
159 |
|
160 |
// Calculate the right hand side and store it in C. |
161 |
|
162 |
c[n-1] = 3.0 * (fpn - c[n-2]); |
163 |
for (int i = n-2; i > 0; i--) |
164 |
c[i] = 3.0 * (c[i] - c[i-1]); |
165 |
c[0] = 3.0 * (c[0] - fp1); |
166 |
|
167 |
// Solve the tridiagonal system. |
168 |
|
169 |
for (int k = 1; k < n; k++) { |
170 |
p = b[k-1] / d[k-1]; |
171 |
d[k] = d[k] - p*b[k-1]; |
172 |
c[k] = c[k] - p*c[k-1]; |
173 |
} |
174 |
|
175 |
c[n-1] = c[n-1] / d[n-1]; |
176 |
|
177 |
for (int k = n-2; k >= 0; k--) |
178 |
c[k] = (c[k] - b[k] * c[k+1]) / d[k]; |
179 |
|
180 |
// Calculate the coefficients defining the spline. |
181 |
|
182 |
for (int i = 0; i < n-1; i++) { |
183 |
h = data_[i+1].first - data_[i].first; |
184 |
d[i] = (c[i+1] - c[i]) / (3.0 * h); |
185 |
b[i] = (data_[i+1].second - data_[i].second)/h - h * (c[i] + h * d[i]); |
186 |
} |
187 |
|
188 |
b[n-1] = b[n-2] + h * (2.0 * c[n-2] + h * 3.0 * d[n-2]); |
189 |
|
190 |
if (isUniform) dx = 1.0 / (data_[1].first - data_[0].first); |
191 |
|
192 |
generated = true; |
193 |
return; |
194 |
} |
195 |
|
196 |
RealType CubicSpline::getValueAt(RealType t) { |
197 |
// Evaluate the spline at t using coefficients |
198 |
// |
199 |
// Input parameters |
200 |
// t = point where spline is to be evaluated. |
201 |
// Output: |
202 |
// value of spline at t. |
203 |
|
204 |
if (!generated) generate(); |
205 |
RealType dt; |
206 |
|
207 |
if ( t < data_[0].first || t > data_[n-1].first ) { |
208 |
sprintf( painCave.errMsg, |
209 |
"CubicSpline::getValueAt was passed a value outside the range of the spline!\n"); |
210 |
painCave.severity = OPENMD_ERROR; |
211 |
painCave.isFatal = 1; |
212 |
simError(); |
213 |
} |
214 |
|
215 |
// Find the interval ( x[j], x[j+1] ) that contains or is nearest |
216 |
// to t. |
217 |
|
218 |
int j; |
219 |
|
220 |
if (isUniform) { |
221 |
|
222 |
j = max(0, min(n-1, int((t - data_[0].first) * dx))); |
223 |
|
224 |
} else { |
225 |
|
226 |
j = n-1; |
227 |
|
228 |
for (int i = 0; i < n; i++) { |
229 |
if ( t < data_[i].first ) { |
230 |
j = i-1; |
231 |
break; |
232 |
} |
233 |
} |
234 |
} |
235 |
|
236 |
// Evaluate the cubic polynomial. |
237 |
|
238 |
dt = t - data_[j].first; |
239 |
return data_[j].second + dt*(b[j] + dt*(c[j] + dt*d[j])); |
240 |
|
241 |
} |
242 |
|
243 |
|
244 |
pair<RealType, RealType> CubicSpline::getValueAndDerivativeAt(RealType t) { |
245 |
// Evaluate the spline and first derivative at t using coefficients |
246 |
// |
247 |
// Input parameters |
248 |
// t = point where spline is to be evaluated. |
249 |
// Output: |
250 |
// pair containing value of spline at t and first derivative at t |
251 |
|
252 |
if (!generated) generate(); |
253 |
RealType dt; |
254 |
|
255 |
if ( t < data_.front().first || t > data_.back().first ) { |
256 |
sprintf( painCave.errMsg, |
257 |
"CubicSpline::getValueAndDerivativeAt was passed a value outside the range of the spline!\n"); |
258 |
painCave.severity = OPENMD_ERROR; |
259 |
painCave.isFatal = 1; |
260 |
simError(); |
261 |
} |
262 |
|
263 |
// Find the interval ( x[j], x[j+1] ) that contains or is nearest |
264 |
// to t. |
265 |
|
266 |
int j; |
267 |
|
268 |
if (isUniform) { |
269 |
|
270 |
j = max(0, min(n-1, int((t - data_[0].first) * dx))); |
271 |
|
272 |
} else { |
273 |
|
274 |
j = n-1; |
275 |
|
276 |
for (int i = 0; i < n; i++) { |
277 |
if ( t < data_[i].first ) { |
278 |
j = i-1; |
279 |
break; |
280 |
} |
281 |
} |
282 |
} |
283 |
|
284 |
// Evaluate the cubic polynomial. |
285 |
|
286 |
dt = t - data_[j].first; |
287 |
|
288 |
RealType yval = data_[j].second + dt*(b[j] + dt*(c[j] + dt*d[j])); |
289 |
RealType dydx = b[j] + dt*(2.0 * c[j] + 3.0 * dt * d[j]); |
290 |
|
291 |
return make_pair(yval, dydx); |
292 |
} |