1 |
/* |
2 |
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
* |
4 |
* The University of Notre Dame grants you ("Licensee") a |
5 |
* non-exclusive, royalty free, license to use, modify and |
6 |
* redistribute this software in source and binary code form, provided |
7 |
* that the following conditions are met: |
8 |
* |
9 |
* 1. Redistributions of source code must retain the above copyright |
10 |
* notice, this list of conditions and the following disclaimer. |
11 |
* |
12 |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
* notice, this list of conditions and the following disclaimer in the |
14 |
* documentation and/or other materials provided with the |
15 |
* distribution. |
16 |
* |
17 |
* This software is provided "AS IS," without a warranty of any |
18 |
* kind. All express or implied conditions, representations and |
19 |
* warranties, including any implied warranty of merchantability, |
20 |
* fitness for a particular purpose or non-infringement, are hereby |
21 |
* excluded. The University of Notre Dame and its licensors shall not |
22 |
* be liable for any damages suffered by licensee as a result of |
23 |
* using, modifying or distributing the software or its |
24 |
* derivatives. In no event will the University of Notre Dame or its |
25 |
* licensors be liable for any lost revenue, profit or data, or for |
26 |
* direct, indirect, special, consequential, incidental or punitive |
27 |
* damages, however caused and regardless of the theory of liability, |
28 |
* arising out of the use of or inability to use software, even if the |
29 |
* University of Notre Dame has been advised of the possibility of |
30 |
* such damages. |
31 |
* |
32 |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
* research, please cite the appropriate papers when you publish your |
34 |
* work. Good starting points are: |
35 |
* |
36 |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 |
* [4] Vardeman & Gezelter, in progress (2009). |
40 |
*/ |
41 |
|
42 |
/** |
43 |
* @file ForceManager.cpp |
44 |
* @author tlin |
45 |
* @date 11/09/2004 |
46 |
* @time 10:39am |
47 |
* @version 1.0 |
48 |
*/ |
49 |
|
50 |
#include "brains/ForceManager.hpp" |
51 |
#include "primitives/Molecule.hpp" |
52 |
#define __OPENMD_C |
53 |
#include "utils/simError.h" |
54 |
#include "primitives/Bond.hpp" |
55 |
#include "primitives/Bend.hpp" |
56 |
#include "primitives/Torsion.hpp" |
57 |
#include "primitives/Inversion.hpp" |
58 |
#include "nonbonded/NonBondedInteraction.hpp" |
59 |
#include "parallel/ForceMatrixDecomposition.hpp" |
60 |
|
61 |
#include <cstdio> |
62 |
#include <iostream> |
63 |
#include <iomanip> |
64 |
|
65 |
#include <omp.h> |
66 |
|
67 |
using namespace std; |
68 |
namespace OpenMD { |
69 |
|
70 |
ForceManager::ForceManager(SimInfo * info) : |
71 |
info_(info) { |
72 |
forceField_ = info_->getForceField(); |
73 |
interactionMan_ = new InteractionManager(); |
74 |
fDecomp_ = new ForceMatrixDecomposition(info_, interactionMan_); |
75 |
} |
76 |
|
77 |
/** |
78 |
* setupCutoffs |
79 |
* |
80 |
* Sets the values of cutoffRadius, switchingRadius, cutoffMethod, |
81 |
* and cutoffPolicy |
82 |
* |
83 |
* cutoffRadius : realType |
84 |
* If the cutoffRadius was explicitly set, use that value. |
85 |
* If the cutoffRadius was not explicitly set: |
86 |
* Are there electrostatic atoms? Use 12.0 Angstroms. |
87 |
* No electrostatic atoms? Poll the atom types present in the |
88 |
* simulation for suggested cutoff values (e.g. 2.5 * sigma). |
89 |
* Use the maximum suggested value that was found. |
90 |
* |
91 |
* cutoffMethod : (one of HARD, SWITCHED, SHIFTED_FORCE, |
92 |
* or SHIFTED_POTENTIAL) |
93 |
* If cutoffMethod was explicitly set, use that choice. |
94 |
* If cutoffMethod was not explicitly set, use SHIFTED_FORCE |
95 |
* |
96 |
* cutoffPolicy : (one of MIX, MAX, TRADITIONAL) |
97 |
* If cutoffPolicy was explicitly set, use that choice. |
98 |
* If cutoffPolicy was not explicitly set, use TRADITIONAL |
99 |
* |
100 |
* switchingRadius : realType |
101 |
* If the cutoffMethod was set to SWITCHED: |
102 |
* If the switchingRadius was explicitly set, use that value |
103 |
* (but do a sanity check first). |
104 |
* If the switchingRadius was not explicitly set: use 0.85 * |
105 |
* cutoffRadius_ |
106 |
* If the cutoffMethod was not set to SWITCHED: |
107 |
* Set switchingRadius equal to cutoffRadius for safety. |
108 |
*/ |
109 |
void ForceManager::setupCutoffs() { |
110 |
|
111 |
Globals* simParams_ = info_->getSimParams(); |
112 |
ForceFieldOptions& forceFieldOptions_ = forceField_->getForceFieldOptions(); |
113 |
|
114 |
if (simParams_->haveCutoffRadius()) |
115 |
{ |
116 |
rCut_ = simParams_->getCutoffRadius(); |
117 |
} else |
118 |
{ |
119 |
if (info_->usesElectrostaticAtoms()) |
120 |
{ |
121 |
sprintf(painCave.errMsg, "ForceManager::setupCutoffs: No value was set for the cutoffRadius.\n" |
122 |
"\tOpenMD will use a default value of 12.0 angstroms" |
123 |
"\tfor the cutoffRadius.\n"); |
124 |
painCave.isFatal = 0; |
125 |
painCave.severity = OPENMD_INFO; |
126 |
simError(); |
127 |
rCut_ = 12.0; |
128 |
} else |
129 |
{ |
130 |
RealType thisCut; |
131 |
set<AtomType*>::iterator i; |
132 |
set<AtomType*> atomTypes; |
133 |
atomTypes = info_->getSimulatedAtomTypes(); |
134 |
for (i = atomTypes.begin(); i != atomTypes.end(); ++i) |
135 |
{ |
136 |
thisCut = interactionMan_->getSuggestedCutoffRadius((*i)); |
137 |
rCut_ = max(thisCut, rCut_); |
138 |
} |
139 |
sprintf(painCave.errMsg, "ForceManager::setupCutoffs: No value was set for the cutoffRadius.\n" |
140 |
"\tOpenMD will use %lf angstroms.\n", rCut_); |
141 |
painCave.isFatal = 0; |
142 |
painCave.severity = OPENMD_INFO; |
143 |
simError(); |
144 |
} |
145 |
} |
146 |
|
147 |
fDecomp_->setUserCutoff(rCut_); |
148 |
interactionMan_->setCutoffRadius(rCut_); |
149 |
|
150 |
map<string, CutoffMethod> stringToCutoffMethod; |
151 |
stringToCutoffMethod["HARD"] = HARD; |
152 |
stringToCutoffMethod["SWITCHED"] = SWITCHED; |
153 |
stringToCutoffMethod["SHIFTED_POTENTIAL"] = SHIFTED_POTENTIAL; |
154 |
stringToCutoffMethod["SHIFTED_FORCE"] = SHIFTED_FORCE; |
155 |
|
156 |
if (simParams_->haveCutoffMethod()) |
157 |
{ |
158 |
string cutMeth = toUpperCopy(simParams_->getCutoffMethod()); |
159 |
map<string, CutoffMethod>::iterator i; |
160 |
i = stringToCutoffMethod.find(cutMeth); |
161 |
if (i == stringToCutoffMethod.end()) |
162 |
{ |
163 |
sprintf(painCave.errMsg, "ForceManager::setupCutoffs: Could not find chosen cutoffMethod %s\n" |
164 |
"\tShould be one of: " |
165 |
"HARD, SWITCHED, SHIFTED_POTENTIAL, or SHIFTED_FORCE\n", cutMeth.c_str()); |
166 |
painCave.isFatal = 1; |
167 |
painCave.severity = OPENMD_ERROR; |
168 |
simError(); |
169 |
} else |
170 |
{ |
171 |
cutoffMethod_ = i->second; |
172 |
} |
173 |
} else |
174 |
{ |
175 |
sprintf(painCave.errMsg, "ForceManager::setupCutoffs: No value was set for the cutoffMethod.\n" |
176 |
"\tOpenMD will use SHIFTED_FORCE.\n"); |
177 |
painCave.isFatal = 0; |
178 |
painCave.severity = OPENMD_INFO; |
179 |
simError(); |
180 |
cutoffMethod_ = SHIFTED_FORCE; |
181 |
} |
182 |
|
183 |
map<string, CutoffPolicy> stringToCutoffPolicy; |
184 |
stringToCutoffPolicy["MIX"] = MIX; |
185 |
stringToCutoffPolicy["MAX"] = MAX; |
186 |
stringToCutoffPolicy["TRADITIONAL"] = TRADITIONAL; |
187 |
|
188 |
std::string cutPolicy; |
189 |
if (forceFieldOptions_.haveCutoffPolicy()) |
190 |
{ |
191 |
cutPolicy = forceFieldOptions_.getCutoffPolicy(); |
192 |
} else if (simParams_->haveCutoffPolicy()) |
193 |
{ |
194 |
cutPolicy = simParams_->getCutoffPolicy(); |
195 |
} |
196 |
|
197 |
if (!cutPolicy.empty()) |
198 |
{ |
199 |
toUpper(cutPolicy); |
200 |
map<string, CutoffPolicy>::iterator i; |
201 |
i = stringToCutoffPolicy.find(cutPolicy); |
202 |
|
203 |
if (i == stringToCutoffPolicy.end()) |
204 |
{ |
205 |
sprintf(painCave.errMsg, "ForceManager::setupCutoffs: Could not find chosen cutoffPolicy %s\n" |
206 |
"\tShould be one of: " |
207 |
"MIX, MAX, or TRADITIONAL\n", cutPolicy.c_str()); |
208 |
painCave.isFatal = 1; |
209 |
painCave.severity = OPENMD_ERROR; |
210 |
simError(); |
211 |
} else |
212 |
{ |
213 |
cutoffPolicy_ = i->second; |
214 |
} |
215 |
} else |
216 |
{ |
217 |
sprintf(painCave.errMsg, "ForceManager::setupCutoffs: No value was set for the cutoffPolicy.\n" |
218 |
"\tOpenMD will use TRADITIONAL.\n"); |
219 |
painCave.isFatal = 0; |
220 |
painCave.severity = OPENMD_INFO; |
221 |
simError(); |
222 |
cutoffPolicy_ = TRADITIONAL; |
223 |
} |
224 |
|
225 |
fDecomp_->setCutoffPolicy(cutoffPolicy_); |
226 |
|
227 |
// create the switching function object: |
228 |
|
229 |
switcher_ = new SwitchingFunction(); |
230 |
|
231 |
if (cutoffMethod_ == SWITCHED) |
232 |
{ |
233 |
if (simParams_->haveSwitchingRadius()) |
234 |
{ |
235 |
rSwitch_ = simParams_->getSwitchingRadius(); |
236 |
if (rSwitch_ > rCut_) |
237 |
{ |
238 |
sprintf(painCave.errMsg, "ForceManager::setupCutoffs: switchingRadius (%f) is larger " |
239 |
"than the cutoffRadius(%f)\n", rSwitch_, rCut_); |
240 |
painCave.isFatal = 1; |
241 |
painCave.severity = OPENMD_ERROR; |
242 |
simError(); |
243 |
} |
244 |
} else |
245 |
{ |
246 |
rSwitch_ = 0.85 * rCut_; |
247 |
sprintf(painCave.errMsg, "ForceManager::setupCutoffs: No value was set for the switchingRadius.\n" |
248 |
"\tOpenMD will use a default value of 85 percent of the cutoffRadius.\n" |
249 |
"\tswitchingRadius = %f. for this simulation\n", rSwitch_); |
250 |
painCave.isFatal = 0; |
251 |
painCave.severity = OPENMD_WARNING; |
252 |
simError(); |
253 |
} |
254 |
} else |
255 |
{ |
256 |
if (simParams_->haveSwitchingRadius()) |
257 |
{ |
258 |
map<string, CutoffMethod>::const_iterator it; |
259 |
string theMeth; |
260 |
for (it = stringToCutoffMethod.begin(); it != stringToCutoffMethod.end(); ++it) |
261 |
{ |
262 |
if (it->second == cutoffMethod_) |
263 |
{ |
264 |
theMeth = it->first; |
265 |
break; |
266 |
} |
267 |
} |
268 |
sprintf(painCave.errMsg, "ForceManager::setupCutoffs: the cutoffMethod (%s)\n" |
269 |
"\tis not set to SWITCHED, so switchingRadius value\n" |
270 |
"\twill be ignored for this simulation\n", theMeth.c_str()); |
271 |
painCave.isFatal = 0; |
272 |
painCave.severity = OPENMD_WARNING; |
273 |
simError(); |
274 |
} |
275 |
|
276 |
rSwitch_ = rCut_; |
277 |
} |
278 |
|
279 |
// Default to cubic switching function. |
280 |
sft_ = cubic; |
281 |
if (simParams_->haveSwitchingFunctionType()) |
282 |
{ |
283 |
string funcType = simParams_->getSwitchingFunctionType(); |
284 |
toUpper(funcType); |
285 |
if (funcType == "CUBIC") |
286 |
{ |
287 |
sft_ = cubic; |
288 |
} else |
289 |
{ |
290 |
if (funcType == "FIFTH_ORDER_POLYNOMIAL") |
291 |
{ |
292 |
sft_ = fifth_order_poly; |
293 |
} else |
294 |
{ |
295 |
// throw error |
296 |
sprintf(painCave.errMsg, |
297 |
"ForceManager::setupSwitching : Unknown switchingFunctionType. (Input file specified %s .)\n" |
298 |
"\tswitchingFunctionType must be one of: " |
299 |
"\"cubic\" or \"fifth_order_polynomial\".", funcType.c_str()); |
300 |
painCave.isFatal = 1; |
301 |
painCave.severity = OPENMD_ERROR; |
302 |
simError(); |
303 |
} |
304 |
} |
305 |
} |
306 |
switcher_->setSwitchType(sft_); |
307 |
switcher_->setSwitch(rSwitch_, rCut_); |
308 |
interactionMan_->setSwitchingRadius(rSwitch_); |
309 |
} |
310 |
|
311 |
void ForceManager::initialize() { |
312 |
|
313 |
if (!info_->isTopologyDone()) |
314 |
{ |
315 |
|
316 |
info_->update(); |
317 |
interactionMan_->setSimInfo(info_); |
318 |
interactionMan_->initialize(); |
319 |
|
320 |
// We want to delay the cutoffs until after the interaction |
321 |
// manager has set up the atom-atom interactions so that we can |
322 |
// query them for suggested cutoff values |
323 |
setupCutoffs(); |
324 |
|
325 |
info_->prepareTopology(); |
326 |
} |
327 |
|
328 |
ForceFieldOptions& fopts = forceField_->getForceFieldOptions(); |
329 |
|
330 |
// Force fields can set options on how to scale van der Waals and |
331 |
// electrostatic interactions for atoms connected via bonds, bends |
332 |
// and torsions in this case the topological distance between |
333 |
// atoms is: |
334 |
// 0 = topologically unconnected |
335 |
// 1 = bonded together |
336 |
// 2 = connected via a bend |
337 |
// 3 = connected via a torsion |
338 |
|
339 |
vdwScale_.reserve(4); |
340 |
fill(vdwScale_.begin(), vdwScale_.end(), 0.0); |
341 |
|
342 |
electrostaticScale_.reserve(4); |
343 |
fill(electrostaticScale_.begin(), electrostaticScale_.end(), 0.0); |
344 |
|
345 |
vdwScale_[0] = 1.0; |
346 |
vdwScale_[1] = fopts.getvdw12scale(); |
347 |
vdwScale_[2] = fopts.getvdw13scale(); |
348 |
vdwScale_[3] = fopts.getvdw14scale(); |
349 |
|
350 |
electrostaticScale_[0] = 1.0; |
351 |
electrostaticScale_[1] = fopts.getelectrostatic12scale(); |
352 |
electrostaticScale_[2] = fopts.getelectrostatic13scale(); |
353 |
electrostaticScale_[3] = fopts.getelectrostatic14scale(); |
354 |
|
355 |
fDecomp_->distributeInitialData(); |
356 |
|
357 |
initialized_ = true; |
358 |
|
359 |
} |
360 |
|
361 |
void ForceManager::calcForces() { |
362 |
|
363 |
if (!initialized_) |
364 |
initialize(); |
365 |
|
366 |
preCalculation(); |
367 |
shortRangeInteractions(); |
368 |
// longRangeInteractions(); |
369 |
// longRangeInteractionsRapaport(); |
370 |
longRangeInteractionsParallel(); |
371 |
postCalculation(); |
372 |
} |
373 |
|
374 |
void ForceManager::preCalculation() { |
375 |
SimInfo::MoleculeIterator mi; |
376 |
Molecule* mol; |
377 |
Molecule::AtomIterator ai; |
378 |
Atom* atom; |
379 |
Molecule::RigidBodyIterator rbIter; |
380 |
RigidBody* rb; |
381 |
Molecule::CutoffGroupIterator ci; |
382 |
CutoffGroup* cg; |
383 |
|
384 |
// forces are zeroed here, before any are accumulated. |
385 |
|
386 |
for (mol = info_->beginMolecule(mi); mol != NULL; mol = info_->nextMolecule(mi)) |
387 |
{ |
388 |
for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) |
389 |
{ |
390 |
atom->zeroForcesAndTorques(); |
391 |
} |
392 |
|
393 |
//change the positions of atoms which belong to the rigidbodies |
394 |
for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) |
395 |
{ |
396 |
rb->zeroForcesAndTorques(); |
397 |
} |
398 |
|
399 |
if (info_->getNGlobalCutoffGroups() != info_->getNGlobalAtoms()) |
400 |
{ |
401 |
for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) |
402 |
{ |
403 |
//calculate the center of mass of cutoff group |
404 |
cg->updateCOM(); |
405 |
} |
406 |
} |
407 |
} |
408 |
|
409 |
// Zero out the stress tensor |
410 |
tau *= 0.0; |
411 |
|
412 |
} |
413 |
|
414 |
void ForceManager::shortRangeInteractions() { |
415 |
Molecule* mol; |
416 |
RigidBody* rb; |
417 |
Bond* bond; |
418 |
Bend* bend; |
419 |
Torsion* torsion; |
420 |
Inversion* inversion; |
421 |
SimInfo::MoleculeIterator mi; |
422 |
Molecule::RigidBodyIterator rbIter; |
423 |
Molecule::BondIterator bondIter; |
424 |
; |
425 |
Molecule::BendIterator bendIter; |
426 |
Molecule::TorsionIterator torsionIter; |
427 |
Molecule::InversionIterator inversionIter; |
428 |
RealType bondPotential = 0.0; |
429 |
RealType bendPotential = 0.0; |
430 |
RealType torsionPotential = 0.0; |
431 |
RealType inversionPotential = 0.0; |
432 |
|
433 |
//calculate short range interactions |
434 |
for (mol = info_->beginMolecule(mi); mol != NULL; mol = info_->nextMolecule(mi)) |
435 |
{ |
436 |
|
437 |
//change the positions of atoms which belong to the rigidbodies |
438 |
for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) |
439 |
{ |
440 |
rb->updateAtoms(); |
441 |
} |
442 |
|
443 |
for (bond = mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) |
444 |
{ |
445 |
bond->calcForce(); |
446 |
bondPotential += bond->getPotential(); |
447 |
} |
448 |
|
449 |
for (bend = mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) |
450 |
{ |
451 |
|
452 |
RealType angle; |
453 |
bend->calcForce(angle); |
454 |
RealType currBendPot = bend->getPotential(); |
455 |
|
456 |
bendPotential += bend->getPotential(); |
457 |
map<Bend*, BendDataSet>::iterator i = bendDataSets.find(bend); |
458 |
if (i == bendDataSets.end()) |
459 |
{ |
460 |
BendDataSet dataSet; |
461 |
dataSet.prev.angle = dataSet.curr.angle = angle; |
462 |
dataSet.prev.potential = dataSet.curr.potential = currBendPot; |
463 |
dataSet.deltaV = 0.0; |
464 |
bendDataSets.insert(map<Bend*, BendDataSet>::value_type(bend, dataSet)); |
465 |
} else |
466 |
{ |
467 |
i->second.prev.angle = i->second.curr.angle; |
468 |
i->second.prev.potential = i->second.curr.potential; |
469 |
i->second.curr.angle = angle; |
470 |
i->second.curr.potential = currBendPot; |
471 |
i->second.deltaV = fabs(i->second.curr.potential - i->second.prev.potential); |
472 |
} |
473 |
} |
474 |
|
475 |
for (torsion = mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) |
476 |
{ |
477 |
RealType angle; |
478 |
torsion->calcForce(angle); |
479 |
RealType currTorsionPot = torsion->getPotential(); |
480 |
torsionPotential += torsion->getPotential(); |
481 |
map<Torsion*, TorsionDataSet>::iterator i = torsionDataSets.find(torsion); |
482 |
if (i == torsionDataSets.end()) |
483 |
{ |
484 |
TorsionDataSet dataSet; |
485 |
dataSet.prev.angle = dataSet.curr.angle = angle; |
486 |
dataSet.prev.potential = dataSet.curr.potential = currTorsionPot; |
487 |
dataSet.deltaV = 0.0; |
488 |
torsionDataSets.insert(map<Torsion*, TorsionDataSet>::value_type(torsion, dataSet)); |
489 |
} else |
490 |
{ |
491 |
i->second.prev.angle = i->second.curr.angle; |
492 |
i->second.prev.potential = i->second.curr.potential; |
493 |
i->second.curr.angle = angle; |
494 |
i->second.curr.potential = currTorsionPot; |
495 |
i->second.deltaV = fabs(i->second.curr.potential - i->second.prev.potential); |
496 |
} |
497 |
} |
498 |
|
499 |
for (inversion = mol->beginInversion(inversionIter); inversion != NULL; inversion = mol->nextInversion( |
500 |
inversionIter)) |
501 |
{ |
502 |
RealType angle; |
503 |
inversion->calcForce(angle); |
504 |
RealType currInversionPot = inversion->getPotential(); |
505 |
inversionPotential += inversion->getPotential(); |
506 |
map<Inversion*, InversionDataSet>::iterator i = inversionDataSets.find(inversion); |
507 |
if (i == inversionDataSets.end()) |
508 |
{ |
509 |
InversionDataSet dataSet; |
510 |
dataSet.prev.angle = dataSet.curr.angle = angle; |
511 |
dataSet.prev.potential = dataSet.curr.potential = currInversionPot; |
512 |
dataSet.deltaV = 0.0; |
513 |
inversionDataSets.insert(map<Inversion*, InversionDataSet>::value_type(inversion, dataSet)); |
514 |
} else |
515 |
{ |
516 |
i->second.prev.angle = i->second.curr.angle; |
517 |
i->second.prev.potential = i->second.curr.potential; |
518 |
i->second.curr.angle = angle; |
519 |
i->second.curr.potential = currInversionPot; |
520 |
i->second.deltaV = fabs(i->second.curr.potential - i->second.prev.potential); |
521 |
} |
522 |
} |
523 |
} |
524 |
|
525 |
RealType shortRangePotential = bondPotential + bendPotential + torsionPotential + inversionPotential; |
526 |
Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); |
527 |
curSnapshot->statData[Stats::SHORT_RANGE_POTENTIAL] = shortRangePotential; |
528 |
curSnapshot->statData[Stats::BOND_POTENTIAL] = bondPotential; |
529 |
curSnapshot->statData[Stats::BEND_POTENTIAL] = bendPotential; |
530 |
curSnapshot->statData[Stats::DIHEDRAL_POTENTIAL] = torsionPotential; |
531 |
curSnapshot->statData[Stats::INVERSION_POTENTIAL] = inversionPotential; |
532 |
} |
533 |
|
534 |
void ForceManager::longRangeInteractionsParallel() { |
535 |
|
536 |
Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); |
537 |
DataStorage* config = &(curSnapshot->atomData); |
538 |
DataStorage* cgConfig = &(curSnapshot->cgData); |
539 |
|
540 |
//calculate the center of mass of cutoff group |
541 |
|
542 |
SimInfo::MoleculeIterator mi; |
543 |
Molecule* mol; |
544 |
Molecule::CutoffGroupIterator ci; |
545 |
CutoffGroup* cg; |
546 |
|
547 |
if (info_->getNCutoffGroups() > 0) |
548 |
{ |
549 |
for (mol = info_->beginMolecule(mi); mol != NULL; mol = info_->nextMolecule(mi)) |
550 |
{ |
551 |
for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) |
552 |
{ |
553 |
// cerr << "branch1\n"; |
554 |
// cerr << "globind = " << cg->getGlobalIndex() << ":" << __LINE__ << "\n"; |
555 |
cg->updateCOM(); |
556 |
|
557 |
// cerr << "gbI: " << cg->getGlobalIndex() << " locI: " << cg->getLocalIndex() << " x: " |
558 |
// << cgConfig->position[cg->getLocalIndex()].x() << " y: " << cgConfig->position[cg->getLocalIndex()].y() |
559 |
// << " z: " << cgConfig->position[cg->getLocalIndex()].z() << "\n"; |
560 |
} |
561 |
} |
562 |
} else |
563 |
{ |
564 |
// center of mass of the group is the same as position of the atom |
565 |
// if cutoff group does not exist |
566 |
// cerr << ":" << __LINE__ << "branch2\n"; |
567 |
cgConfig->position = config->position; |
568 |
} |
569 |
|
570 |
fDecomp_->zeroWorkArrays(); |
571 |
fDecomp_->distributeData(); |
572 |
|
573 |
int atom1, atom2, topoDist; |
574 |
Vector3d d_grp, dag, d; |
575 |
RealType rgrpsq, rgrp, r2, r; |
576 |
RealType electroMult, vdwMult; |
577 |
RealType vij; |
578 |
Vector3d fij, fg, f1; |
579 |
tuple3<RealType, RealType, RealType> cuts; |
580 |
RealType rCutSq; |
581 |
bool in_switching_region; |
582 |
RealType sw, dswdr, swderiv; |
583 |
vector<int> atomListColumn, atomListRow, atomListLocal; |
584 |
|
585 |
InteractionDataPrv idatPrv; |
586 |
|
587 |
SelfData sdat; |
588 |
RealType mf; |
589 |
RealType lrPot; |
590 |
RealType vpair; |
591 |
potVec longRangePotential(0.0); |
592 |
potVec workPot(0.0); |
593 |
|
594 |
int loopStart, loopEnd; |
595 |
sdat.pot = fDecomp_->getEmbeddingPotential(); |
596 |
|
597 |
vector<CutoffGroup *> cgs; |
598 |
|
599 |
for (mol = info_->beginMolecule(mi); mol != NULL; mol = info_->nextMolecule(mi)) |
600 |
{ |
601 |
for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) |
602 |
{ |
603 |
cgs.push_back(cg); |
604 |
} |
605 |
} |
606 |
|
607 |
loopEnd = PAIR_LOOP; |
608 |
if (info_->requiresPrepair()) |
609 |
{ |
610 |
loopStart = PREPAIR_LOOP; |
611 |
} else |
612 |
{ |
613 |
loopStart = PAIR_LOOP; |
614 |
} |
615 |
|
616 |
for (int iLoop = loopStart; iLoop <= loopEnd; iLoop++) |
617 |
{ |
618 |
|
619 |
if (iLoop == loopStart) |
620 |
{ |
621 |
bool update_nlist = fDecomp_->checkNeighborList(); |
622 |
if (update_nlist) |
623 |
neighborMatW = fDecomp_->buildLayerBasedNeighborList(); |
624 |
} |
625 |
|
626 |
vector<CutoffGroup *>::iterator cg1; |
627 |
vector<CutoffGroup *>::iterator cg2; |
628 |
|
629 |
// int nThreads = 2; |
630 |
int chunkSize = cgs.size() / (omp_get_num_threads() * 20); |
631 |
|
632 |
// printf("before omp loop\n"); |
633 |
#pragma omp parallel /*num_threads(nThreads)*/ default(none) shared(curSnapshot, iLoop, cgs, chunkSize) \ |
634 |
private(cg1, cg2, cuts, d_grp, rgrpsq, rCutSq, idatPrv, vij, fij, in_switching_region, dswdr, rgrp, \ |
635 |
atomListRow, atomListColumn, atom1, atom2, topoDist, d, r2, swderiv, fg, mf, dag) |
636 |
{ |
637 |
idatPrv.shiftedPot = (cutoffMethod_ == SHIFTED_POTENTIAL) ? true : false; |
638 |
idatPrv.shiftedForce = (cutoffMethod_ == SHIFTED_FORCE) ? true : false; |
639 |
|
640 |
// printf("Thread %d\n", omp_get_thread_num()); |
641 |
#pragma omp for schedule(dynamic, chunkSize) |
642 |
for (cg1 = cgs.begin(); cg1 < cgs.end(); ++cg1) |
643 |
{ |
644 |
for (cg2 = neighborMatW[(*cg1)->getGlobalIndex()].begin(); cg2 < neighborMatW[(*cg1)->getGlobalIndex()].end(); ++cg2) |
645 |
{ |
646 |
|
647 |
cuts = fDecomp_->getGroupCutoffs((*cg1)->getGlobalIndex(), (*cg2)->getGlobalIndex()); |
648 |
|
649 |
d_grp = fDecomp_->getIntergroupVector((*cg1), (*cg2)); |
650 |
curSnapshot->wrapVector(d_grp); |
651 |
rgrpsq = d_grp.lengthSquare(); |
652 |
|
653 |
rCutSq = cuts.second; |
654 |
|
655 |
// printf("Thread %d\tcg1:%d\tcg2:%d d_grp\tx:%f\ty:%f\tz:%f\trgrpsq:%f\n", omp_get_thread_num(), (*cg1)->getGlobalIndex(), (*cg2)->getGlobalIndex(), d_grp.x(), d_grp.y(), d_grp.z(), rgrpsq); |
656 |
|
657 |
if (rgrpsq < rCutSq) |
658 |
{ |
659 |
idatPrv.rcut = cuts.first; |
660 |
if (iLoop == PAIR_LOOP) |
661 |
{ |
662 |
vij = 0.0; |
663 |
fij = V3Zero; |
664 |
} |
665 |
|
666 |
in_switching_region = switcher_->getSwitch(rgrpsq, /*sw*/idatPrv.sw, dswdr, rgrp); |
667 |
|
668 |
// printf("in_switching_region:%d\trgrpsq:%f\t*idatPrv.sw:%f\tdswdr:%f\trgrp:%f\n", (in_switching_region == false ? 0 : 1), rgrpsq, idatPrv.sw, dswdr, rgrp); |
669 |
|
670 |
atomListRow = fDecomp_->getAtomsInGroupRow((*cg1)->getGlobalIndex()); |
671 |
atomListColumn = fDecomp_->getAtomsInGroupColumn((*cg2)->getGlobalIndex()); |
672 |
|
673 |
for (vector<int>::iterator ia = atomListRow.begin(); ia != atomListRow.end(); ++ia) |
674 |
{ |
675 |
atom1 = (*ia); |
676 |
|
677 |
for (vector<int>::iterator jb = atomListColumn.begin(); jb != atomListColumn.end(); ++jb) |
678 |
{ |
679 |
atom2 = (*jb); |
680 |
|
681 |
// printf("atom1:%d atom2:%d\n", atom1, atom2); |
682 |
if (!fDecomp_->skipAtomPair(atom1, atom2)) |
683 |
{ |
684 |
idatPrv.vpair = 0.0; |
685 |
idatPrv.pot = 0.0; |
686 |
idatPrv.f1 = V3Zero; |
687 |
|
688 |
fDecomp_->fillInteractionDataOMP(idatPrv, atom1, atom2); |
689 |
|
690 |
topoDist = fDecomp_->getTopologicalDistance(atom1, atom2); |
691 |
idatPrv.vdwMult = vdwScale_[topoDist]; |
692 |
idatPrv.electroMult = electrostaticScale_[topoDist]; |
693 |
|
694 |
// printf("topoDist:%d\tidatPrv.vdwMult:%f\tidatPrv.electroMult:%f\n", topoDist, idatPrv.vdwMult, idatPrv.electroMult); |
695 |
|
696 |
if (atomListRow.size() == 1 && atomListColumn.size() == 1) |
697 |
{ |
698 |
idatPrv.d = d_grp; |
699 |
idatPrv.r2 = rgrpsq; |
700 |
// cerr << "dgrp = " << d_grp << ":" << __LINE__ << "\n"; |
701 |
} else |
702 |
{ |
703 |
d = fDecomp_->getInteratomicVector(atom1, atom2); |
704 |
curSnapshot->wrapVector(d); |
705 |
r2 = d.lengthSquare(); |
706 |
// cerr << "datm = " << d << ":" << __LINE__ << "\n"; |
707 |
idatPrv.d = d; |
708 |
idatPrv.r2 = r2; |
709 |
} |
710 |
|
711 |
// printf("idatPrv.d x:%f\ty:%f\tz:%f\tidatPrv.r2:%f\n", (idatPrv.d).x(), (idatPrv.d).y(), (idatPrv.d).z(), idatPrv.r2); |
712 |
|
713 |
// cerr << "idat.d = " << *(idat.d) << ":" << __LINE__ << "\n"; |
714 |
idatPrv.rij = sqrt((idatPrv.r2)); |
715 |
// cerr << "idat.rij = " << *(idat.rij) << "\n"; |
716 |
|
717 |
#pragma omp critical |
718 |
{ |
719 |
interactionMan_->initializeOMP(); |
720 |
} |
721 |
|
722 |
if (iLoop == PREPAIR_LOOP) |
723 |
{ |
724 |
interactionMan_->doPrePairOMP(idatPrv); |
725 |
} else |
726 |
{ |
727 |
interactionMan_->doPairOMP(idatPrv); |
728 |
fDecomp_->unpackInteractionDataOMP(idatPrv, atom1, atom2); |
729 |
|
730 |
// cerr << "d = " << *(idat.d) << "\tv=" << vpair << "\tf=" << f1 << ":" << __LINE__ << "\n"; |
731 |
// printf("d x:%f y:%f z:%f vpair:%f f1 x:%f y:%f z:%f\n", idatPrv.d.x(), idatPrv.d.y(), idatPrv.d.z(), idatPrv.vpair, idatPrv.f1.x(), idatPrv.f1.y(), idatPrv.f1.z()); |
732 |
#pragma omp critical |
733 |
{ |
734 |
vij += idatPrv.vpair; |
735 |
fij += idatPrv.f1; |
736 |
tau -= outProduct(idatPrv.d, idatPrv.f1); |
737 |
|
738 |
// printf("vij:%f fij x:%f y:%f z:%f\n", vij, fij.x(), fij.y(), fij.z()); |
739 |
} |
740 |
} |
741 |
} |
742 |
} |
743 |
} |
744 |
|
745 |
if (iLoop == PAIR_LOOP) |
746 |
{ |
747 |
if (in_switching_region) |
748 |
{ |
749 |
swderiv = vij * dswdr / rgrp; |
750 |
fg = swderiv * d_grp; |
751 |
fij += fg; |
752 |
|
753 |
if (atomListRow.size() == 1 && atomListColumn.size() == 1) |
754 |
{ |
755 |
#pragma omp critical |
756 |
{ |
757 |
tau -= outProduct(idatPrv.d, fg); |
758 |
} |
759 |
} |
760 |
|
761 |
for (vector<int>::iterator ia = atomListRow.begin(); ia != atomListRow.end(); ++ia) |
762 |
{ |
763 |
atom1 = (*ia); |
764 |
mf = fDecomp_->getMassFactorRow(atom1); |
765 |
// fg is the force on atom ia due to cutoff group's |
766 |
// presence in switching region |
767 |
fg = swderiv * d_grp * mf; |
768 |
fDecomp_->addForceToAtomRowOMP(atom1, fg); |
769 |
|
770 |
if (atomListRow.size() > 1) |
771 |
{ |
772 |
if (info_->usesAtomicVirial()) |
773 |
{ |
774 |
// find the distance between the atom |
775 |
// and the center of the cutoff group: |
776 |
dag = fDecomp_->getAtomToGroupVectorRow(atom1, (*cg1)->getGlobalIndex()); |
777 |
#pragma omp critical |
778 |
{ |
779 |
tau -= outProduct(dag, fg); |
780 |
} |
781 |
} |
782 |
} |
783 |
} |
784 |
for (vector<int>::iterator jb = atomListColumn.begin(); jb != atomListColumn.end(); ++jb) |
785 |
{ |
786 |
atom2 = (*jb); |
787 |
mf = fDecomp_->getMassFactorColumn(atom2); |
788 |
// fg is the force on atom jb due to cutoff group's |
789 |
// presence in switching region |
790 |
fg = -swderiv * d_grp * mf; |
791 |
fDecomp_->addForceToAtomColumn(atom2, fg); |
792 |
|
793 |
if (atomListColumn.size() > 1) |
794 |
{ |
795 |
if (info_->usesAtomicVirial()) |
796 |
{ |
797 |
// find the distance between the atom |
798 |
// and the center of the cutoff group: |
799 |
dag = fDecomp_->getAtomToGroupVectorColumn(atom2, (*cg2)->getGlobalIndex()); |
800 |
#pragma omp critical |
801 |
{ |
802 |
tau -= outProduct(dag, fg); |
803 |
} |
804 |
} |
805 |
} |
806 |
} |
807 |
} |
808 |
//if (!SIM_uses_AtomicVirial) { |
809 |
// tau -= outProduct(d_grp, fij); |
810 |
//} |
811 |
} |
812 |
} |
813 |
} |
814 |
}// END: omp for loop |
815 |
// printf("after omp loop\n"); |
816 |
} |
817 |
|
818 |
if (iLoop == PREPAIR_LOOP) |
819 |
{ |
820 |
if (info_->requiresPrepair()) |
821 |
{ |
822 |
|
823 |
fDecomp_->collectIntermediateData(); |
824 |
|
825 |
for (int atom1 = 0; atom1 < info_->getNAtoms(); atom1++) |
826 |
{ |
827 |
fDecomp_->fillSelfData(sdat, atom1); |
828 |
interactionMan_->doPreForce(sdat); |
829 |
} |
830 |
|
831 |
fDecomp_->distributeIntermediateData(); |
832 |
|
833 |
} |
834 |
} |
835 |
} |
836 |
|
837 |
fDecomp_->collectData(); |
838 |
|
839 |
if (info_->requiresSelfCorrection()) |
840 |
{ |
841 |
|
842 |
for (int atom1 = 0; atom1 < info_->getNAtoms(); atom1++) |
843 |
{ |
844 |
fDecomp_->fillSelfData(sdat, atom1); |
845 |
interactionMan_->doSelfCorrection(sdat); |
846 |
} |
847 |
|
848 |
} |
849 |
|
850 |
longRangePotential = *(fDecomp_->getEmbeddingPotential()) + *(fDecomp_->getPairwisePotential()); |
851 |
|
852 |
lrPot = longRangePotential.sum(); |
853 |
|
854 |
//store the tau and long range potential |
855 |
curSnapshot->statData[Stats::LONG_RANGE_POTENTIAL] = lrPot; |
856 |
curSnapshot->statData[Stats::VANDERWAALS_POTENTIAL] = longRangePotential[VANDERWAALS_FAMILY]; |
857 |
curSnapshot->statData[Stats::ELECTROSTATIC_POTENTIAL] = longRangePotential[ELECTROSTATIC_FAMILY]; |
858 |
} |
859 |
|
860 |
void ForceManager::longRangeInteractionsRapaport() { |
861 |
|
862 |
Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); |
863 |
DataStorage* config = &(curSnapshot->atomData); |
864 |
DataStorage* cgConfig = &(curSnapshot->cgData); |
865 |
|
866 |
//calculate the center of mass of cutoff group |
867 |
|
868 |
SimInfo::MoleculeIterator mi; |
869 |
Molecule* mol; |
870 |
Molecule::CutoffGroupIterator ci; |
871 |
CutoffGroup* cg; |
872 |
|
873 |
if (info_->getNCutoffGroups() > 0) |
874 |
{ |
875 |
for (mol = info_->beginMolecule(mi); mol != NULL; mol = info_->nextMolecule(mi)) |
876 |
{ |
877 |
for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) |
878 |
{ |
879 |
// cerr << "branch1\n"; |
880 |
// cerr << "globind = " << cg->getGlobalIndex() << ":" << __LINE__ << "\n"; |
881 |
cg->updateCOM(); |
882 |
|
883 |
// cerr << "gbI: " << cg->getGlobalIndex() << " locI: " << cg->getLocalIndex() << " x: " |
884 |
// << cgConfig->position[cg->getLocalIndex()].x() << " y: " << cgConfig->position[cg->getLocalIndex()].y() |
885 |
// << " z: " << cgConfig->position[cg->getLocalIndex()].z() << "\n"; |
886 |
} |
887 |
} |
888 |
} else |
889 |
{ |
890 |
// center of mass of the group is the same as position of the atom |
891 |
// if cutoff group does not exist |
892 |
// cerr << ":" << __LINE__ << "branch2\n"; |
893 |
cgConfig->position = config->position; |
894 |
} |
895 |
|
896 |
fDecomp_->zeroWorkArrays(); |
897 |
fDecomp_->distributeData(); |
898 |
|
899 |
int atom1, atom2, topoDist; |
900 |
CutoffGroup *cg1; |
901 |
Vector3d d_grp, dag, d; |
902 |
RealType rgrpsq, rgrp, r2, r; |
903 |
RealType electroMult, vdwMult; |
904 |
RealType vij; |
905 |
Vector3d fij, fg, f1; |
906 |
tuple3<RealType, RealType, RealType> cuts; |
907 |
RealType rCutSq; |
908 |
bool in_switching_region; |
909 |
RealType sw, dswdr, swderiv; |
910 |
vector<int> atomListColumn, atomListRow, atomListLocal; |
911 |
InteractionData idat; |
912 |
SelfData sdat; |
913 |
RealType mf; |
914 |
RealType lrPot; |
915 |
RealType vpair; |
916 |
potVec longRangePotential(0.0); |
917 |
potVec workPot(0.0); |
918 |
|
919 |
int loopStart, loopEnd; |
920 |
|
921 |
idat.vdwMult = &vdwMult; |
922 |
idat.electroMult = &electroMult; |
923 |
idat.pot = &workPot; |
924 |
sdat.pot = fDecomp_->getEmbeddingPotential(); |
925 |
idat.vpair = &vpair; |
926 |
idat.f1 = &f1; |
927 |
idat.sw = &sw; |
928 |
idat.shiftedPot = (cutoffMethod_ == SHIFTED_POTENTIAL) ? true : false; |
929 |
idat.shiftedForce = (cutoffMethod_ == SHIFTED_FORCE) ? true : false; |
930 |
|
931 |
loopEnd = PAIR_LOOP; |
932 |
if (info_->requiresPrepair()) |
933 |
{ |
934 |
loopStart = PREPAIR_LOOP; |
935 |
} else |
936 |
{ |
937 |
loopStart = PAIR_LOOP; |
938 |
} |
939 |
|
940 |
for (int iLoop = loopStart; iLoop <= loopEnd; iLoop++) |
941 |
{ |
942 |
|
943 |
if (iLoop == loopStart) |
944 |
{ |
945 |
bool update_nlist = fDecomp_->checkNeighborList(); |
946 |
if (update_nlist) |
947 |
neighborMatW = fDecomp_->buildLayerBasedNeighborList(); |
948 |
} |
949 |
|
950 |
for (mol = info_->beginMolecule(mi); mol != NULL; mol = info_->nextMolecule(mi)) |
951 |
{ |
952 |
for (cg1 = mol->beginCutoffGroup(ci); cg1 != NULL; cg1 = mol->nextCutoffGroup(ci)) |
953 |
{ |
954 |
// printf("Thread %d executes loop iteration %d\n", omp_get_thread_num(), i); |
955 |
for (vector<CutoffGroup *>::iterator cg2 = neighborMatW[cg1->getGlobalIndex()].begin(); cg2 |
956 |
!= neighborMatW[cg1->getGlobalIndex()].end(); ++cg2) |
957 |
{ |
958 |
|
959 |
cuts = fDecomp_->getGroupCutoffs(cg1->getGlobalIndex(), (*cg2)->getGlobalIndex()); |
960 |
|
961 |
d_grp = fDecomp_->getIntergroupVector(cg1, (*cg2)); |
962 |
curSnapshot->wrapVector(d_grp); |
963 |
rgrpsq = d_grp.lengthSquare(); |
964 |
|
965 |
rCutSq = cuts.second; |
966 |
|
967 |
if (rgrpsq < rCutSq) |
968 |
{ |
969 |
idat.rcut = &cuts.first; |
970 |
if (iLoop == PAIR_LOOP) |
971 |
{ |
972 |
vij = 0.0; |
973 |
fij = V3Zero; |
974 |
} |
975 |
|
976 |
in_switching_region = switcher_->getSwitch(rgrpsq, sw, dswdr, rgrp); |
977 |
|
978 |
atomListRow = fDecomp_->getAtomsInGroupRow(cg1->getGlobalIndex()); |
979 |
atomListColumn = fDecomp_->getAtomsInGroupColumn((*cg2)->getGlobalIndex()); |
980 |
|
981 |
for (vector<int>::iterator ia = atomListRow.begin(); ia != atomListRow.end(); ++ia) |
982 |
{ |
983 |
atom1 = (*ia); |
984 |
|
985 |
for (vector<int>::iterator jb = atomListColumn.begin(); jb != atomListColumn.end(); ++jb) |
986 |
{ |
987 |
atom2 = (*jb); |
988 |
|
989 |
if (!fDecomp_->skipAtomPair(atom1, atom2)) |
990 |
{ |
991 |
vpair = 0.0; |
992 |
workPot = 0.0; |
993 |
f1 = V3Zero; |
994 |
|
995 |
fDecomp_->fillInteractionData(idat, atom1, atom2); |
996 |
|
997 |
topoDist = fDecomp_->getTopologicalDistance(atom1, atom2); |
998 |
vdwMult = vdwScale_[topoDist]; |
999 |
electroMult = electrostaticScale_[topoDist]; |
1000 |
|
1001 |
if (atomListRow.size() == 1 && atomListColumn.size() == 1) |
1002 |
{ |
1003 |
idat.d = &d_grp; |
1004 |
idat.r2 = &rgrpsq; |
1005 |
// cerr << "dgrp = " << d_grp << ":" << __LINE__ << "\n"; |
1006 |
} else |
1007 |
{ |
1008 |
d = fDecomp_->getInteratomicVector(atom1, atom2); |
1009 |
curSnapshot->wrapVector(d); |
1010 |
r2 = d.lengthSquare(); |
1011 |
// cerr << "datm = " << d << ":" << __LINE__ << "\n"; |
1012 |
idat.d = &d; |
1013 |
idat.r2 = &r2; |
1014 |
} |
1015 |
|
1016 |
// cerr << "idat.d = " << *(idat.d) << ":" << __LINE__ << "\n"; |
1017 |
r = sqrt(*(idat.r2)); |
1018 |
idat.rij = &r; |
1019 |
// cerr << "idat.rij = " << *(idat.rij) << "\n"; |
1020 |
|
1021 |
if (iLoop == PREPAIR_LOOP) |
1022 |
{ |
1023 |
interactionMan_->doPrePair(idat); |
1024 |
} else |
1025 |
{ |
1026 |
interactionMan_->doPair(idat); |
1027 |
fDecomp_->unpackInteractionData(idat, atom1, atom2); |
1028 |
|
1029 |
// cerr << "d = " << *(idat.d) << "\tv=" << vpair << "\tf=" << f1 << ":" << __LINE__ << "\n"; |
1030 |
vij += vpair; |
1031 |
fij += f1; |
1032 |
tau -= outProduct(*(idat.d), f1); |
1033 |
} |
1034 |
} |
1035 |
} |
1036 |
} |
1037 |
|
1038 |
if (iLoop == PAIR_LOOP) |
1039 |
{ |
1040 |
if (in_switching_region) |
1041 |
{ |
1042 |
swderiv = vij * dswdr / rgrp; |
1043 |
fg = swderiv * d_grp; |
1044 |
fij += fg; |
1045 |
|
1046 |
if (atomListRow.size() == 1 && atomListColumn.size() == 1) |
1047 |
{ |
1048 |
tau -= outProduct(*(idat.d), fg); |
1049 |
} |
1050 |
|
1051 |
for (vector<int>::iterator ia = atomListRow.begin(); ia != atomListRow.end(); ++ia) |
1052 |
{ |
1053 |
atom1 = (*ia); |
1054 |
mf = fDecomp_->getMassFactorRow(atom1); |
1055 |
// fg is the force on atom ia due to cutoff group's |
1056 |
// presence in switching region |
1057 |
fg = swderiv * d_grp * mf; |
1058 |
fDecomp_->addForceToAtomRow(atom1, fg); |
1059 |
|
1060 |
if (atomListRow.size() > 1) |
1061 |
{ |
1062 |
if (info_->usesAtomicVirial()) |
1063 |
{ |
1064 |
// find the distance between the atom |
1065 |
// and the center of the cutoff group: |
1066 |
dag = fDecomp_->getAtomToGroupVectorRow(atom1, cg1->getGlobalIndex()); |
1067 |
tau -= outProduct(dag, fg); |
1068 |
} |
1069 |
} |
1070 |
} |
1071 |
for (vector<int>::iterator jb = atomListColumn.begin(); jb != atomListColumn.end(); ++jb) |
1072 |
{ |
1073 |
atom2 = (*jb); |
1074 |
mf = fDecomp_->getMassFactorColumn(atom2); |
1075 |
// fg is the force on atom jb due to cutoff group's |
1076 |
// presence in switching region |
1077 |
fg = -swderiv * d_grp * mf; |
1078 |
fDecomp_->addForceToAtomColumn(atom2, fg); |
1079 |
|
1080 |
if (atomListColumn.size() > 1) |
1081 |
{ |
1082 |
if (info_->usesAtomicVirial()) |
1083 |
{ |
1084 |
// find the distance between the atom |
1085 |
// and the center of the cutoff group: |
1086 |
dag = fDecomp_->getAtomToGroupVectorColumn(atom2, (*cg2)->getGlobalIndex()); |
1087 |
tau -= outProduct(dag, fg); |
1088 |
} |
1089 |
} |
1090 |
} |
1091 |
} |
1092 |
//if (!SIM_uses_AtomicVirial) { |
1093 |
// tau -= outProduct(d_grp, fij); |
1094 |
//} |
1095 |
} |
1096 |
} |
1097 |
} |
1098 |
} |
1099 |
} |
1100 |
|
1101 |
if (iLoop == PREPAIR_LOOP) |
1102 |
{ |
1103 |
if (info_->requiresPrepair()) |
1104 |
{ |
1105 |
|
1106 |
fDecomp_->collectIntermediateData(); |
1107 |
|
1108 |
for (int atom1 = 0; atom1 < info_->getNAtoms(); atom1++) |
1109 |
{ |
1110 |
fDecomp_->fillSelfData(sdat, atom1); |
1111 |
interactionMan_->doPreForce(sdat); |
1112 |
} |
1113 |
|
1114 |
fDecomp_->distributeIntermediateData(); |
1115 |
|
1116 |
} |
1117 |
} |
1118 |
} |
1119 |
|
1120 |
fDecomp_->collectData(); |
1121 |
|
1122 |
if (info_->requiresSelfCorrection()) |
1123 |
{ |
1124 |
|
1125 |
for (int atom1 = 0; atom1 < info_->getNAtoms(); atom1++) |
1126 |
{ |
1127 |
fDecomp_->fillSelfData(sdat, atom1); |
1128 |
interactionMan_->doSelfCorrection(sdat); |
1129 |
} |
1130 |
|
1131 |
} |
1132 |
|
1133 |
longRangePotential = *(fDecomp_->getEmbeddingPotential()) + *(fDecomp_->getPairwisePotential()); |
1134 |
|
1135 |
lrPot = longRangePotential.sum(); |
1136 |
|
1137 |
//store the tau and long range potential |
1138 |
curSnapshot->statData[Stats::LONG_RANGE_POTENTIAL] = lrPot; |
1139 |
curSnapshot->statData[Stats::VANDERWAALS_POTENTIAL] = longRangePotential[VANDERWAALS_FAMILY]; |
1140 |
curSnapshot->statData[Stats::ELECTROSTATIC_POTENTIAL] = longRangePotential[ELECTROSTATIC_FAMILY]; |
1141 |
} |
1142 |
|
1143 |
void ForceManager::longRangeInteractions() { |
1144 |
|
1145 |
Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); |
1146 |
DataStorage* config = &(curSnapshot->atomData); |
1147 |
DataStorage* cgConfig = &(curSnapshot->cgData); |
1148 |
|
1149 |
//calculate the center of mass of cutoff group |
1150 |
|
1151 |
SimInfo::MoleculeIterator mi; |
1152 |
Molecule* mol; |
1153 |
Molecule::CutoffGroupIterator ci; |
1154 |
CutoffGroup* cg; |
1155 |
|
1156 |
if (info_->getNCutoffGroups() > 0) |
1157 |
{ |
1158 |
for (mol = info_->beginMolecule(mi); mol != NULL; mol = info_->nextMolecule(mi)) |
1159 |
{ |
1160 |
for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) |
1161 |
{ |
1162 |
cerr << "branch1\n"; |
1163 |
cerr << "globind = " << cg->getGlobalIndex() << "\n"; |
1164 |
cg->updateCOM(); |
1165 |
} |
1166 |
} |
1167 |
} else |
1168 |
{ |
1169 |
// center of mass of the group is the same as position of the atom |
1170 |
// if cutoff group does not exist |
1171 |
cerr << "branch2\n"; |
1172 |
cgConfig->position = config->position; |
1173 |
} |
1174 |
|
1175 |
fDecomp_->zeroWorkArrays(); |
1176 |
fDecomp_->distributeData(); |
1177 |
|
1178 |
int cg1, cg2, atom1, atom2, topoDist; |
1179 |
Vector3d d_grp, dag, d; |
1180 |
RealType rgrpsq, rgrp, r2, r; |
1181 |
RealType electroMult, vdwMult; |
1182 |
RealType vij; |
1183 |
Vector3d fij, fg, f1; |
1184 |
tuple3<RealType, RealType, RealType> cuts; |
1185 |
RealType rCutSq; |
1186 |
bool in_switching_region; |
1187 |
RealType sw, dswdr, swderiv; |
1188 |
vector<int> atomListColumn, atomListRow, atomListLocal; |
1189 |
InteractionData idat; |
1190 |
SelfData sdat; |
1191 |
RealType mf; |
1192 |
RealType lrPot; |
1193 |
RealType vpair; |
1194 |
potVec longRangePotential(0.0); |
1195 |
potVec workPot(0.0); |
1196 |
|
1197 |
int loopStart, loopEnd; |
1198 |
|
1199 |
idat.vdwMult = &vdwMult; |
1200 |
idat.electroMult = &electroMult; |
1201 |
idat.pot = &workPot; |
1202 |
sdat.pot = fDecomp_->getEmbeddingPotential(); |
1203 |
idat.vpair = &vpair; |
1204 |
idat.f1 = &f1; |
1205 |
idat.sw = &sw; |
1206 |
idat.shiftedPot = (cutoffMethod_ == SHIFTED_POTENTIAL) ? true : false; |
1207 |
idat.shiftedForce = (cutoffMethod_ == SHIFTED_FORCE) ? true : false; |
1208 |
|
1209 |
loopEnd = PAIR_LOOP; |
1210 |
if (info_->requiresPrepair()) |
1211 |
{ |
1212 |
loopStart = PREPAIR_LOOP; |
1213 |
} else |
1214 |
{ |
1215 |
loopStart = PAIR_LOOP; |
1216 |
} |
1217 |
|
1218 |
for (int iLoop = loopStart; iLoop <= loopEnd; iLoop++) |
1219 |
{ |
1220 |
|
1221 |
if (iLoop == loopStart) |
1222 |
{ |
1223 |
bool update_nlist = fDecomp_->checkNeighborList(); |
1224 |
if (update_nlist) |
1225 |
neighborList = fDecomp_->buildNeighborList(); |
1226 |
|
1227 |
} |
1228 |
|
1229 |
for (vector<pair<int, int> >::iterator it = neighborList.begin(); it != neighborList.end(); ++it) |
1230 |
{ |
1231 |
cg1 = (*it).first; |
1232 |
cg2 = (*it).second; |
1233 |
|
1234 |
cuts = fDecomp_->getGroupCutoffs(cg1, cg2); |
1235 |
|
1236 |
d_grp = fDecomp_->getIntergroupVector(cg1, cg2); |
1237 |
curSnapshot->wrapVector(d_grp); |
1238 |
rgrpsq = d_grp.lengthSquare(); |
1239 |
|
1240 |
rCutSq = cuts.second; |
1241 |
|
1242 |
if (rgrpsq < rCutSq) |
1243 |
{ |
1244 |
idat.rcut = &cuts.first; |
1245 |
if (iLoop == PAIR_LOOP) |
1246 |
{ |
1247 |
vij = 0.0; |
1248 |
fij = V3Zero; |
1249 |
} |
1250 |
|
1251 |
in_switching_region = switcher_->getSwitch(rgrpsq, sw, dswdr, rgrp); |
1252 |
|
1253 |
atomListRow = fDecomp_->getAtomsInGroupRow(cg1); |
1254 |
atomListColumn = fDecomp_->getAtomsInGroupColumn(cg2); |
1255 |
|
1256 |
for (vector<int>::iterator ia = atomListRow.begin(); ia != atomListRow.end(); ++ia) |
1257 |
{ |
1258 |
atom1 = (*ia); |
1259 |
|
1260 |
for (vector<int>::iterator jb = atomListColumn.begin(); jb != atomListColumn.end(); ++jb) |
1261 |
{ |
1262 |
atom2 = (*jb); |
1263 |
|
1264 |
if (!fDecomp_->skipAtomPair(atom1, atom2)) |
1265 |
{ |
1266 |
vpair = 0.0; |
1267 |
workPot = 0.0; |
1268 |
f1 = V3Zero; |
1269 |
|
1270 |
fDecomp_->fillInteractionData(idat, atom1, atom2); |
1271 |
|
1272 |
topoDist = fDecomp_->getTopologicalDistance(atom1, atom2); |
1273 |
vdwMult = vdwScale_[topoDist]; |
1274 |
electroMult = electrostaticScale_[topoDist]; |
1275 |
|
1276 |
if (atomListRow.size() == 1 && atomListColumn.size() == 1) |
1277 |
{ |
1278 |
idat.d = &d_grp; |
1279 |
idat.r2 = &rgrpsq; |
1280 |
cerr << "dgrp = " << d_grp << "\n"; |
1281 |
} else |
1282 |
{ |
1283 |
d = fDecomp_->getInteratomicVector(atom1, atom2); |
1284 |
curSnapshot->wrapVector(d); |
1285 |
r2 = d.lengthSquare(); |
1286 |
cerr << "datm = " << d << "\n"; |
1287 |
idat.d = &d; |
1288 |
idat.r2 = &r2; |
1289 |
} |
1290 |
|
1291 |
cerr << "idat.d = " << *(idat.d) << "\n"; |
1292 |
r = sqrt(*(idat.r2)); |
1293 |
idat.rij = &r; |
1294 |
|
1295 |
if (iLoop == PREPAIR_LOOP) |
1296 |
{ |
1297 |
interactionMan_->doPrePair(idat); |
1298 |
} else |
1299 |
{ |
1300 |
interactionMan_->doPair(idat); |
1301 |
fDecomp_->unpackInteractionData(idat, atom1, atom2); |
1302 |
|
1303 |
cerr << "d = " << *(idat.d) << "\tv=" << vpair << "\tf=" << f1 << "\n"; |
1304 |
vij += vpair; |
1305 |
fij += f1; |
1306 |
tau -= outProduct(*(idat.d), f1); |
1307 |
} |
1308 |
} |
1309 |
} |
1310 |
} |
1311 |
|
1312 |
if (iLoop == PAIR_LOOP) |
1313 |
{ |
1314 |
if (in_switching_region) |
1315 |
{ |
1316 |
swderiv = vij * dswdr / rgrp; |
1317 |
fg = swderiv * d_grp; |
1318 |
fij += fg; |
1319 |
|
1320 |
if (atomListRow.size() == 1 && atomListColumn.size() == 1) |
1321 |
{ |
1322 |
tau -= outProduct(*(idat.d), fg); |
1323 |
} |
1324 |
|
1325 |
for (vector<int>::iterator ia = atomListRow.begin(); ia != atomListRow.end(); ++ia) |
1326 |
{ |
1327 |
atom1 = (*ia); |
1328 |
mf = fDecomp_->getMassFactorRow(atom1); |
1329 |
// fg is the force on atom ia due to cutoff group's |
1330 |
// presence in switching region |
1331 |
fg = swderiv * d_grp * mf; |
1332 |
fDecomp_->addForceToAtomRow(atom1, fg); |
1333 |
|
1334 |
if (atomListRow.size() > 1) |
1335 |
{ |
1336 |
if (info_->usesAtomicVirial()) |
1337 |
{ |
1338 |
// find the distance between the atom |
1339 |
// and the center of the cutoff group: |
1340 |
dag = fDecomp_->getAtomToGroupVectorRow(atom1, cg1); |
1341 |
tau -= outProduct(dag, fg); |
1342 |
} |
1343 |
} |
1344 |
} |
1345 |
for (vector<int>::iterator jb = atomListColumn.begin(); jb != atomListColumn.end(); ++jb) |
1346 |
{ |
1347 |
atom2 = (*jb); |
1348 |
mf = fDecomp_->getMassFactorColumn(atom2); |
1349 |
// fg is the force on atom jb due to cutoff group's |
1350 |
// presence in switching region |
1351 |
fg = -swderiv * d_grp * mf; |
1352 |
fDecomp_->addForceToAtomColumn(atom2, fg); |
1353 |
|
1354 |
if (atomListColumn.size() > 1) |
1355 |
{ |
1356 |
if (info_->usesAtomicVirial()) |
1357 |
{ |
1358 |
// find the distance between the atom |
1359 |
// and the center of the cutoff group: |
1360 |
dag = fDecomp_->getAtomToGroupVectorColumn(atom2, cg2); |
1361 |
tau -= outProduct(dag, fg); |
1362 |
} |
1363 |
} |
1364 |
} |
1365 |
} |
1366 |
//if (!SIM_uses_AtomicVirial) { |
1367 |
// tau -= outProduct(d_grp, fij); |
1368 |
//} |
1369 |
} |
1370 |
} |
1371 |
} |
1372 |
|
1373 |
if (iLoop == PREPAIR_LOOP) |
1374 |
{ |
1375 |
if (info_->requiresPrepair()) |
1376 |
{ |
1377 |
|
1378 |
fDecomp_->collectIntermediateData(); |
1379 |
|
1380 |
for (int atom1 = 0; atom1 < info_->getNAtoms(); atom1++) |
1381 |
{ |
1382 |
fDecomp_->fillSelfData(sdat, atom1); |
1383 |
interactionMan_->doPreForce(sdat); |
1384 |
} |
1385 |
|
1386 |
fDecomp_->distributeIntermediateData(); |
1387 |
|
1388 |
} |
1389 |
} |
1390 |
|
1391 |
} |
1392 |
|
1393 |
fDecomp_->collectData(); |
1394 |
|
1395 |
if (info_->requiresSelfCorrection()) |
1396 |
{ |
1397 |
|
1398 |
for (int atom1 = 0; atom1 < info_->getNAtoms(); atom1++) |
1399 |
{ |
1400 |
fDecomp_->fillSelfData(sdat, atom1); |
1401 |
interactionMan_->doSelfCorrection(sdat); |
1402 |
} |
1403 |
|
1404 |
} |
1405 |
|
1406 |
longRangePotential = *(fDecomp_->getEmbeddingPotential()) + *(fDecomp_->getPairwisePotential()); |
1407 |
|
1408 |
lrPot = longRangePotential.sum(); |
1409 |
|
1410 |
//store the tau and long range potential |
1411 |
curSnapshot->statData[Stats::LONG_RANGE_POTENTIAL] = lrPot; |
1412 |
curSnapshot->statData[Stats::VANDERWAALS_POTENTIAL] = longRangePotential[VANDERWAALS_FAMILY]; |
1413 |
curSnapshot->statData[Stats::ELECTROSTATIC_POTENTIAL] = longRangePotential[ELECTROSTATIC_FAMILY]; |
1414 |
} |
1415 |
|
1416 |
void ForceManager::postCalculation() { |
1417 |
SimInfo::MoleculeIterator mi; |
1418 |
Molecule* mol; |
1419 |
Molecule::RigidBodyIterator rbIter; |
1420 |
RigidBody* rb; |
1421 |
Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); |
1422 |
|
1423 |
// collect the atomic forces onto rigid bodies |
1424 |
|
1425 |
for (mol = info_->beginMolecule(mi); mol != NULL; mol = info_->nextMolecule(mi)) |
1426 |
{ |
1427 |
for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) |
1428 |
{ |
1429 |
Mat3x3d rbTau = rb->calcForcesAndTorquesAndVirial(); |
1430 |
tau += rbTau; |
1431 |
} |
1432 |
} |
1433 |
|
1434 |
#ifdef IS_MPI |
1435 |
Mat3x3d tmpTau(tau); |
1436 |
MPI_Allreduce(tmpTau.getArrayPointer(), tau.getArrayPointer(), |
1437 |
9, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD); |
1438 |
#endif |
1439 |
curSnapshot->statData.setTau(tau); |
1440 |
} |
1441 |
|
1442 |
} //end namespace OpenMD |