| 1 |
/* |
| 2 |
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
| 3 |
* |
| 4 |
* The University of Notre Dame grants you ("Licensee") a |
| 5 |
* non-exclusive, royalty free, license to use, modify and |
| 6 |
* redistribute this software in source and binary code form, provided |
| 7 |
* that the following conditions are met: |
| 8 |
* |
| 9 |
* 1. Redistributions of source code must retain the above copyright |
| 10 |
* notice, this list of conditions and the following disclaimer. |
| 11 |
* |
| 12 |
* 2. Redistributions in binary form must reproduce the above copyright |
| 13 |
* notice, this list of conditions and the following disclaimer in the |
| 14 |
* documentation and/or other materials provided with the |
| 15 |
* distribution. |
| 16 |
* |
| 17 |
* This software is provided "AS IS," without a warranty of any |
| 18 |
* kind. All express or implied conditions, representations and |
| 19 |
* warranties, including any implied warranty of merchantability, |
| 20 |
* fitness for a particular purpose or non-infringement, are hereby |
| 21 |
* excluded. The University of Notre Dame and its licensors shall not |
| 22 |
* be liable for any damages suffered by licensee as a result of |
| 23 |
* using, modifying or distributing the software or its |
| 24 |
* derivatives. In no event will the University of Notre Dame or its |
| 25 |
* licensors be liable for any lost revenue, profit or data, or for |
| 26 |
* direct, indirect, special, consequential, incidental or punitive |
| 27 |
* damages, however caused and regardless of the theory of liability, |
| 28 |
* arising out of the use of or inability to use software, even if the |
| 29 |
* University of Notre Dame has been advised of the possibility of |
| 30 |
* such damages. |
| 31 |
* |
| 32 |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
| 33 |
* research, please cite the appropriate papers when you publish your |
| 34 |
* work. Good starting points are: |
| 35 |
* |
| 36 |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
| 37 |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
| 38 |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
| 39 |
* [4] Vardeman & Gezelter, in progress (2009). |
| 40 |
*/ |
| 41 |
|
| 42 |
/** |
| 43 |
* @file ForceManager.cpp |
| 44 |
* @author tlin |
| 45 |
* @date 11/09/2004 |
| 46 |
* @time 10:39am |
| 47 |
* @version 1.0 |
| 48 |
*/ |
| 49 |
|
| 50 |
#include "brains/ForceManager.hpp" |
| 51 |
#include "primitives/Molecule.hpp" |
| 52 |
#define __OPENMD_C |
| 53 |
#include "utils/simError.h" |
| 54 |
#include "primitives/Bond.hpp" |
| 55 |
#include "primitives/Bend.hpp" |
| 56 |
#include "primitives/Torsion.hpp" |
| 57 |
#include "primitives/Inversion.hpp" |
| 58 |
#include "nonbonded/NonBondedInteraction.hpp" |
| 59 |
#include "parallel/ForceMatrixDecomposition.hpp" |
| 60 |
|
| 61 |
#include <cstdio> |
| 62 |
#include <iostream> |
| 63 |
#include <iomanip> |
| 64 |
|
| 65 |
#include <omp.h> |
| 66 |
|
| 67 |
using namespace std; |
| 68 |
namespace OpenMD { |
| 69 |
|
| 70 |
ForceManager::ForceManager(SimInfo * info) : |
| 71 |
info_(info) { |
| 72 |
forceField_ = info_->getForceField(); |
| 73 |
interactionMan_ = new InteractionManager(); |
| 74 |
fDecomp_ = new ForceMatrixDecomposition(info_, interactionMan_); |
| 75 |
} |
| 76 |
|
| 77 |
/** |
| 78 |
* setupCutoffs |
| 79 |
* |
| 80 |
* Sets the values of cutoffRadius, switchingRadius, cutoffMethod, |
| 81 |
* and cutoffPolicy |
| 82 |
* |
| 83 |
* cutoffRadius : realType |
| 84 |
* If the cutoffRadius was explicitly set, use that value. |
| 85 |
* If the cutoffRadius was not explicitly set: |
| 86 |
* Are there electrostatic atoms? Use 12.0 Angstroms. |
| 87 |
* No electrostatic atoms? Poll the atom types present in the |
| 88 |
* simulation for suggested cutoff values (e.g. 2.5 * sigma). |
| 89 |
* Use the maximum suggested value that was found. |
| 90 |
* |
| 91 |
* cutoffMethod : (one of HARD, SWITCHED, SHIFTED_FORCE, |
| 92 |
* or SHIFTED_POTENTIAL) |
| 93 |
* If cutoffMethod was explicitly set, use that choice. |
| 94 |
* If cutoffMethod was not explicitly set, use SHIFTED_FORCE |
| 95 |
* |
| 96 |
* cutoffPolicy : (one of MIX, MAX, TRADITIONAL) |
| 97 |
* If cutoffPolicy was explicitly set, use that choice. |
| 98 |
* If cutoffPolicy was not explicitly set, use TRADITIONAL |
| 99 |
* |
| 100 |
* switchingRadius : realType |
| 101 |
* If the cutoffMethod was set to SWITCHED: |
| 102 |
* If the switchingRadius was explicitly set, use that value |
| 103 |
* (but do a sanity check first). |
| 104 |
* If the switchingRadius was not explicitly set: use 0.85 * |
| 105 |
* cutoffRadius_ |
| 106 |
* If the cutoffMethod was not set to SWITCHED: |
| 107 |
* Set switchingRadius equal to cutoffRadius for safety. |
| 108 |
*/ |
| 109 |
void ForceManager::setupCutoffs() { |
| 110 |
|
| 111 |
Globals* simParams_ = info_->getSimParams(); |
| 112 |
ForceFieldOptions& forceFieldOptions_ = forceField_->getForceFieldOptions(); |
| 113 |
|
| 114 |
if (simParams_->haveCutoffRadius()) |
| 115 |
{ |
| 116 |
rCut_ = simParams_->getCutoffRadius(); |
| 117 |
} else |
| 118 |
{ |
| 119 |
if (info_->usesElectrostaticAtoms()) |
| 120 |
{ |
| 121 |
sprintf(painCave.errMsg, "ForceManager::setupCutoffs: No value was set for the cutoffRadius.\n" |
| 122 |
"\tOpenMD will use a default value of 12.0 angstroms" |
| 123 |
"\tfor the cutoffRadius.\n"); |
| 124 |
painCave.isFatal = 0; |
| 125 |
painCave.severity = OPENMD_INFO; |
| 126 |
simError(); |
| 127 |
rCut_ = 12.0; |
| 128 |
} else |
| 129 |
{ |
| 130 |
RealType thisCut; |
| 131 |
set<AtomType*>::iterator i; |
| 132 |
set<AtomType*> atomTypes; |
| 133 |
atomTypes = info_->getSimulatedAtomTypes(); |
| 134 |
for (i = atomTypes.begin(); i != atomTypes.end(); ++i) |
| 135 |
{ |
| 136 |
thisCut = interactionMan_->getSuggestedCutoffRadius((*i)); |
| 137 |
rCut_ = max(thisCut, rCut_); |
| 138 |
} |
| 139 |
sprintf(painCave.errMsg, "ForceManager::setupCutoffs: No value was set for the cutoffRadius.\n" |
| 140 |
"\tOpenMD will use %lf angstroms.\n", rCut_); |
| 141 |
painCave.isFatal = 0; |
| 142 |
painCave.severity = OPENMD_INFO; |
| 143 |
simError(); |
| 144 |
} |
| 145 |
} |
| 146 |
|
| 147 |
fDecomp_->setUserCutoff(rCut_); |
| 148 |
interactionMan_->setCutoffRadius(rCut_); |
| 149 |
|
| 150 |
map<string, CutoffMethod> stringToCutoffMethod; |
| 151 |
stringToCutoffMethod["HARD"] = HARD; |
| 152 |
stringToCutoffMethod["SWITCHED"] = SWITCHED; |
| 153 |
stringToCutoffMethod["SHIFTED_POTENTIAL"] = SHIFTED_POTENTIAL; |
| 154 |
stringToCutoffMethod["SHIFTED_FORCE"] = SHIFTED_FORCE; |
| 155 |
|
| 156 |
if (simParams_->haveCutoffMethod()) |
| 157 |
{ |
| 158 |
string cutMeth = toUpperCopy(simParams_->getCutoffMethod()); |
| 159 |
map<string, CutoffMethod>::iterator i; |
| 160 |
i = stringToCutoffMethod.find(cutMeth); |
| 161 |
if (i == stringToCutoffMethod.end()) |
| 162 |
{ |
| 163 |
sprintf(painCave.errMsg, "ForceManager::setupCutoffs: Could not find chosen cutoffMethod %s\n" |
| 164 |
"\tShould be one of: " |
| 165 |
"HARD, SWITCHED, SHIFTED_POTENTIAL, or SHIFTED_FORCE\n", cutMeth.c_str()); |
| 166 |
painCave.isFatal = 1; |
| 167 |
painCave.severity = OPENMD_ERROR; |
| 168 |
simError(); |
| 169 |
} else |
| 170 |
{ |
| 171 |
cutoffMethod_ = i->second; |
| 172 |
} |
| 173 |
} else |
| 174 |
{ |
| 175 |
sprintf(painCave.errMsg, "ForceManager::setupCutoffs: No value was set for the cutoffMethod.\n" |
| 176 |
"\tOpenMD will use SHIFTED_FORCE.\n"); |
| 177 |
painCave.isFatal = 0; |
| 178 |
painCave.severity = OPENMD_INFO; |
| 179 |
simError(); |
| 180 |
cutoffMethod_ = SHIFTED_FORCE; |
| 181 |
} |
| 182 |
|
| 183 |
map<string, CutoffPolicy> stringToCutoffPolicy; |
| 184 |
stringToCutoffPolicy["MIX"] = MIX; |
| 185 |
stringToCutoffPolicy["MAX"] = MAX; |
| 186 |
stringToCutoffPolicy["TRADITIONAL"] = TRADITIONAL; |
| 187 |
|
| 188 |
std::string cutPolicy; |
| 189 |
if (forceFieldOptions_.haveCutoffPolicy()) |
| 190 |
{ |
| 191 |
cutPolicy = forceFieldOptions_.getCutoffPolicy(); |
| 192 |
} else if (simParams_->haveCutoffPolicy()) |
| 193 |
{ |
| 194 |
cutPolicy = simParams_->getCutoffPolicy(); |
| 195 |
} |
| 196 |
|
| 197 |
if (!cutPolicy.empty()) |
| 198 |
{ |
| 199 |
toUpper(cutPolicy); |
| 200 |
map<string, CutoffPolicy>::iterator i; |
| 201 |
i = stringToCutoffPolicy.find(cutPolicy); |
| 202 |
|
| 203 |
if (i == stringToCutoffPolicy.end()) |
| 204 |
{ |
| 205 |
sprintf(painCave.errMsg, "ForceManager::setupCutoffs: Could not find chosen cutoffPolicy %s\n" |
| 206 |
"\tShould be one of: " |
| 207 |
"MIX, MAX, or TRADITIONAL\n", cutPolicy.c_str()); |
| 208 |
painCave.isFatal = 1; |
| 209 |
painCave.severity = OPENMD_ERROR; |
| 210 |
simError(); |
| 211 |
} else |
| 212 |
{ |
| 213 |
cutoffPolicy_ = i->second; |
| 214 |
} |
| 215 |
} else |
| 216 |
{ |
| 217 |
sprintf(painCave.errMsg, "ForceManager::setupCutoffs: No value was set for the cutoffPolicy.\n" |
| 218 |
"\tOpenMD will use TRADITIONAL.\n"); |
| 219 |
painCave.isFatal = 0; |
| 220 |
painCave.severity = OPENMD_INFO; |
| 221 |
simError(); |
| 222 |
cutoffPolicy_ = TRADITIONAL; |
| 223 |
} |
| 224 |
|
| 225 |
fDecomp_->setCutoffPolicy(cutoffPolicy_); |
| 226 |
|
| 227 |
// create the switching function object: |
| 228 |
|
| 229 |
switcher_ = new SwitchingFunction(); |
| 230 |
|
| 231 |
if (cutoffMethod_ == SWITCHED) |
| 232 |
{ |
| 233 |
if (simParams_->haveSwitchingRadius()) |
| 234 |
{ |
| 235 |
rSwitch_ = simParams_->getSwitchingRadius(); |
| 236 |
if (rSwitch_ > rCut_) |
| 237 |
{ |
| 238 |
sprintf(painCave.errMsg, "ForceManager::setupCutoffs: switchingRadius (%f) is larger " |
| 239 |
"than the cutoffRadius(%f)\n", rSwitch_, rCut_); |
| 240 |
painCave.isFatal = 1; |
| 241 |
painCave.severity = OPENMD_ERROR; |
| 242 |
simError(); |
| 243 |
} |
| 244 |
} else |
| 245 |
{ |
| 246 |
rSwitch_ = 0.85 * rCut_; |
| 247 |
sprintf(painCave.errMsg, "ForceManager::setupCutoffs: No value was set for the switchingRadius.\n" |
| 248 |
"\tOpenMD will use a default value of 85 percent of the cutoffRadius.\n" |
| 249 |
"\tswitchingRadius = %f. for this simulation\n", rSwitch_); |
| 250 |
painCave.isFatal = 0; |
| 251 |
painCave.severity = OPENMD_WARNING; |
| 252 |
simError(); |
| 253 |
} |
| 254 |
} else |
| 255 |
{ |
| 256 |
if (simParams_->haveSwitchingRadius()) |
| 257 |
{ |
| 258 |
map<string, CutoffMethod>::const_iterator it; |
| 259 |
string theMeth; |
| 260 |
for (it = stringToCutoffMethod.begin(); it != stringToCutoffMethod.end(); ++it) |
| 261 |
{ |
| 262 |
if (it->second == cutoffMethod_) |
| 263 |
{ |
| 264 |
theMeth = it->first; |
| 265 |
break; |
| 266 |
} |
| 267 |
} |
| 268 |
sprintf(painCave.errMsg, "ForceManager::setupCutoffs: the cutoffMethod (%s)\n" |
| 269 |
"\tis not set to SWITCHED, so switchingRadius value\n" |
| 270 |
"\twill be ignored for this simulation\n", theMeth.c_str()); |
| 271 |
painCave.isFatal = 0; |
| 272 |
painCave.severity = OPENMD_WARNING; |
| 273 |
simError(); |
| 274 |
} |
| 275 |
|
| 276 |
rSwitch_ = rCut_; |
| 277 |
} |
| 278 |
|
| 279 |
// Default to cubic switching function. |
| 280 |
sft_ = cubic; |
| 281 |
if (simParams_->haveSwitchingFunctionType()) |
| 282 |
{ |
| 283 |
string funcType = simParams_->getSwitchingFunctionType(); |
| 284 |
toUpper(funcType); |
| 285 |
if (funcType == "CUBIC") |
| 286 |
{ |
| 287 |
sft_ = cubic; |
| 288 |
} else |
| 289 |
{ |
| 290 |
if (funcType == "FIFTH_ORDER_POLYNOMIAL") |
| 291 |
{ |
| 292 |
sft_ = fifth_order_poly; |
| 293 |
} else |
| 294 |
{ |
| 295 |
// throw error |
| 296 |
sprintf(painCave.errMsg, |
| 297 |
"ForceManager::setupSwitching : Unknown switchingFunctionType. (Input file specified %s .)\n" |
| 298 |
"\tswitchingFunctionType must be one of: " |
| 299 |
"\"cubic\" or \"fifth_order_polynomial\".", funcType.c_str()); |
| 300 |
painCave.isFatal = 1; |
| 301 |
painCave.severity = OPENMD_ERROR; |
| 302 |
simError(); |
| 303 |
} |
| 304 |
} |
| 305 |
} |
| 306 |
switcher_->setSwitchType(sft_); |
| 307 |
switcher_->setSwitch(rSwitch_, rCut_); |
| 308 |
interactionMan_->setSwitchingRadius(rSwitch_); |
| 309 |
} |
| 310 |
|
| 311 |
void ForceManager::initialize() { |
| 312 |
|
| 313 |
if (!info_->isTopologyDone()) |
| 314 |
{ |
| 315 |
|
| 316 |
info_->update(); |
| 317 |
interactionMan_->setSimInfo(info_); |
| 318 |
interactionMan_->initialize(); |
| 319 |
|
| 320 |
// We want to delay the cutoffs until after the interaction |
| 321 |
// manager has set up the atom-atom interactions so that we can |
| 322 |
// query them for suggested cutoff values |
| 323 |
setupCutoffs(); |
| 324 |
|
| 325 |
info_->prepareTopology(); |
| 326 |
} |
| 327 |
|
| 328 |
ForceFieldOptions& fopts = forceField_->getForceFieldOptions(); |
| 329 |
|
| 330 |
// Force fields can set options on how to scale van der Waals and |
| 331 |
// electrostatic interactions for atoms connected via bonds, bends |
| 332 |
// and torsions in this case the topological distance between |
| 333 |
// atoms is: |
| 334 |
// 0 = topologically unconnected |
| 335 |
// 1 = bonded together |
| 336 |
// 2 = connected via a bend |
| 337 |
// 3 = connected via a torsion |
| 338 |
|
| 339 |
vdwScale_.reserve(4); |
| 340 |
fill(vdwScale_.begin(), vdwScale_.end(), 0.0); |
| 341 |
|
| 342 |
electrostaticScale_.reserve(4); |
| 343 |
fill(electrostaticScale_.begin(), electrostaticScale_.end(), 0.0); |
| 344 |
|
| 345 |
vdwScale_[0] = 1.0; |
| 346 |
vdwScale_[1] = fopts.getvdw12scale(); |
| 347 |
vdwScale_[2] = fopts.getvdw13scale(); |
| 348 |
vdwScale_[3] = fopts.getvdw14scale(); |
| 349 |
|
| 350 |
electrostaticScale_[0] = 1.0; |
| 351 |
electrostaticScale_[1] = fopts.getelectrostatic12scale(); |
| 352 |
electrostaticScale_[2] = fopts.getelectrostatic13scale(); |
| 353 |
electrostaticScale_[3] = fopts.getelectrostatic14scale(); |
| 354 |
|
| 355 |
fDecomp_->distributeInitialData(); |
| 356 |
|
| 357 |
initialized_ = true; |
| 358 |
|
| 359 |
} |
| 360 |
|
| 361 |
void ForceManager::calcForces() { |
| 362 |
|
| 363 |
if (!initialized_) |
| 364 |
initialize(); |
| 365 |
|
| 366 |
preCalculation(); |
| 367 |
shortRangeInteractions(); |
| 368 |
// longRangeInteractions(); |
| 369 |
// longRangeInteractionsRapaport(); |
| 370 |
longRangeInteractionsParallel(); |
| 371 |
postCalculation(); |
| 372 |
} |
| 373 |
|
| 374 |
void ForceManager::preCalculation() { |
| 375 |
SimInfo::MoleculeIterator mi; |
| 376 |
Molecule* mol; |
| 377 |
Molecule::AtomIterator ai; |
| 378 |
Atom* atom; |
| 379 |
Molecule::RigidBodyIterator rbIter; |
| 380 |
RigidBody* rb; |
| 381 |
Molecule::CutoffGroupIterator ci; |
| 382 |
CutoffGroup* cg; |
| 383 |
|
| 384 |
// forces are zeroed here, before any are accumulated. |
| 385 |
|
| 386 |
for (mol = info_->beginMolecule(mi); mol != NULL; mol = info_->nextMolecule(mi)) |
| 387 |
{ |
| 388 |
for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) |
| 389 |
{ |
| 390 |
atom->zeroForcesAndTorques(); |
| 391 |
} |
| 392 |
|
| 393 |
//change the positions of atoms which belong to the rigidbodies |
| 394 |
for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) |
| 395 |
{ |
| 396 |
rb->zeroForcesAndTorques(); |
| 397 |
} |
| 398 |
|
| 399 |
if (info_->getNGlobalCutoffGroups() != info_->getNGlobalAtoms()) |
| 400 |
{ |
| 401 |
for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) |
| 402 |
{ |
| 403 |
//calculate the center of mass of cutoff group |
| 404 |
cg->updateCOM(); |
| 405 |
} |
| 406 |
} |
| 407 |
} |
| 408 |
|
| 409 |
// Zero out the stress tensor |
| 410 |
tau *= 0.0; |
| 411 |
|
| 412 |
} |
| 413 |
|
| 414 |
void ForceManager::shortRangeInteractions() { |
| 415 |
Molecule* mol; |
| 416 |
RigidBody* rb; |
| 417 |
Bond* bond; |
| 418 |
Bend* bend; |
| 419 |
Torsion* torsion; |
| 420 |
Inversion* inversion; |
| 421 |
SimInfo::MoleculeIterator mi; |
| 422 |
Molecule::RigidBodyIterator rbIter; |
| 423 |
Molecule::BondIterator bondIter; |
| 424 |
; |
| 425 |
Molecule::BendIterator bendIter; |
| 426 |
Molecule::TorsionIterator torsionIter; |
| 427 |
Molecule::InversionIterator inversionIter; |
| 428 |
RealType bondPotential = 0.0; |
| 429 |
RealType bendPotential = 0.0; |
| 430 |
RealType torsionPotential = 0.0; |
| 431 |
RealType inversionPotential = 0.0; |
| 432 |
|
| 433 |
//calculate short range interactions |
| 434 |
for (mol = info_->beginMolecule(mi); mol != NULL; mol = info_->nextMolecule(mi)) |
| 435 |
{ |
| 436 |
|
| 437 |
//change the positions of atoms which belong to the rigidbodies |
| 438 |
for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) |
| 439 |
{ |
| 440 |
rb->updateAtoms(); |
| 441 |
} |
| 442 |
|
| 443 |
for (bond = mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) |
| 444 |
{ |
| 445 |
bond->calcForce(); |
| 446 |
bondPotential += bond->getPotential(); |
| 447 |
} |
| 448 |
|
| 449 |
for (bend = mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) |
| 450 |
{ |
| 451 |
|
| 452 |
RealType angle; |
| 453 |
bend->calcForce(angle); |
| 454 |
RealType currBendPot = bend->getPotential(); |
| 455 |
|
| 456 |
bendPotential += bend->getPotential(); |
| 457 |
map<Bend*, BendDataSet>::iterator i = bendDataSets.find(bend); |
| 458 |
if (i == bendDataSets.end()) |
| 459 |
{ |
| 460 |
BendDataSet dataSet; |
| 461 |
dataSet.prev.angle = dataSet.curr.angle = angle; |
| 462 |
dataSet.prev.potential = dataSet.curr.potential = currBendPot; |
| 463 |
dataSet.deltaV = 0.0; |
| 464 |
bendDataSets.insert(map<Bend*, BendDataSet>::value_type(bend, dataSet)); |
| 465 |
} else |
| 466 |
{ |
| 467 |
i->second.prev.angle = i->second.curr.angle; |
| 468 |
i->second.prev.potential = i->second.curr.potential; |
| 469 |
i->second.curr.angle = angle; |
| 470 |
i->second.curr.potential = currBendPot; |
| 471 |
i->second.deltaV = fabs(i->second.curr.potential - i->second.prev.potential); |
| 472 |
} |
| 473 |
} |
| 474 |
|
| 475 |
for (torsion = mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) |
| 476 |
{ |
| 477 |
RealType angle; |
| 478 |
torsion->calcForce(angle); |
| 479 |
RealType currTorsionPot = torsion->getPotential(); |
| 480 |
torsionPotential += torsion->getPotential(); |
| 481 |
map<Torsion*, TorsionDataSet>::iterator i = torsionDataSets.find(torsion); |
| 482 |
if (i == torsionDataSets.end()) |
| 483 |
{ |
| 484 |
TorsionDataSet dataSet; |
| 485 |
dataSet.prev.angle = dataSet.curr.angle = angle; |
| 486 |
dataSet.prev.potential = dataSet.curr.potential = currTorsionPot; |
| 487 |
dataSet.deltaV = 0.0; |
| 488 |
torsionDataSets.insert(map<Torsion*, TorsionDataSet>::value_type(torsion, dataSet)); |
| 489 |
} else |
| 490 |
{ |
| 491 |
i->second.prev.angle = i->second.curr.angle; |
| 492 |
i->second.prev.potential = i->second.curr.potential; |
| 493 |
i->second.curr.angle = angle; |
| 494 |
i->second.curr.potential = currTorsionPot; |
| 495 |
i->second.deltaV = fabs(i->second.curr.potential - i->second.prev.potential); |
| 496 |
} |
| 497 |
} |
| 498 |
|
| 499 |
for (inversion = mol->beginInversion(inversionIter); inversion != NULL; inversion = mol->nextInversion( |
| 500 |
inversionIter)) |
| 501 |
{ |
| 502 |
RealType angle; |
| 503 |
inversion->calcForce(angle); |
| 504 |
RealType currInversionPot = inversion->getPotential(); |
| 505 |
inversionPotential += inversion->getPotential(); |
| 506 |
map<Inversion*, InversionDataSet>::iterator i = inversionDataSets.find(inversion); |
| 507 |
if (i == inversionDataSets.end()) |
| 508 |
{ |
| 509 |
InversionDataSet dataSet; |
| 510 |
dataSet.prev.angle = dataSet.curr.angle = angle; |
| 511 |
dataSet.prev.potential = dataSet.curr.potential = currInversionPot; |
| 512 |
dataSet.deltaV = 0.0; |
| 513 |
inversionDataSets.insert(map<Inversion*, InversionDataSet>::value_type(inversion, dataSet)); |
| 514 |
} else |
| 515 |
{ |
| 516 |
i->second.prev.angle = i->second.curr.angle; |
| 517 |
i->second.prev.potential = i->second.curr.potential; |
| 518 |
i->second.curr.angle = angle; |
| 519 |
i->second.curr.potential = currInversionPot; |
| 520 |
i->second.deltaV = fabs(i->second.curr.potential - i->second.prev.potential); |
| 521 |
} |
| 522 |
} |
| 523 |
} |
| 524 |
|
| 525 |
RealType shortRangePotential = bondPotential + bendPotential + torsionPotential + inversionPotential; |
| 526 |
Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); |
| 527 |
curSnapshot->statData[Stats::SHORT_RANGE_POTENTIAL] = shortRangePotential; |
| 528 |
curSnapshot->statData[Stats::BOND_POTENTIAL] = bondPotential; |
| 529 |
curSnapshot->statData[Stats::BEND_POTENTIAL] = bendPotential; |
| 530 |
curSnapshot->statData[Stats::DIHEDRAL_POTENTIAL] = torsionPotential; |
| 531 |
curSnapshot->statData[Stats::INVERSION_POTENTIAL] = inversionPotential; |
| 532 |
} |
| 533 |
|
| 534 |
void ForceManager::longRangeInteractionsParallel() { |
| 535 |
|
| 536 |
Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); |
| 537 |
DataStorage* config = &(curSnapshot->atomData); |
| 538 |
DataStorage* cgConfig = &(curSnapshot->cgData); |
| 539 |
|
| 540 |
//calculate the center of mass of cutoff group |
| 541 |
|
| 542 |
SimInfo::MoleculeIterator mi; |
| 543 |
Molecule* mol; |
| 544 |
Molecule::CutoffGroupIterator ci; |
| 545 |
CutoffGroup* cg; |
| 546 |
|
| 547 |
if (info_->getNCutoffGroups() > 0) |
| 548 |
{ |
| 549 |
for (mol = info_->beginMolecule(mi); mol != NULL; mol = info_->nextMolecule(mi)) |
| 550 |
{ |
| 551 |
for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) |
| 552 |
{ |
| 553 |
// cerr << "branch1\n"; |
| 554 |
// cerr << "globind = " << cg->getGlobalIndex() << ":" << __LINE__ << "\n"; |
| 555 |
cg->updateCOM(); |
| 556 |
|
| 557 |
// cerr << "gbI: " << cg->getGlobalIndex() << " locI: " << cg->getLocalIndex() << " x: " |
| 558 |
// << cgConfig->position[cg->getLocalIndex()].x() << " y: " << cgConfig->position[cg->getLocalIndex()].y() |
| 559 |
// << " z: " << cgConfig->position[cg->getLocalIndex()].z() << "\n"; |
| 560 |
} |
| 561 |
} |
| 562 |
} else |
| 563 |
{ |
| 564 |
// center of mass of the group is the same as position of the atom |
| 565 |
// if cutoff group does not exist |
| 566 |
// cerr << ":" << __LINE__ << "branch2\n"; |
| 567 |
cgConfig->position = config->position; |
| 568 |
} |
| 569 |
|
| 570 |
fDecomp_->zeroWorkArrays(); |
| 571 |
fDecomp_->distributeData(); |
| 572 |
|
| 573 |
int atom1, atom2, topoDist; |
| 574 |
Vector3d d_grp, dag, d; |
| 575 |
RealType rgrpsq, rgrp, r2, r; |
| 576 |
RealType electroMult, vdwMult; |
| 577 |
RealType vij; |
| 578 |
Vector3d fij, fg, f1; |
| 579 |
tuple3<RealType, RealType, RealType> cuts; |
| 580 |
RealType rCutSq; |
| 581 |
bool in_switching_region; |
| 582 |
RealType sw, dswdr, swderiv; |
| 583 |
vector<int> atomListColumn, atomListRow, atomListLocal; |
| 584 |
|
| 585 |
InteractionDataPrv idatPrv; |
| 586 |
|
| 587 |
SelfData sdat; |
| 588 |
RealType mf; |
| 589 |
RealType lrPot; |
| 590 |
RealType vpair; |
| 591 |
potVec longRangePotential(0.0); |
| 592 |
potVec workPot(0.0); |
| 593 |
|
| 594 |
int loopStart, loopEnd; |
| 595 |
sdat.pot = fDecomp_->getEmbeddingPotential(); |
| 596 |
|
| 597 |
vector<CutoffGroup *> cgs; |
| 598 |
|
| 599 |
for (mol = info_->beginMolecule(mi); mol != NULL; mol = info_->nextMolecule(mi)) |
| 600 |
{ |
| 601 |
for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) |
| 602 |
{ |
| 603 |
cgs.push_back(cg); |
| 604 |
} |
| 605 |
} |
| 606 |
|
| 607 |
loopEnd = PAIR_LOOP; |
| 608 |
if (info_->requiresPrepair()) |
| 609 |
{ |
| 610 |
loopStart = PREPAIR_LOOP; |
| 611 |
} else |
| 612 |
{ |
| 613 |
loopStart = PAIR_LOOP; |
| 614 |
} |
| 615 |
|
| 616 |
for (int iLoop = loopStart; iLoop <= loopEnd; iLoop++) |
| 617 |
{ |
| 618 |
|
| 619 |
if (iLoop == loopStart) |
| 620 |
{ |
| 621 |
bool update_nlist = fDecomp_->checkNeighborList(); |
| 622 |
if (update_nlist) |
| 623 |
neighborMatW = fDecomp_->buildLayerBasedNeighborList(); |
| 624 |
} |
| 625 |
|
| 626 |
vector<CutoffGroup *>::iterator cg1; |
| 627 |
vector<CutoffGroup *>::iterator cg2; |
| 628 |
|
| 629 |
// int nThreads = 2; |
| 630 |
int chunkSize = cgs.size() / (omp_get_num_threads() * 20); |
| 631 |
|
| 632 |
// printf("before omp loop\n"); |
| 633 |
#pragma omp parallel /*num_threads(nThreads)*/ default(none) shared(curSnapshot, iLoop, cgs, chunkSize) \ |
| 634 |
private(cg1, cg2, cuts, d_grp, rgrpsq, rCutSq, idatPrv, vij, fij, in_switching_region, dswdr, rgrp, \ |
| 635 |
atomListRow, atomListColumn, atom1, atom2, topoDist, d, r2, swderiv, fg, mf, dag) |
| 636 |
{ |
| 637 |
idatPrv.shiftedPot = (cutoffMethod_ == SHIFTED_POTENTIAL) ? true : false; |
| 638 |
idatPrv.shiftedForce = (cutoffMethod_ == SHIFTED_FORCE) ? true : false; |
| 639 |
|
| 640 |
// printf("Thread %d\n", omp_get_thread_num()); |
| 641 |
#pragma omp for schedule(dynamic, chunkSize) |
| 642 |
for (cg1 = cgs.begin(); cg1 < cgs.end(); ++cg1) |
| 643 |
{ |
| 644 |
for (cg2 = neighborMatW[(*cg1)->getGlobalIndex()].begin(); cg2 < neighborMatW[(*cg1)->getGlobalIndex()].end(); ++cg2) |
| 645 |
{ |
| 646 |
|
| 647 |
cuts = fDecomp_->getGroupCutoffs((*cg1)->getGlobalIndex(), (*cg2)->getGlobalIndex()); |
| 648 |
|
| 649 |
d_grp = fDecomp_->getIntergroupVector((*cg1), (*cg2)); |
| 650 |
curSnapshot->wrapVector(d_grp); |
| 651 |
rgrpsq = d_grp.lengthSquare(); |
| 652 |
|
| 653 |
rCutSq = cuts.second; |
| 654 |
|
| 655 |
// printf("Thread %d\tcg1:%d\tcg2:%d d_grp\tx:%f\ty:%f\tz:%f\trgrpsq:%f\n", omp_get_thread_num(), (*cg1)->getGlobalIndex(), (*cg2)->getGlobalIndex(), d_grp.x(), d_grp.y(), d_grp.z(), rgrpsq); |
| 656 |
|
| 657 |
if (rgrpsq < rCutSq) |
| 658 |
{ |
| 659 |
idatPrv.rcut = cuts.first; |
| 660 |
if (iLoop == PAIR_LOOP) |
| 661 |
{ |
| 662 |
vij = 0.0; |
| 663 |
fij = V3Zero; |
| 664 |
} |
| 665 |
|
| 666 |
in_switching_region = switcher_->getSwitch(rgrpsq, /*sw*/idatPrv.sw, dswdr, rgrp); |
| 667 |
|
| 668 |
// printf("in_switching_region:%d\trgrpsq:%f\t*idatPrv.sw:%f\tdswdr:%f\trgrp:%f\n", (in_switching_region == false ? 0 : 1), rgrpsq, idatPrv.sw, dswdr, rgrp); |
| 669 |
|
| 670 |
atomListRow = fDecomp_->getAtomsInGroupRow((*cg1)->getGlobalIndex()); |
| 671 |
atomListColumn = fDecomp_->getAtomsInGroupColumn((*cg2)->getGlobalIndex()); |
| 672 |
|
| 673 |
for (vector<int>::iterator ia = atomListRow.begin(); ia != atomListRow.end(); ++ia) |
| 674 |
{ |
| 675 |
atom1 = (*ia); |
| 676 |
|
| 677 |
for (vector<int>::iterator jb = atomListColumn.begin(); jb != atomListColumn.end(); ++jb) |
| 678 |
{ |
| 679 |
atom2 = (*jb); |
| 680 |
|
| 681 |
// printf("atom1:%d atom2:%d\n", atom1, atom2); |
| 682 |
if (!fDecomp_->skipAtomPair(atom1, atom2)) |
| 683 |
{ |
| 684 |
idatPrv.vpair = 0.0; |
| 685 |
idatPrv.pot = 0.0; |
| 686 |
idatPrv.f1 = V3Zero; |
| 687 |
|
| 688 |
fDecomp_->fillInteractionDataOMP(idatPrv, atom1, atom2); |
| 689 |
|
| 690 |
topoDist = fDecomp_->getTopologicalDistance(atom1, atom2); |
| 691 |
idatPrv.vdwMult = vdwScale_[topoDist]; |
| 692 |
idatPrv.electroMult = electrostaticScale_[topoDist]; |
| 693 |
|
| 694 |
// printf("topoDist:%d\tidatPrv.vdwMult:%f\tidatPrv.electroMult:%f\n", topoDist, idatPrv.vdwMult, idatPrv.electroMult); |
| 695 |
|
| 696 |
if (atomListRow.size() == 1 && atomListColumn.size() == 1) |
| 697 |
{ |
| 698 |
idatPrv.d = d_grp; |
| 699 |
idatPrv.r2 = rgrpsq; |
| 700 |
// cerr << "dgrp = " << d_grp << ":" << __LINE__ << "\n"; |
| 701 |
} else |
| 702 |
{ |
| 703 |
d = fDecomp_->getInteratomicVector(atom1, atom2); |
| 704 |
curSnapshot->wrapVector(d); |
| 705 |
r2 = d.lengthSquare(); |
| 706 |
// cerr << "datm = " << d << ":" << __LINE__ << "\n"; |
| 707 |
idatPrv.d = d; |
| 708 |
idatPrv.r2 = r2; |
| 709 |
} |
| 710 |
|
| 711 |
// printf("idatPrv.d x:%f\ty:%f\tz:%f\tidatPrv.r2:%f\n", (idatPrv.d).x(), (idatPrv.d).y(), (idatPrv.d).z(), idatPrv.r2); |
| 712 |
|
| 713 |
// cerr << "idat.d = " << *(idat.d) << ":" << __LINE__ << "\n"; |
| 714 |
idatPrv.rij = sqrt((idatPrv.r2)); |
| 715 |
// cerr << "idat.rij = " << *(idat.rij) << "\n"; |
| 716 |
|
| 717 |
#pragma omp critical |
| 718 |
{ |
| 719 |
interactionMan_->initializeOMP(); |
| 720 |
} |
| 721 |
|
| 722 |
if (iLoop == PREPAIR_LOOP) |
| 723 |
{ |
| 724 |
interactionMan_->doPrePairOMP(idatPrv); |
| 725 |
} else |
| 726 |
{ |
| 727 |
interactionMan_->doPairOMP(idatPrv); |
| 728 |
fDecomp_->unpackInteractionDataOMP(idatPrv, atom1, atom2); |
| 729 |
|
| 730 |
// cerr << "d = " << *(idat.d) << "\tv=" << vpair << "\tf=" << f1 << ":" << __LINE__ << "\n"; |
| 731 |
// printf("d x:%f y:%f z:%f vpair:%f f1 x:%f y:%f z:%f\n", idatPrv.d.x(), idatPrv.d.y(), idatPrv.d.z(), idatPrv.vpair, idatPrv.f1.x(), idatPrv.f1.y(), idatPrv.f1.z()); |
| 732 |
#pragma omp critical |
| 733 |
{ |
| 734 |
vij += idatPrv.vpair; |
| 735 |
fij += idatPrv.f1; |
| 736 |
tau -= outProduct(idatPrv.d, idatPrv.f1); |
| 737 |
|
| 738 |
// printf("vij:%f fij x:%f y:%f z:%f\n", vij, fij.x(), fij.y(), fij.z()); |
| 739 |
} |
| 740 |
} |
| 741 |
} |
| 742 |
} |
| 743 |
} |
| 744 |
|
| 745 |
if (iLoop == PAIR_LOOP) |
| 746 |
{ |
| 747 |
if (in_switching_region) |
| 748 |
{ |
| 749 |
swderiv = vij * dswdr / rgrp; |
| 750 |
fg = swderiv * d_grp; |
| 751 |
fij += fg; |
| 752 |
|
| 753 |
if (atomListRow.size() == 1 && atomListColumn.size() == 1) |
| 754 |
{ |
| 755 |
#pragma omp critical |
| 756 |
{ |
| 757 |
tau -= outProduct(idatPrv.d, fg); |
| 758 |
} |
| 759 |
} |
| 760 |
|
| 761 |
for (vector<int>::iterator ia = atomListRow.begin(); ia != atomListRow.end(); ++ia) |
| 762 |
{ |
| 763 |
atom1 = (*ia); |
| 764 |
mf = fDecomp_->getMassFactorRow(atom1); |
| 765 |
// fg is the force on atom ia due to cutoff group's |
| 766 |
// presence in switching region |
| 767 |
fg = swderiv * d_grp * mf; |
| 768 |
fDecomp_->addForceToAtomRowOMP(atom1, fg); |
| 769 |
|
| 770 |
if (atomListRow.size() > 1) |
| 771 |
{ |
| 772 |
if (info_->usesAtomicVirial()) |
| 773 |
{ |
| 774 |
// find the distance between the atom |
| 775 |
// and the center of the cutoff group: |
| 776 |
dag = fDecomp_->getAtomToGroupVectorRow(atom1, (*cg1)->getGlobalIndex()); |
| 777 |
#pragma omp critical |
| 778 |
{ |
| 779 |
tau -= outProduct(dag, fg); |
| 780 |
} |
| 781 |
} |
| 782 |
} |
| 783 |
} |
| 784 |
for (vector<int>::iterator jb = atomListColumn.begin(); jb != atomListColumn.end(); ++jb) |
| 785 |
{ |
| 786 |
atom2 = (*jb); |
| 787 |
mf = fDecomp_->getMassFactorColumn(atom2); |
| 788 |
// fg is the force on atom jb due to cutoff group's |
| 789 |
// presence in switching region |
| 790 |
fg = -swderiv * d_grp * mf; |
| 791 |
fDecomp_->addForceToAtomColumn(atom2, fg); |
| 792 |
|
| 793 |
if (atomListColumn.size() > 1) |
| 794 |
{ |
| 795 |
if (info_->usesAtomicVirial()) |
| 796 |
{ |
| 797 |
// find the distance between the atom |
| 798 |
// and the center of the cutoff group: |
| 799 |
dag = fDecomp_->getAtomToGroupVectorColumn(atom2, (*cg2)->getGlobalIndex()); |
| 800 |
#pragma omp critical |
| 801 |
{ |
| 802 |
tau -= outProduct(dag, fg); |
| 803 |
} |
| 804 |
} |
| 805 |
} |
| 806 |
} |
| 807 |
} |
| 808 |
//if (!SIM_uses_AtomicVirial) { |
| 809 |
// tau -= outProduct(d_grp, fij); |
| 810 |
//} |
| 811 |
} |
| 812 |
} |
| 813 |
} |
| 814 |
}// END: omp for loop |
| 815 |
// printf("after omp loop\n"); |
| 816 |
} |
| 817 |
|
| 818 |
if (iLoop == PREPAIR_LOOP) |
| 819 |
{ |
| 820 |
if (info_->requiresPrepair()) |
| 821 |
{ |
| 822 |
|
| 823 |
fDecomp_->collectIntermediateData(); |
| 824 |
|
| 825 |
for (int atom1 = 0; atom1 < info_->getNAtoms(); atom1++) |
| 826 |
{ |
| 827 |
fDecomp_->fillSelfData(sdat, atom1); |
| 828 |
interactionMan_->doPreForce(sdat); |
| 829 |
} |
| 830 |
|
| 831 |
fDecomp_->distributeIntermediateData(); |
| 832 |
|
| 833 |
} |
| 834 |
} |
| 835 |
} |
| 836 |
|
| 837 |
fDecomp_->collectData(); |
| 838 |
|
| 839 |
if (info_->requiresSelfCorrection()) |
| 840 |
{ |
| 841 |
|
| 842 |
for (int atom1 = 0; atom1 < info_->getNAtoms(); atom1++) |
| 843 |
{ |
| 844 |
fDecomp_->fillSelfData(sdat, atom1); |
| 845 |
interactionMan_->doSelfCorrection(sdat); |
| 846 |
} |
| 847 |
|
| 848 |
} |
| 849 |
|
| 850 |
longRangePotential = *(fDecomp_->getEmbeddingPotential()) + *(fDecomp_->getPairwisePotential()); |
| 851 |
|
| 852 |
lrPot = longRangePotential.sum(); |
| 853 |
|
| 854 |
//store the tau and long range potential |
| 855 |
curSnapshot->statData[Stats::LONG_RANGE_POTENTIAL] = lrPot; |
| 856 |
curSnapshot->statData[Stats::VANDERWAALS_POTENTIAL] = longRangePotential[VANDERWAALS_FAMILY]; |
| 857 |
curSnapshot->statData[Stats::ELECTROSTATIC_POTENTIAL] = longRangePotential[ELECTROSTATIC_FAMILY]; |
| 858 |
} |
| 859 |
|
| 860 |
void ForceManager::longRangeInteractionsRapaport() { |
| 861 |
|
| 862 |
Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); |
| 863 |
DataStorage* config = &(curSnapshot->atomData); |
| 864 |
DataStorage* cgConfig = &(curSnapshot->cgData); |
| 865 |
|
| 866 |
//calculate the center of mass of cutoff group |
| 867 |
|
| 868 |
SimInfo::MoleculeIterator mi; |
| 869 |
Molecule* mol; |
| 870 |
Molecule::CutoffGroupIterator ci; |
| 871 |
CutoffGroup* cg; |
| 872 |
|
| 873 |
if (info_->getNCutoffGroups() > 0) |
| 874 |
{ |
| 875 |
for (mol = info_->beginMolecule(mi); mol != NULL; mol = info_->nextMolecule(mi)) |
| 876 |
{ |
| 877 |
for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) |
| 878 |
{ |
| 879 |
// cerr << "branch1\n"; |
| 880 |
// cerr << "globind = " << cg->getGlobalIndex() << ":" << __LINE__ << "\n"; |
| 881 |
cg->updateCOM(); |
| 882 |
|
| 883 |
// cerr << "gbI: " << cg->getGlobalIndex() << " locI: " << cg->getLocalIndex() << " x: " |
| 884 |
// << cgConfig->position[cg->getLocalIndex()].x() << " y: " << cgConfig->position[cg->getLocalIndex()].y() |
| 885 |
// << " z: " << cgConfig->position[cg->getLocalIndex()].z() << "\n"; |
| 886 |
} |
| 887 |
} |
| 888 |
} else |
| 889 |
{ |
| 890 |
// center of mass of the group is the same as position of the atom |
| 891 |
// if cutoff group does not exist |
| 892 |
// cerr << ":" << __LINE__ << "branch2\n"; |
| 893 |
cgConfig->position = config->position; |
| 894 |
} |
| 895 |
|
| 896 |
fDecomp_->zeroWorkArrays(); |
| 897 |
fDecomp_->distributeData(); |
| 898 |
|
| 899 |
int atom1, atom2, topoDist; |
| 900 |
CutoffGroup *cg1; |
| 901 |
Vector3d d_grp, dag, d; |
| 902 |
RealType rgrpsq, rgrp, r2, r; |
| 903 |
RealType electroMult, vdwMult; |
| 904 |
RealType vij; |
| 905 |
Vector3d fij, fg, f1; |
| 906 |
tuple3<RealType, RealType, RealType> cuts; |
| 907 |
RealType rCutSq; |
| 908 |
bool in_switching_region; |
| 909 |
RealType sw, dswdr, swderiv; |
| 910 |
vector<int> atomListColumn, atomListRow, atomListLocal; |
| 911 |
InteractionData idat; |
| 912 |
SelfData sdat; |
| 913 |
RealType mf; |
| 914 |
RealType lrPot; |
| 915 |
RealType vpair; |
| 916 |
potVec longRangePotential(0.0); |
| 917 |
potVec workPot(0.0); |
| 918 |
|
| 919 |
int loopStart, loopEnd; |
| 920 |
|
| 921 |
idat.vdwMult = &vdwMult; |
| 922 |
idat.electroMult = &electroMult; |
| 923 |
idat.pot = &workPot; |
| 924 |
sdat.pot = fDecomp_->getEmbeddingPotential(); |
| 925 |
idat.vpair = &vpair; |
| 926 |
idat.f1 = &f1; |
| 927 |
idat.sw = &sw; |
| 928 |
idat.shiftedPot = (cutoffMethod_ == SHIFTED_POTENTIAL) ? true : false; |
| 929 |
idat.shiftedForce = (cutoffMethod_ == SHIFTED_FORCE) ? true : false; |
| 930 |
|
| 931 |
loopEnd = PAIR_LOOP; |
| 932 |
if (info_->requiresPrepair()) |
| 933 |
{ |
| 934 |
loopStart = PREPAIR_LOOP; |
| 935 |
} else |
| 936 |
{ |
| 937 |
loopStart = PAIR_LOOP; |
| 938 |
} |
| 939 |
|
| 940 |
for (int iLoop = loopStart; iLoop <= loopEnd; iLoop++) |
| 941 |
{ |
| 942 |
|
| 943 |
if (iLoop == loopStart) |
| 944 |
{ |
| 945 |
bool update_nlist = fDecomp_->checkNeighborList(); |
| 946 |
if (update_nlist) |
| 947 |
neighborMatW = fDecomp_->buildLayerBasedNeighborList(); |
| 948 |
} |
| 949 |
|
| 950 |
for (mol = info_->beginMolecule(mi); mol != NULL; mol = info_->nextMolecule(mi)) |
| 951 |
{ |
| 952 |
for (cg1 = mol->beginCutoffGroup(ci); cg1 != NULL; cg1 = mol->nextCutoffGroup(ci)) |
| 953 |
{ |
| 954 |
// printf("Thread %d executes loop iteration %d\n", omp_get_thread_num(), i); |
| 955 |
for (vector<CutoffGroup *>::iterator cg2 = neighborMatW[cg1->getGlobalIndex()].begin(); cg2 |
| 956 |
!= neighborMatW[cg1->getGlobalIndex()].end(); ++cg2) |
| 957 |
{ |
| 958 |
|
| 959 |
cuts = fDecomp_->getGroupCutoffs(cg1->getGlobalIndex(), (*cg2)->getGlobalIndex()); |
| 960 |
|
| 961 |
d_grp = fDecomp_->getIntergroupVector(cg1, (*cg2)); |
| 962 |
curSnapshot->wrapVector(d_grp); |
| 963 |
rgrpsq = d_grp.lengthSquare(); |
| 964 |
|
| 965 |
rCutSq = cuts.second; |
| 966 |
|
| 967 |
if (rgrpsq < rCutSq) |
| 968 |
{ |
| 969 |
idat.rcut = &cuts.first; |
| 970 |
if (iLoop == PAIR_LOOP) |
| 971 |
{ |
| 972 |
vij = 0.0; |
| 973 |
fij = V3Zero; |
| 974 |
} |
| 975 |
|
| 976 |
in_switching_region = switcher_->getSwitch(rgrpsq, sw, dswdr, rgrp); |
| 977 |
|
| 978 |
atomListRow = fDecomp_->getAtomsInGroupRow(cg1->getGlobalIndex()); |
| 979 |
atomListColumn = fDecomp_->getAtomsInGroupColumn((*cg2)->getGlobalIndex()); |
| 980 |
|
| 981 |
for (vector<int>::iterator ia = atomListRow.begin(); ia != atomListRow.end(); ++ia) |
| 982 |
{ |
| 983 |
atom1 = (*ia); |
| 984 |
|
| 985 |
for (vector<int>::iterator jb = atomListColumn.begin(); jb != atomListColumn.end(); ++jb) |
| 986 |
{ |
| 987 |
atom2 = (*jb); |
| 988 |
|
| 989 |
if (!fDecomp_->skipAtomPair(atom1, atom2)) |
| 990 |
{ |
| 991 |
vpair = 0.0; |
| 992 |
workPot = 0.0; |
| 993 |
f1 = V3Zero; |
| 994 |
|
| 995 |
fDecomp_->fillInteractionData(idat, atom1, atom2); |
| 996 |
|
| 997 |
topoDist = fDecomp_->getTopologicalDistance(atom1, atom2); |
| 998 |
vdwMult = vdwScale_[topoDist]; |
| 999 |
electroMult = electrostaticScale_[topoDist]; |
| 1000 |
|
| 1001 |
if (atomListRow.size() == 1 && atomListColumn.size() == 1) |
| 1002 |
{ |
| 1003 |
idat.d = &d_grp; |
| 1004 |
idat.r2 = &rgrpsq; |
| 1005 |
// cerr << "dgrp = " << d_grp << ":" << __LINE__ << "\n"; |
| 1006 |
} else |
| 1007 |
{ |
| 1008 |
d = fDecomp_->getInteratomicVector(atom1, atom2); |
| 1009 |
curSnapshot->wrapVector(d); |
| 1010 |
r2 = d.lengthSquare(); |
| 1011 |
// cerr << "datm = " << d << ":" << __LINE__ << "\n"; |
| 1012 |
idat.d = &d; |
| 1013 |
idat.r2 = &r2; |
| 1014 |
} |
| 1015 |
|
| 1016 |
// cerr << "idat.d = " << *(idat.d) << ":" << __LINE__ << "\n"; |
| 1017 |
r = sqrt(*(idat.r2)); |
| 1018 |
idat.rij = &r; |
| 1019 |
// cerr << "idat.rij = " << *(idat.rij) << "\n"; |
| 1020 |
|
| 1021 |
if (iLoop == PREPAIR_LOOP) |
| 1022 |
{ |
| 1023 |
interactionMan_->doPrePair(idat); |
| 1024 |
} else |
| 1025 |
{ |
| 1026 |
interactionMan_->doPair(idat); |
| 1027 |
fDecomp_->unpackInteractionData(idat, atom1, atom2); |
| 1028 |
|
| 1029 |
// cerr << "d = " << *(idat.d) << "\tv=" << vpair << "\tf=" << f1 << ":" << __LINE__ << "\n"; |
| 1030 |
vij += vpair; |
| 1031 |
fij += f1; |
| 1032 |
tau -= outProduct(*(idat.d), f1); |
| 1033 |
} |
| 1034 |
} |
| 1035 |
} |
| 1036 |
} |
| 1037 |
|
| 1038 |
if (iLoop == PAIR_LOOP) |
| 1039 |
{ |
| 1040 |
if (in_switching_region) |
| 1041 |
{ |
| 1042 |
swderiv = vij * dswdr / rgrp; |
| 1043 |
fg = swderiv * d_grp; |
| 1044 |
fij += fg; |
| 1045 |
|
| 1046 |
if (atomListRow.size() == 1 && atomListColumn.size() == 1) |
| 1047 |
{ |
| 1048 |
tau -= outProduct(*(idat.d), fg); |
| 1049 |
} |
| 1050 |
|
| 1051 |
for (vector<int>::iterator ia = atomListRow.begin(); ia != atomListRow.end(); ++ia) |
| 1052 |
{ |
| 1053 |
atom1 = (*ia); |
| 1054 |
mf = fDecomp_->getMassFactorRow(atom1); |
| 1055 |
// fg is the force on atom ia due to cutoff group's |
| 1056 |
// presence in switching region |
| 1057 |
fg = swderiv * d_grp * mf; |
| 1058 |
fDecomp_->addForceToAtomRow(atom1, fg); |
| 1059 |
|
| 1060 |
if (atomListRow.size() > 1) |
| 1061 |
{ |
| 1062 |
if (info_->usesAtomicVirial()) |
| 1063 |
{ |
| 1064 |
// find the distance between the atom |
| 1065 |
// and the center of the cutoff group: |
| 1066 |
dag = fDecomp_->getAtomToGroupVectorRow(atom1, cg1->getGlobalIndex()); |
| 1067 |
tau -= outProduct(dag, fg); |
| 1068 |
} |
| 1069 |
} |
| 1070 |
} |
| 1071 |
for (vector<int>::iterator jb = atomListColumn.begin(); jb != atomListColumn.end(); ++jb) |
| 1072 |
{ |
| 1073 |
atom2 = (*jb); |
| 1074 |
mf = fDecomp_->getMassFactorColumn(atom2); |
| 1075 |
// fg is the force on atom jb due to cutoff group's |
| 1076 |
// presence in switching region |
| 1077 |
fg = -swderiv * d_grp * mf; |
| 1078 |
fDecomp_->addForceToAtomColumn(atom2, fg); |
| 1079 |
|
| 1080 |
if (atomListColumn.size() > 1) |
| 1081 |
{ |
| 1082 |
if (info_->usesAtomicVirial()) |
| 1083 |
{ |
| 1084 |
// find the distance between the atom |
| 1085 |
// and the center of the cutoff group: |
| 1086 |
dag = fDecomp_->getAtomToGroupVectorColumn(atom2, (*cg2)->getGlobalIndex()); |
| 1087 |
tau -= outProduct(dag, fg); |
| 1088 |
} |
| 1089 |
} |
| 1090 |
} |
| 1091 |
} |
| 1092 |
//if (!SIM_uses_AtomicVirial) { |
| 1093 |
// tau -= outProduct(d_grp, fij); |
| 1094 |
//} |
| 1095 |
} |
| 1096 |
} |
| 1097 |
} |
| 1098 |
} |
| 1099 |
} |
| 1100 |
|
| 1101 |
if (iLoop == PREPAIR_LOOP) |
| 1102 |
{ |
| 1103 |
if (info_->requiresPrepair()) |
| 1104 |
{ |
| 1105 |
|
| 1106 |
fDecomp_->collectIntermediateData(); |
| 1107 |
|
| 1108 |
for (int atom1 = 0; atom1 < info_->getNAtoms(); atom1++) |
| 1109 |
{ |
| 1110 |
fDecomp_->fillSelfData(sdat, atom1); |
| 1111 |
interactionMan_->doPreForce(sdat); |
| 1112 |
} |
| 1113 |
|
| 1114 |
fDecomp_->distributeIntermediateData(); |
| 1115 |
|
| 1116 |
} |
| 1117 |
} |
| 1118 |
} |
| 1119 |
|
| 1120 |
fDecomp_->collectData(); |
| 1121 |
|
| 1122 |
if (info_->requiresSelfCorrection()) |
| 1123 |
{ |
| 1124 |
|
| 1125 |
for (int atom1 = 0; atom1 < info_->getNAtoms(); atom1++) |
| 1126 |
{ |
| 1127 |
fDecomp_->fillSelfData(sdat, atom1); |
| 1128 |
interactionMan_->doSelfCorrection(sdat); |
| 1129 |
} |
| 1130 |
|
| 1131 |
} |
| 1132 |
|
| 1133 |
longRangePotential = *(fDecomp_->getEmbeddingPotential()) + *(fDecomp_->getPairwisePotential()); |
| 1134 |
|
| 1135 |
lrPot = longRangePotential.sum(); |
| 1136 |
|
| 1137 |
//store the tau and long range potential |
| 1138 |
curSnapshot->statData[Stats::LONG_RANGE_POTENTIAL] = lrPot; |
| 1139 |
curSnapshot->statData[Stats::VANDERWAALS_POTENTIAL] = longRangePotential[VANDERWAALS_FAMILY]; |
| 1140 |
curSnapshot->statData[Stats::ELECTROSTATIC_POTENTIAL] = longRangePotential[ELECTROSTATIC_FAMILY]; |
| 1141 |
} |
| 1142 |
|
| 1143 |
void ForceManager::longRangeInteractions() { |
| 1144 |
|
| 1145 |
Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); |
| 1146 |
DataStorage* config = &(curSnapshot->atomData); |
| 1147 |
DataStorage* cgConfig = &(curSnapshot->cgData); |
| 1148 |
|
| 1149 |
//calculate the center of mass of cutoff group |
| 1150 |
|
| 1151 |
SimInfo::MoleculeIterator mi; |
| 1152 |
Molecule* mol; |
| 1153 |
Molecule::CutoffGroupIterator ci; |
| 1154 |
CutoffGroup* cg; |
| 1155 |
|
| 1156 |
if (info_->getNCutoffGroups() > 0) |
| 1157 |
{ |
| 1158 |
for (mol = info_->beginMolecule(mi); mol != NULL; mol = info_->nextMolecule(mi)) |
| 1159 |
{ |
| 1160 |
for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) |
| 1161 |
{ |
| 1162 |
cerr << "branch1\n"; |
| 1163 |
cerr << "globind = " << cg->getGlobalIndex() << "\n"; |
| 1164 |
cg->updateCOM(); |
| 1165 |
} |
| 1166 |
} |
| 1167 |
} else |
| 1168 |
{ |
| 1169 |
// center of mass of the group is the same as position of the atom |
| 1170 |
// if cutoff group does not exist |
| 1171 |
cerr << "branch2\n"; |
| 1172 |
cgConfig->position = config->position; |
| 1173 |
} |
| 1174 |
|
| 1175 |
fDecomp_->zeroWorkArrays(); |
| 1176 |
fDecomp_->distributeData(); |
| 1177 |
|
| 1178 |
int cg1, cg2, atom1, atom2, topoDist; |
| 1179 |
Vector3d d_grp, dag, d; |
| 1180 |
RealType rgrpsq, rgrp, r2, r; |
| 1181 |
RealType electroMult, vdwMult; |
| 1182 |
RealType vij; |
| 1183 |
Vector3d fij, fg, f1; |
| 1184 |
tuple3<RealType, RealType, RealType> cuts; |
| 1185 |
RealType rCutSq; |
| 1186 |
bool in_switching_region; |
| 1187 |
RealType sw, dswdr, swderiv; |
| 1188 |
vector<int> atomListColumn, atomListRow, atomListLocal; |
| 1189 |
InteractionData idat; |
| 1190 |
SelfData sdat; |
| 1191 |
RealType mf; |
| 1192 |
RealType lrPot; |
| 1193 |
RealType vpair; |
| 1194 |
potVec longRangePotential(0.0); |
| 1195 |
potVec workPot(0.0); |
| 1196 |
|
| 1197 |
int loopStart, loopEnd; |
| 1198 |
|
| 1199 |
idat.vdwMult = &vdwMult; |
| 1200 |
idat.electroMult = &electroMult; |
| 1201 |
idat.pot = &workPot; |
| 1202 |
sdat.pot = fDecomp_->getEmbeddingPotential(); |
| 1203 |
idat.vpair = &vpair; |
| 1204 |
idat.f1 = &f1; |
| 1205 |
idat.sw = &sw; |
| 1206 |
idat.shiftedPot = (cutoffMethod_ == SHIFTED_POTENTIAL) ? true : false; |
| 1207 |
idat.shiftedForce = (cutoffMethod_ == SHIFTED_FORCE) ? true : false; |
| 1208 |
|
| 1209 |
loopEnd = PAIR_LOOP; |
| 1210 |
if (info_->requiresPrepair()) |
| 1211 |
{ |
| 1212 |
loopStart = PREPAIR_LOOP; |
| 1213 |
} else |
| 1214 |
{ |
| 1215 |
loopStart = PAIR_LOOP; |
| 1216 |
} |
| 1217 |
|
| 1218 |
for (int iLoop = loopStart; iLoop <= loopEnd; iLoop++) |
| 1219 |
{ |
| 1220 |
|
| 1221 |
if (iLoop == loopStart) |
| 1222 |
{ |
| 1223 |
bool update_nlist = fDecomp_->checkNeighborList(); |
| 1224 |
if (update_nlist) |
| 1225 |
neighborList = fDecomp_->buildNeighborList(); |
| 1226 |
|
| 1227 |
} |
| 1228 |
|
| 1229 |
for (vector<pair<int, int> >::iterator it = neighborList.begin(); it != neighborList.end(); ++it) |
| 1230 |
{ |
| 1231 |
cg1 = (*it).first; |
| 1232 |
cg2 = (*it).second; |
| 1233 |
|
| 1234 |
cuts = fDecomp_->getGroupCutoffs(cg1, cg2); |
| 1235 |
|
| 1236 |
d_grp = fDecomp_->getIntergroupVector(cg1, cg2); |
| 1237 |
curSnapshot->wrapVector(d_grp); |
| 1238 |
rgrpsq = d_grp.lengthSquare(); |
| 1239 |
|
| 1240 |
rCutSq = cuts.second; |
| 1241 |
|
| 1242 |
if (rgrpsq < rCutSq) |
| 1243 |
{ |
| 1244 |
idat.rcut = &cuts.first; |
| 1245 |
if (iLoop == PAIR_LOOP) |
| 1246 |
{ |
| 1247 |
vij = 0.0; |
| 1248 |
fij = V3Zero; |
| 1249 |
} |
| 1250 |
|
| 1251 |
in_switching_region = switcher_->getSwitch(rgrpsq, sw, dswdr, rgrp); |
| 1252 |
|
| 1253 |
atomListRow = fDecomp_->getAtomsInGroupRow(cg1); |
| 1254 |
atomListColumn = fDecomp_->getAtomsInGroupColumn(cg2); |
| 1255 |
|
| 1256 |
for (vector<int>::iterator ia = atomListRow.begin(); ia != atomListRow.end(); ++ia) |
| 1257 |
{ |
| 1258 |
atom1 = (*ia); |
| 1259 |
|
| 1260 |
for (vector<int>::iterator jb = atomListColumn.begin(); jb != atomListColumn.end(); ++jb) |
| 1261 |
{ |
| 1262 |
atom2 = (*jb); |
| 1263 |
|
| 1264 |
if (!fDecomp_->skipAtomPair(atom1, atom2)) |
| 1265 |
{ |
| 1266 |
vpair = 0.0; |
| 1267 |
workPot = 0.0; |
| 1268 |
f1 = V3Zero; |
| 1269 |
|
| 1270 |
fDecomp_->fillInteractionData(idat, atom1, atom2); |
| 1271 |
|
| 1272 |
topoDist = fDecomp_->getTopologicalDistance(atom1, atom2); |
| 1273 |
vdwMult = vdwScale_[topoDist]; |
| 1274 |
electroMult = electrostaticScale_[topoDist]; |
| 1275 |
|
| 1276 |
if (atomListRow.size() == 1 && atomListColumn.size() == 1) |
| 1277 |
{ |
| 1278 |
idat.d = &d_grp; |
| 1279 |
idat.r2 = &rgrpsq; |
| 1280 |
cerr << "dgrp = " << d_grp << "\n"; |
| 1281 |
} else |
| 1282 |
{ |
| 1283 |
d = fDecomp_->getInteratomicVector(atom1, atom2); |
| 1284 |
curSnapshot->wrapVector(d); |
| 1285 |
r2 = d.lengthSquare(); |
| 1286 |
cerr << "datm = " << d << "\n"; |
| 1287 |
idat.d = &d; |
| 1288 |
idat.r2 = &r2; |
| 1289 |
} |
| 1290 |
|
| 1291 |
cerr << "idat.d = " << *(idat.d) << "\n"; |
| 1292 |
r = sqrt(*(idat.r2)); |
| 1293 |
idat.rij = &r; |
| 1294 |
|
| 1295 |
if (iLoop == PREPAIR_LOOP) |
| 1296 |
{ |
| 1297 |
interactionMan_->doPrePair(idat); |
| 1298 |
} else |
| 1299 |
{ |
| 1300 |
interactionMan_->doPair(idat); |
| 1301 |
fDecomp_->unpackInteractionData(idat, atom1, atom2); |
| 1302 |
|
| 1303 |
cerr << "d = " << *(idat.d) << "\tv=" << vpair << "\tf=" << f1 << "\n"; |
| 1304 |
vij += vpair; |
| 1305 |
fij += f1; |
| 1306 |
tau -= outProduct(*(idat.d), f1); |
| 1307 |
} |
| 1308 |
} |
| 1309 |
} |
| 1310 |
} |
| 1311 |
|
| 1312 |
if (iLoop == PAIR_LOOP) |
| 1313 |
{ |
| 1314 |
if (in_switching_region) |
| 1315 |
{ |
| 1316 |
swderiv = vij * dswdr / rgrp; |
| 1317 |
fg = swderiv * d_grp; |
| 1318 |
fij += fg; |
| 1319 |
|
| 1320 |
if (atomListRow.size() == 1 && atomListColumn.size() == 1) |
| 1321 |
{ |
| 1322 |
tau -= outProduct(*(idat.d), fg); |
| 1323 |
} |
| 1324 |
|
| 1325 |
for (vector<int>::iterator ia = atomListRow.begin(); ia != atomListRow.end(); ++ia) |
| 1326 |
{ |
| 1327 |
atom1 = (*ia); |
| 1328 |
mf = fDecomp_->getMassFactorRow(atom1); |
| 1329 |
// fg is the force on atom ia due to cutoff group's |
| 1330 |
// presence in switching region |
| 1331 |
fg = swderiv * d_grp * mf; |
| 1332 |
fDecomp_->addForceToAtomRow(atom1, fg); |
| 1333 |
|
| 1334 |
if (atomListRow.size() > 1) |
| 1335 |
{ |
| 1336 |
if (info_->usesAtomicVirial()) |
| 1337 |
{ |
| 1338 |
// find the distance between the atom |
| 1339 |
// and the center of the cutoff group: |
| 1340 |
dag = fDecomp_->getAtomToGroupVectorRow(atom1, cg1); |
| 1341 |
tau -= outProduct(dag, fg); |
| 1342 |
} |
| 1343 |
} |
| 1344 |
} |
| 1345 |
for (vector<int>::iterator jb = atomListColumn.begin(); jb != atomListColumn.end(); ++jb) |
| 1346 |
{ |
| 1347 |
atom2 = (*jb); |
| 1348 |
mf = fDecomp_->getMassFactorColumn(atom2); |
| 1349 |
// fg is the force on atom jb due to cutoff group's |
| 1350 |
// presence in switching region |
| 1351 |
fg = -swderiv * d_grp * mf; |
| 1352 |
fDecomp_->addForceToAtomColumn(atom2, fg); |
| 1353 |
|
| 1354 |
if (atomListColumn.size() > 1) |
| 1355 |
{ |
| 1356 |
if (info_->usesAtomicVirial()) |
| 1357 |
{ |
| 1358 |
// find the distance between the atom |
| 1359 |
// and the center of the cutoff group: |
| 1360 |
dag = fDecomp_->getAtomToGroupVectorColumn(atom2, cg2); |
| 1361 |
tau -= outProduct(dag, fg); |
| 1362 |
} |
| 1363 |
} |
| 1364 |
} |
| 1365 |
} |
| 1366 |
//if (!SIM_uses_AtomicVirial) { |
| 1367 |
// tau -= outProduct(d_grp, fij); |
| 1368 |
//} |
| 1369 |
} |
| 1370 |
} |
| 1371 |
} |
| 1372 |
|
| 1373 |
if (iLoop == PREPAIR_LOOP) |
| 1374 |
{ |
| 1375 |
if (info_->requiresPrepair()) |
| 1376 |
{ |
| 1377 |
|
| 1378 |
fDecomp_->collectIntermediateData(); |
| 1379 |
|
| 1380 |
for (int atom1 = 0; atom1 < info_->getNAtoms(); atom1++) |
| 1381 |
{ |
| 1382 |
fDecomp_->fillSelfData(sdat, atom1); |
| 1383 |
interactionMan_->doPreForce(sdat); |
| 1384 |
} |
| 1385 |
|
| 1386 |
fDecomp_->distributeIntermediateData(); |
| 1387 |
|
| 1388 |
} |
| 1389 |
} |
| 1390 |
|
| 1391 |
} |
| 1392 |
|
| 1393 |
fDecomp_->collectData(); |
| 1394 |
|
| 1395 |
if (info_->requiresSelfCorrection()) |
| 1396 |
{ |
| 1397 |
|
| 1398 |
for (int atom1 = 0; atom1 < info_->getNAtoms(); atom1++) |
| 1399 |
{ |
| 1400 |
fDecomp_->fillSelfData(sdat, atom1); |
| 1401 |
interactionMan_->doSelfCorrection(sdat); |
| 1402 |
} |
| 1403 |
|
| 1404 |
} |
| 1405 |
|
| 1406 |
longRangePotential = *(fDecomp_->getEmbeddingPotential()) + *(fDecomp_->getPairwisePotential()); |
| 1407 |
|
| 1408 |
lrPot = longRangePotential.sum(); |
| 1409 |
|
| 1410 |
//store the tau and long range potential |
| 1411 |
curSnapshot->statData[Stats::LONG_RANGE_POTENTIAL] = lrPot; |
| 1412 |
curSnapshot->statData[Stats::VANDERWAALS_POTENTIAL] = longRangePotential[VANDERWAALS_FAMILY]; |
| 1413 |
curSnapshot->statData[Stats::ELECTROSTATIC_POTENTIAL] = longRangePotential[ELECTROSTATIC_FAMILY]; |
| 1414 |
} |
| 1415 |
|
| 1416 |
void ForceManager::postCalculation() { |
| 1417 |
SimInfo::MoleculeIterator mi; |
| 1418 |
Molecule* mol; |
| 1419 |
Molecule::RigidBodyIterator rbIter; |
| 1420 |
RigidBody* rb; |
| 1421 |
Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); |
| 1422 |
|
| 1423 |
// collect the atomic forces onto rigid bodies |
| 1424 |
|
| 1425 |
for (mol = info_->beginMolecule(mi); mol != NULL; mol = info_->nextMolecule(mi)) |
| 1426 |
{ |
| 1427 |
for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) |
| 1428 |
{ |
| 1429 |
Mat3x3d rbTau = rb->calcForcesAndTorquesAndVirial(); |
| 1430 |
tau += rbTau; |
| 1431 |
} |
| 1432 |
} |
| 1433 |
|
| 1434 |
#ifdef IS_MPI |
| 1435 |
Mat3x3d tmpTau(tau); |
| 1436 |
MPI_Allreduce(tmpTau.getArrayPointer(), tau.getArrayPointer(), |
| 1437 |
9, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD); |
| 1438 |
#endif |
| 1439 |
curSnapshot->statData.setTau(tau); |
| 1440 |
} |
| 1441 |
|
| 1442 |
} //end namespace OpenMD |