ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/devel_omp/src/math/CubicSpline.cpp
Revision: 1595
Committed: Tue Jul 19 18:50:04 2011 UTC (13 years, 9 months ago) by chuckv
File size: 8766 byte(s)
Log Message:
Adding initial OpenMP support using new neighbor lists.


File Contents

# Content
1 /*
2 * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 *
4 * The University of Notre Dame grants you ("Licensee") a
5 * non-exclusive, royalty free, license to use, modify and
6 * redistribute this software in source and binary code form, provided
7 * that the following conditions are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 *
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the
15 * distribution.
16 *
17 * This software is provided "AS IS," without a warranty of any
18 * kind. All express or implied conditions, representations and
19 * warranties, including any implied warranty of merchantability,
20 * fitness for a particular purpose or non-infringement, are hereby
21 * excluded. The University of Notre Dame and its licensors shall not
22 * be liable for any damages suffered by licensee as a result of
23 * using, modifying or distributing the software or its
24 * derivatives. In no event will the University of Notre Dame or its
25 * licensors be liable for any lost revenue, profit or data, or for
26 * direct, indirect, special, consequential, incidental or punitive
27 * damages, however caused and regardless of the theory of liability,
28 * arising out of the use of or inability to use software, even if the
29 * University of Notre Dame has been advised of the possibility of
30 * such damages.
31 *
32 * SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your
33 * research, please cite the appropriate papers when you publish your
34 * work. Good starting points are:
35 *
36 * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).
37 * [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).
38 * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).
39 * [4] Vardeman & Gezelter, in progress (2009).
40 */
41
42 #include "math/CubicSpline.hpp"
43 #include "utils/simError.h"
44 #include <cmath>
45 #include <algorithm>
46 #include <stdio.h>
47
48 using namespace OpenMD;
49 using namespace std;
50
51 CubicSpline::CubicSpline() : generated(false), isUniform(true) {
52 data_.clear();
53 }
54
55 void CubicSpline::addPoint(const RealType xp, const RealType yp) {
56 data_.push_back(make_pair(xp, yp));
57 }
58
59 void CubicSpline::addPoints(const vector<RealType>& xps,
60 const vector<RealType>& yps) {
61
62 if (xps.size() != yps.size()) {
63 printf( painCave.errMsg,
64 "CubicSpline::addPoints was passed vectors of different length!\n");
65 painCave.severity = OPENMD_ERROR;
66 painCave.isFatal = 1;
67 simError();
68 }
69
70 for (int i = 0; i < xps.size(); i++)
71 data_.push_back(make_pair(xps[i], yps[i]));
72 }
73
74 void CubicSpline::generate() {
75 // Calculate coefficients defining a smooth cubic interpolatory spline.
76 //
77 // class values constructed:
78 // n = number of data_ points.
79 // x = vector of independent variable values
80 // y = vector of dependent variable values
81 // b = vector of S'(x[i]) values.
82 // c = vector of S"(x[i])/2 values.
83 // d = vector of S'''(x[i]+)/6 values (i < n).
84 // Local variables:
85
86 RealType fp1, fpn, h, p;
87
88 // make sure the sizes match
89
90 n = data_.size();
91 b.resize(n);
92 c.resize(n);
93 d.resize(n);
94
95 // make sure we are monotonically increasing in x:
96
97 bool sorted = true;
98
99 for (int i = 1; i < n; i++) {
100 if ( (data_[i].first - data_[i-1].first ) <= 0.0 ) sorted = false;
101 }
102
103 // sort if necessary
104
105 if (!sorted) sort(data_.begin(), data_.end());
106
107 // Calculate coefficients for the tridiagonal system: store
108 // sub-diagonal in B, diagonal in D, difference quotient in C.
109
110 b[0] = data_[1].first - data_[0].first;
111 c[0] = (data_[1].second - data_[0].second) / b[0];
112
113 if (n == 2) {
114
115 // Assume the derivatives at both endpoints are zero. Another
116 // assumption could be made to have a linear interpolant between
117 // the two points. In that case, the b coefficients below would be
118 // (data_[1].second - data_[0].second) / (data_[1].first - data_[0].first)
119 // and the c and d coefficients would both be zero.
120 b[0] = 0.0;
121 c[0] = -3.0 * pow((data_[1].second - data_[0].second) /
122 (data_[1].first-data_[0].first), 2);
123 d[0] = -2.0 * pow((data_[1].second - data_[0].second) /
124 (data_[1].first-data_[0].first), 3);
125 b[1] = b[0];
126 c[1] = 0.0;
127 d[1] = 0.0;
128 dx = 1.0 / (data_[1].first - data_[0].first);
129 isUniform = true;
130 generated = true;
131 return;
132 }
133
134 d[0] = 2.0 * b[0];
135
136 for (int i = 1; i < n-1; i++) {
137 b[i] = data_[i+1].first - data_[i].first;
138 if ( fabs( b[i] - b[0] ) / b[0] > 1.0e-5) isUniform = false;
139 c[i] = (data_[i+1].second - data_[i].second) / b[i];
140 d[i] = 2.0 * (b[i] + b[i-1]);
141 }
142
143 d[n-1] = 2.0 * b[n-2];
144
145 // Calculate estimates for the end slopes using polynomials
146 // that interpolate the data_ nearest the end.
147
148 fp1 = c[0] - b[0]*(c[1] - c[0])/(b[0] + b[1]);
149 if (n > 3) fp1 = fp1 + b[0]*((b[0] + b[1]) * (c[2] - c[1]) /
150 (b[1] + b[2]) -
151 c[1] + c[0]) / (data_[3].first - data_[0].first);
152
153 fpn = c[n-2] + b[n-2]*(c[n-2] - c[n-3])/(b[n-3] + b[n-2]);
154
155 if (n > 3) fpn = fpn + b[n-2] *
156 (c[n-2] - c[n-3] - (b[n-3] + b[n-2]) *
157 (c[n-3] - c[n-4])/(b[n-3] + b[n-4]))/(data_[n-1].first - data_[n-4].first);
158
159
160 // Calculate the right hand side and store it in C.
161
162 c[n-1] = 3.0 * (fpn - c[n-2]);
163 for (int i = n-2; i > 0; i--)
164 c[i] = 3.0 * (c[i] - c[i-1]);
165 c[0] = 3.0 * (c[0] - fp1);
166
167 // Solve the tridiagonal system.
168
169 for (int k = 1; k < n; k++) {
170 p = b[k-1] / d[k-1];
171 d[k] = d[k] - p*b[k-1];
172 c[k] = c[k] - p*c[k-1];
173 }
174
175 c[n-1] = c[n-1] / d[n-1];
176
177 for (int k = n-2; k >= 0; k--)
178 c[k] = (c[k] - b[k] * c[k+1]) / d[k];
179
180 // Calculate the coefficients defining the spline.
181
182 for (int i = 0; i < n-1; i++) {
183 h = data_[i+1].first - data_[i].first;
184 d[i] = (c[i+1] - c[i]) / (3.0 * h);
185 b[i] = (data_[i+1].second - data_[i].second)/h - h * (c[i] + h * d[i]);
186 }
187
188 b[n-1] = b[n-2] + h * (2.0 * c[n-2] + h * 3.0 * d[n-2]);
189
190 if (isUniform) dx = 1.0 / (data_[1].first - data_[0].first);
191
192 generated = true;
193 return;
194 }
195
196 RealType CubicSpline::getValueAt(RealType t) {
197 // Evaluate the spline at t using coefficients
198 //
199 // Input parameters
200 // t = point where spline is to be evaluated.
201 // Output:
202 // value of spline at t.
203
204 if (!generated) generate();
205 RealType dt;
206
207 if ( t < data_[0].first || t > data_[n-1].first ) {
208 sprintf( painCave.errMsg,
209 "CubicSpline::getValueAt was passed a value outside the range of the spline!\n");
210 painCave.severity = OPENMD_ERROR;
211 painCave.isFatal = 1;
212 simError();
213 }
214
215 // Find the interval ( x[j], x[j+1] ) that contains or is nearest
216 // to t.
217
218 int j;
219
220 if (isUniform) {
221
222 j = max(0, min(n-1, int((t - data_[0].first) * dx)));
223
224 } else {
225
226 j = n-1;
227
228 for (int i = 0; i < n; i++) {
229 if ( t < data_[i].first ) {
230 j = i-1;
231 break;
232 }
233 }
234 }
235
236 // Evaluate the cubic polynomial.
237
238 dt = t - data_[j].first;
239 return data_[j].second + dt*(b[j] + dt*(c[j] + dt*d[j]));
240
241 }
242
243
244 pair<RealType, RealType> CubicSpline::getValueAndDerivativeAt(RealType t) {
245 // Evaluate the spline and first derivative at t using coefficients
246 //
247 // Input parameters
248 // t = point where spline is to be evaluated.
249 // Output:
250 // pair containing value of spline at t and first derivative at t
251
252 if (!generated) generate();
253 RealType dt;
254
255 if ( t < data_.front().first || t > data_.back().first ) {
256 sprintf( painCave.errMsg,
257 "CubicSpline::getValueAndDerivativeAt was passed a value outside the range of the spline!\n");
258 painCave.severity = OPENMD_ERROR;
259 painCave.isFatal = 1;
260 simError();
261 }
262
263 // Find the interval ( x[j], x[j+1] ) that contains or is nearest
264 // to t.
265
266 int j;
267
268 if (isUniform) {
269
270 j = max(0, min(n-1, int((t - data_[0].first) * dx)));
271
272 } else {
273
274 j = n-1;
275
276 for (int i = 0; i < n; i++) {
277 if ( t < data_[i].first ) {
278 j = i-1;
279 break;
280 }
281 }
282 }
283
284 // Evaluate the cubic polynomial.
285
286 dt = t - data_[j].first;
287
288 RealType yval = data_[j].second + dt*(b[j] + dt*(c[j] + dt*d[j]));
289 RealType dydx = b[j] + dt*(2.0 * c[j] + 3.0 * dt * d[j]);
290
291 return make_pair(yval, dydx);
292 }

Properties

Name Value
svn:eol-style native