1 |
/* |
2 |
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
* |
4 |
* The University of Notre Dame grants you ("Licensee") a |
5 |
* non-exclusive, royalty free, license to use, modify and |
6 |
* redistribute this software in source and binary code form, provided |
7 |
* that the following conditions are met: |
8 |
* |
9 |
* 1. Redistributions of source code must retain the above copyright |
10 |
* notice, this list of conditions and the following disclaimer. |
11 |
* |
12 |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
* notice, this list of conditions and the following disclaimer in the |
14 |
* documentation and/or other materials provided with the |
15 |
* distribution. |
16 |
* |
17 |
* This software is provided "AS IS," without a warranty of any |
18 |
* kind. All express or implied conditions, representations and |
19 |
* warranties, including any implied warranty of merchantability, |
20 |
* fitness for a particular purpose or non-infringement, are hereby |
21 |
* excluded. The University of Notre Dame and its licensors shall not |
22 |
* be liable for any damages suffered by licensee as a result of |
23 |
* using, modifying or distributing the software or its |
24 |
* derivatives. In no event will the University of Notre Dame or its |
25 |
* licensors be liable for any lost revenue, profit or data, or for |
26 |
* direct, indirect, special, consequential, incidental or punitive |
27 |
* damages, however caused and regardless of the theory of liability, |
28 |
* arising out of the use of or inability to use software, even if the |
29 |
* University of Notre Dame has been advised of the possibility of |
30 |
* such damages. |
31 |
* |
32 |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
* research, please cite the appropriate papers when you publish your |
34 |
* work. Good starting points are: |
35 |
* |
36 |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 |
* [4] Vardeman & Gezelter, in progress (2009). |
40 |
*/ |
41 |
|
42 |
/** |
43 |
* @file ForceManager.cpp |
44 |
* @author tlin |
45 |
* @date 11/09/2004 |
46 |
* @time 10:39am |
47 |
* @version 1.0 |
48 |
*/ |
49 |
|
50 |
#include "brains/ForceManager.hpp" |
51 |
#include "primitives/Molecule.hpp" |
52 |
#define __OPENMD_C |
53 |
#include "utils/simError.h" |
54 |
#include "primitives/Bond.hpp" |
55 |
#include "primitives/Bend.hpp" |
56 |
#include "primitives/Torsion.hpp" |
57 |
#include "primitives/Inversion.hpp" |
58 |
#include "nonbonded/NonBondedInteraction.hpp" |
59 |
#include "parallel/ForceMatrixDecomposition.hpp" |
60 |
|
61 |
#include <cstdio> |
62 |
#include <iostream> |
63 |
#include <iomanip> |
64 |
|
65 |
#include <omp.h> |
66 |
|
67 |
using namespace std; |
68 |
namespace OpenMD { |
69 |
|
70 |
ForceManager::ForceManager(SimInfo * info) : |
71 |
info_(info) { |
72 |
forceField_ = info_->getForceField(); |
73 |
interactionMan_ = new InteractionManager(); |
74 |
fDecomp_ = new ForceMatrixDecomposition(info_, interactionMan_); |
75 |
} |
76 |
|
77 |
/** |
78 |
* setupCutoffs |
79 |
* |
80 |
* Sets the values of cutoffRadius, switchingRadius, cutoffMethod, |
81 |
* and cutoffPolicy |
82 |
* |
83 |
* cutoffRadius : realType |
84 |
* If the cutoffRadius was explicitly set, use that value. |
85 |
* If the cutoffRadius was not explicitly set: |
86 |
* Are there electrostatic atoms? Use 12.0 Angstroms. |
87 |
* No electrostatic atoms? Poll the atom types present in the |
88 |
* simulation for suggested cutoff values (e.g. 2.5 * sigma). |
89 |
* Use the maximum suggested value that was found. |
90 |
* |
91 |
* cutoffMethod : (one of HARD, SWITCHED, SHIFTED_FORCE, |
92 |
* or SHIFTED_POTENTIAL) |
93 |
* If cutoffMethod was explicitly set, use that choice. |
94 |
* If cutoffMethod was not explicitly set, use SHIFTED_FORCE |
95 |
* |
96 |
* cutoffPolicy : (one of MIX, MAX, TRADITIONAL) |
97 |
* If cutoffPolicy was explicitly set, use that choice. |
98 |
* If cutoffPolicy was not explicitly set, use TRADITIONAL |
99 |
* |
100 |
* switchingRadius : realType |
101 |
* If the cutoffMethod was set to SWITCHED: |
102 |
* If the switchingRadius was explicitly set, use that value |
103 |
* (but do a sanity check first). |
104 |
* If the switchingRadius was not explicitly set: use 0.85 * |
105 |
* cutoffRadius_ |
106 |
* If the cutoffMethod was not set to SWITCHED: |
107 |
* Set switchingRadius equal to cutoffRadius for safety. |
108 |
*/ |
109 |
void ForceManager::setupCutoffs() { |
110 |
|
111 |
Globals* simParams_ = info_->getSimParams(); |
112 |
ForceFieldOptions& forceFieldOptions_ = forceField_->getForceFieldOptions(); |
113 |
|
114 |
if (simParams_->haveCutoffRadius()) |
115 |
{ |
116 |
rCut_ = simParams_->getCutoffRadius(); |
117 |
} else |
118 |
{ |
119 |
if (info_->usesElectrostaticAtoms()) |
120 |
{ |
121 |
sprintf(painCave.errMsg, "ForceManager::setupCutoffs: No value was set for the cutoffRadius.\n" |
122 |
"\tOpenMD will use a default value of 12.0 angstroms" |
123 |
"\tfor the cutoffRadius.\n"); |
124 |
painCave.isFatal = 0; |
125 |
painCave.severity = OPENMD_INFO; |
126 |
simError(); |
127 |
rCut_ = 12.0; |
128 |
} else |
129 |
{ |
130 |
RealType thisCut; |
131 |
set<AtomType*>::iterator i; |
132 |
set<AtomType*> atomTypes; |
133 |
atomTypes = info_->getSimulatedAtomTypes(); |
134 |
for (i = atomTypes.begin(); i != atomTypes.end(); ++i) |
135 |
{ |
136 |
thisCut = interactionMan_->getSuggestedCutoffRadius((*i)); |
137 |
rCut_ = max(thisCut, rCut_); |
138 |
} |
139 |
sprintf(painCave.errMsg, "ForceManager::setupCutoffs: No value was set for the cutoffRadius.\n" |
140 |
"\tOpenMD will use %lf angstroms.\n", rCut_); |
141 |
painCave.isFatal = 0; |
142 |
painCave.severity = OPENMD_INFO; |
143 |
simError(); |
144 |
} |
145 |
} |
146 |
|
147 |
fDecomp_->setUserCutoff(rCut_); |
148 |
interactionMan_->setCutoffRadius(rCut_); |
149 |
|
150 |
map<string, CutoffMethod> stringToCutoffMethod; |
151 |
stringToCutoffMethod["HARD"] = HARD; |
152 |
stringToCutoffMethod["SWITCHED"] = SWITCHED; |
153 |
stringToCutoffMethod["SHIFTED_POTENTIAL"] = SHIFTED_POTENTIAL; |
154 |
stringToCutoffMethod["SHIFTED_FORCE"] = SHIFTED_FORCE; |
155 |
|
156 |
if (simParams_->haveCutoffMethod()) |
157 |
{ |
158 |
string cutMeth = toUpperCopy(simParams_->getCutoffMethod()); |
159 |
map<string, CutoffMethod>::iterator i; |
160 |
i = stringToCutoffMethod.find(cutMeth); |
161 |
if (i == stringToCutoffMethod.end()) |
162 |
{ |
163 |
sprintf(painCave.errMsg, "ForceManager::setupCutoffs: Could not find chosen cutoffMethod %s\n" |
164 |
"\tShould be one of: " |
165 |
"HARD, SWITCHED, SHIFTED_POTENTIAL, or SHIFTED_FORCE\n", cutMeth.c_str()); |
166 |
painCave.isFatal = 1; |
167 |
painCave.severity = OPENMD_ERROR; |
168 |
simError(); |
169 |
} else |
170 |
{ |
171 |
cutoffMethod_ = i->second; |
172 |
} |
173 |
} else |
174 |
{ |
175 |
sprintf(painCave.errMsg, "ForceManager::setupCutoffs: No value was set for the cutoffMethod.\n" |
176 |
"\tOpenMD will use SHIFTED_FORCE.\n"); |
177 |
painCave.isFatal = 0; |
178 |
painCave.severity = OPENMD_INFO; |
179 |
simError(); |
180 |
cutoffMethod_ = SHIFTED_FORCE; |
181 |
} |
182 |
|
183 |
map<string, CutoffPolicy> stringToCutoffPolicy; |
184 |
stringToCutoffPolicy["MIX"] = MIX; |
185 |
stringToCutoffPolicy["MAX"] = MAX; |
186 |
stringToCutoffPolicy["TRADITIONAL"] = TRADITIONAL; |
187 |
|
188 |
std::string cutPolicy; |
189 |
if (forceFieldOptions_.haveCutoffPolicy()) |
190 |
{ |
191 |
cutPolicy = forceFieldOptions_.getCutoffPolicy(); |
192 |
} else if (simParams_->haveCutoffPolicy()) |
193 |
{ |
194 |
cutPolicy = simParams_->getCutoffPolicy(); |
195 |
} |
196 |
|
197 |
if (!cutPolicy.empty()) |
198 |
{ |
199 |
toUpper(cutPolicy); |
200 |
map<string, CutoffPolicy>::iterator i; |
201 |
i = stringToCutoffPolicy.find(cutPolicy); |
202 |
|
203 |
if (i == stringToCutoffPolicy.end()) |
204 |
{ |
205 |
sprintf(painCave.errMsg, "ForceManager::setupCutoffs: Could not find chosen cutoffPolicy %s\n" |
206 |
"\tShould be one of: " |
207 |
"MIX, MAX, or TRADITIONAL\n", cutPolicy.c_str()); |
208 |
painCave.isFatal = 1; |
209 |
painCave.severity = OPENMD_ERROR; |
210 |
simError(); |
211 |
} else |
212 |
{ |
213 |
cutoffPolicy_ = i->second; |
214 |
} |
215 |
} else |
216 |
{ |
217 |
sprintf(painCave.errMsg, "ForceManager::setupCutoffs: No value was set for the cutoffPolicy.\n" |
218 |
"\tOpenMD will use TRADITIONAL.\n"); |
219 |
painCave.isFatal = 0; |
220 |
painCave.severity = OPENMD_INFO; |
221 |
simError(); |
222 |
cutoffPolicy_ = TRADITIONAL; |
223 |
} |
224 |
|
225 |
fDecomp_->setCutoffPolicy(cutoffPolicy_); |
226 |
|
227 |
// create the switching function object: |
228 |
|
229 |
switcher_ = new SwitchingFunction(); |
230 |
|
231 |
if (cutoffMethod_ == SWITCHED) |
232 |
{ |
233 |
if (simParams_->haveSwitchingRadius()) |
234 |
{ |
235 |
rSwitch_ = simParams_->getSwitchingRadius(); |
236 |
if (rSwitch_ > rCut_) |
237 |
{ |
238 |
sprintf(painCave.errMsg, "ForceManager::setupCutoffs: switchingRadius (%f) is larger " |
239 |
"than the cutoffRadius(%f)\n", rSwitch_, rCut_); |
240 |
painCave.isFatal = 1; |
241 |
painCave.severity = OPENMD_ERROR; |
242 |
simError(); |
243 |
} |
244 |
} else |
245 |
{ |
246 |
rSwitch_ = 0.85 * rCut_; |
247 |
sprintf(painCave.errMsg, "ForceManager::setupCutoffs: No value was set for the switchingRadius.\n" |
248 |
"\tOpenMD will use a default value of 85 percent of the cutoffRadius.\n" |
249 |
"\tswitchingRadius = %f. for this simulation\n", rSwitch_); |
250 |
painCave.isFatal = 0; |
251 |
painCave.severity = OPENMD_WARNING; |
252 |
simError(); |
253 |
} |
254 |
} else |
255 |
{ |
256 |
if (simParams_->haveSwitchingRadius()) |
257 |
{ |
258 |
map<string, CutoffMethod>::const_iterator it; |
259 |
string theMeth; |
260 |
for (it = stringToCutoffMethod.begin(); it != stringToCutoffMethod.end(); ++it) |
261 |
{ |
262 |
if (it->second == cutoffMethod_) |
263 |
{ |
264 |
theMeth = it->first; |
265 |
break; |
266 |
} |
267 |
} |
268 |
sprintf(painCave.errMsg, "ForceManager::setupCutoffs: the cutoffMethod (%s)\n" |
269 |
"\tis not set to SWITCHED, so switchingRadius value\n" |
270 |
"\twill be ignored for this simulation\n", theMeth.c_str()); |
271 |
painCave.isFatal = 0; |
272 |
painCave.severity = OPENMD_WARNING; |
273 |
simError(); |
274 |
} |
275 |
|
276 |
rSwitch_ = rCut_; |
277 |
} |
278 |
|
279 |
// Default to cubic switching function. |
280 |
sft_ = cubic; |
281 |
if (simParams_->haveSwitchingFunctionType()) |
282 |
{ |
283 |
string funcType = simParams_->getSwitchingFunctionType(); |
284 |
toUpper(funcType); |
285 |
if (funcType == "CUBIC") |
286 |
{ |
287 |
sft_ = cubic; |
288 |
} else |
289 |
{ |
290 |
if (funcType == "FIFTH_ORDER_POLYNOMIAL") |
291 |
{ |
292 |
sft_ = fifth_order_poly; |
293 |
} else |
294 |
{ |
295 |
// throw error |
296 |
sprintf(painCave.errMsg, |
297 |
"ForceManager::setupSwitching : Unknown switchingFunctionType. (Input file specified %s .)\n" |
298 |
"\tswitchingFunctionType must be one of: " |
299 |
"\"cubic\" or \"fifth_order_polynomial\".", funcType.c_str()); |
300 |
painCave.isFatal = 1; |
301 |
painCave.severity = OPENMD_ERROR; |
302 |
simError(); |
303 |
} |
304 |
} |
305 |
} |
306 |
switcher_->setSwitchType(sft_); |
307 |
switcher_->setSwitch(rSwitch_, rCut_); |
308 |
interactionMan_->setSwitchingRadius(rSwitch_); |
309 |
} |
310 |
|
311 |
void ForceManager::initialize() { |
312 |
|
313 |
if (!info_->isTopologyDone()) |
314 |
{ |
315 |
|
316 |
info_->update(); |
317 |
interactionMan_->setSimInfo(info_); |
318 |
interactionMan_->initialize(); |
319 |
|
320 |
// We want to delay the cutoffs until after the interaction |
321 |
// manager has set up the atom-atom interactions so that we can |
322 |
// query them for suggested cutoff values |
323 |
setupCutoffs(); |
324 |
|
325 |
info_->prepareTopology(); |
326 |
} |
327 |
|
328 |
ForceFieldOptions& fopts = forceField_->getForceFieldOptions(); |
329 |
|
330 |
// Force fields can set options on how to scale van der Waals and |
331 |
// electrostatic interactions for atoms connected via bonds, bends |
332 |
// and torsions in this case the topological distance between |
333 |
// atoms is: |
334 |
// 0 = topologically unconnected |
335 |
// 1 = bonded together |
336 |
// 2 = connected via a bend |
337 |
// 3 = connected via a torsion |
338 |
|
339 |
vdwScale_.reserve(4); |
340 |
fill(vdwScale_.begin(), vdwScale_.end(), 0.0); |
341 |
|
342 |
electrostaticScale_.reserve(4); |
343 |
fill(electrostaticScale_.begin(), electrostaticScale_.end(), 0.0); |
344 |
|
345 |
vdwScale_[0] = 1.0; |
346 |
vdwScale_[1] = fopts.getvdw12scale(); |
347 |
vdwScale_[2] = fopts.getvdw13scale(); |
348 |
vdwScale_[3] = fopts.getvdw14scale(); |
349 |
|
350 |
electrostaticScale_[0] = 1.0; |
351 |
electrostaticScale_[1] = fopts.getelectrostatic12scale(); |
352 |
electrostaticScale_[2] = fopts.getelectrostatic13scale(); |
353 |
electrostaticScale_[3] = fopts.getelectrostatic14scale(); |
354 |
|
355 |
fDecomp_->distributeInitialData(); |
356 |
|
357 |
initialized_ = true; |
358 |
|
359 |
} |
360 |
|
361 |
void ForceManager::calcForces() { |
362 |
|
363 |
if (!initialized_) |
364 |
initialize(); |
365 |
|
366 |
preCalculation(); |
367 |
shortRangeInteractions(); |
368 |
// longRangeInteractions(); |
369 |
longRangeInteractionsRapaport(); |
370 |
postCalculation(); |
371 |
} |
372 |
|
373 |
void ForceManager::preCalculation() { |
374 |
SimInfo::MoleculeIterator mi; |
375 |
Molecule* mol; |
376 |
Molecule::AtomIterator ai; |
377 |
Atom* atom; |
378 |
Molecule::RigidBodyIterator rbIter; |
379 |
RigidBody* rb; |
380 |
Molecule::CutoffGroupIterator ci; |
381 |
CutoffGroup* cg; |
382 |
|
383 |
// forces are zeroed here, before any are accumulated. |
384 |
|
385 |
for (mol = info_->beginMolecule(mi); mol != NULL; mol = info_->nextMolecule(mi)) |
386 |
{ |
387 |
for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) |
388 |
{ |
389 |
atom->zeroForcesAndTorques(); |
390 |
} |
391 |
|
392 |
//change the positions of atoms which belong to the rigidbodies |
393 |
for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) |
394 |
{ |
395 |
rb->zeroForcesAndTorques(); |
396 |
} |
397 |
|
398 |
if (info_->getNGlobalCutoffGroups() != info_->getNGlobalAtoms()) |
399 |
{ |
400 |
for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) |
401 |
{ |
402 |
//calculate the center of mass of cutoff group |
403 |
cg->updateCOM(); |
404 |
} |
405 |
} |
406 |
} |
407 |
|
408 |
// Zero out the stress tensor |
409 |
tau *= 0.0; |
410 |
|
411 |
} |
412 |
|
413 |
void ForceManager::shortRangeInteractions() { |
414 |
Molecule* mol; |
415 |
RigidBody* rb; |
416 |
Bond* bond; |
417 |
Bend* bend; |
418 |
Torsion* torsion; |
419 |
Inversion* inversion; |
420 |
SimInfo::MoleculeIterator mi; |
421 |
Molecule::RigidBodyIterator rbIter; |
422 |
Molecule::BondIterator bondIter; |
423 |
; |
424 |
Molecule::BendIterator bendIter; |
425 |
Molecule::TorsionIterator torsionIter; |
426 |
Molecule::InversionIterator inversionIter; |
427 |
RealType bondPotential = 0.0; |
428 |
RealType bendPotential = 0.0; |
429 |
RealType torsionPotential = 0.0; |
430 |
RealType inversionPotential = 0.0; |
431 |
|
432 |
//calculate short range interactions |
433 |
for (mol = info_->beginMolecule(mi); mol != NULL; mol = info_->nextMolecule(mi)) |
434 |
{ |
435 |
|
436 |
//change the positions of atoms which belong to the rigidbodies |
437 |
for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) |
438 |
{ |
439 |
rb->updateAtoms(); |
440 |
} |
441 |
|
442 |
for (bond = mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) |
443 |
{ |
444 |
bond->calcForce(); |
445 |
bondPotential += bond->getPotential(); |
446 |
} |
447 |
|
448 |
for (bend = mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) |
449 |
{ |
450 |
|
451 |
RealType angle; |
452 |
bend->calcForce(angle); |
453 |
RealType currBendPot = bend->getPotential(); |
454 |
|
455 |
bendPotential += bend->getPotential(); |
456 |
map<Bend*, BendDataSet>::iterator i = bendDataSets.find(bend); |
457 |
if (i == bendDataSets.end()) |
458 |
{ |
459 |
BendDataSet dataSet; |
460 |
dataSet.prev.angle = dataSet.curr.angle = angle; |
461 |
dataSet.prev.potential = dataSet.curr.potential = currBendPot; |
462 |
dataSet.deltaV = 0.0; |
463 |
bendDataSets.insert(map<Bend*, BendDataSet>::value_type(bend, dataSet)); |
464 |
} else |
465 |
{ |
466 |
i->second.prev.angle = i->second.curr.angle; |
467 |
i->second.prev.potential = i->second.curr.potential; |
468 |
i->second.curr.angle = angle; |
469 |
i->second.curr.potential = currBendPot; |
470 |
i->second.deltaV = fabs(i->second.curr.potential - i->second.prev.potential); |
471 |
} |
472 |
} |
473 |
|
474 |
for (torsion = mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) |
475 |
{ |
476 |
RealType angle; |
477 |
torsion->calcForce(angle); |
478 |
RealType currTorsionPot = torsion->getPotential(); |
479 |
torsionPotential += torsion->getPotential(); |
480 |
map<Torsion*, TorsionDataSet>::iterator i = torsionDataSets.find(torsion); |
481 |
if (i == torsionDataSets.end()) |
482 |
{ |
483 |
TorsionDataSet dataSet; |
484 |
dataSet.prev.angle = dataSet.curr.angle = angle; |
485 |
dataSet.prev.potential = dataSet.curr.potential = currTorsionPot; |
486 |
dataSet.deltaV = 0.0; |
487 |
torsionDataSets.insert(map<Torsion*, TorsionDataSet>::value_type(torsion, dataSet)); |
488 |
} else |
489 |
{ |
490 |
i->second.prev.angle = i->second.curr.angle; |
491 |
i->second.prev.potential = i->second.curr.potential; |
492 |
i->second.curr.angle = angle; |
493 |
i->second.curr.potential = currTorsionPot; |
494 |
i->second.deltaV = fabs(i->second.curr.potential - i->second.prev.potential); |
495 |
} |
496 |
} |
497 |
|
498 |
for (inversion = mol->beginInversion(inversionIter); inversion != NULL; inversion = mol->nextInversion( |
499 |
inversionIter)) |
500 |
{ |
501 |
RealType angle; |
502 |
inversion->calcForce(angle); |
503 |
RealType currInversionPot = inversion->getPotential(); |
504 |
inversionPotential += inversion->getPotential(); |
505 |
map<Inversion*, InversionDataSet>::iterator i = inversionDataSets.find(inversion); |
506 |
if (i == inversionDataSets.end()) |
507 |
{ |
508 |
InversionDataSet dataSet; |
509 |
dataSet.prev.angle = dataSet.curr.angle = angle; |
510 |
dataSet.prev.potential = dataSet.curr.potential = currInversionPot; |
511 |
dataSet.deltaV = 0.0; |
512 |
inversionDataSets.insert(map<Inversion*, InversionDataSet>::value_type(inversion, dataSet)); |
513 |
} else |
514 |
{ |
515 |
i->second.prev.angle = i->second.curr.angle; |
516 |
i->second.prev.potential = i->second.curr.potential; |
517 |
i->second.curr.angle = angle; |
518 |
i->second.curr.potential = currInversionPot; |
519 |
i->second.deltaV = fabs(i->second.curr.potential - i->second.prev.potential); |
520 |
} |
521 |
} |
522 |
} |
523 |
|
524 |
RealType shortRangePotential = bondPotential + bendPotential + torsionPotential + inversionPotential; |
525 |
Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); |
526 |
curSnapshot->statData[Stats::SHORT_RANGE_POTENTIAL] = shortRangePotential; |
527 |
curSnapshot->statData[Stats::BOND_POTENTIAL] = bondPotential; |
528 |
curSnapshot->statData[Stats::BEND_POTENTIAL] = bendPotential; |
529 |
curSnapshot->statData[Stats::DIHEDRAL_POTENTIAL] = torsionPotential; |
530 |
curSnapshot->statData[Stats::INVERSION_POTENTIAL] = inversionPotential; |
531 |
} |
532 |
|
533 |
void ForceManager::longRangeInteractionsRapaport() { |
534 |
|
535 |
Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); |
536 |
DataStorage* config = &(curSnapshot->atomData); |
537 |
DataStorage* cgConfig = &(curSnapshot->cgData); |
538 |
|
539 |
//calculate the center of mass of cutoff group |
540 |
|
541 |
SimInfo::MoleculeIterator mi; |
542 |
Molecule* mol; |
543 |
Molecule::CutoffGroupIterator ci; |
544 |
CutoffGroup* cg; |
545 |
|
546 |
if (info_->getNCutoffGroups() > 0) |
547 |
{ |
548 |
for (mol = info_->beginMolecule(mi); mol != NULL; mol = info_->nextMolecule(mi)) |
549 |
{ |
550 |
for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) |
551 |
{ |
552 |
// cerr << "branch1\n"; |
553 |
// cerr << "globind = " << cg->getGlobalIndex() << ":" << __LINE__ << "\n"; |
554 |
cg->updateCOM(); |
555 |
|
556 |
// cerr << "gbI: " << cg->getGlobalIndex() << " locI: " << cg->getLocalIndex() << " x: " |
557 |
// << cgConfig->position[cg->getLocalIndex()].x() << " y: " << cgConfig->position[cg->getLocalIndex()].y() |
558 |
// << " z: " << cgConfig->position[cg->getLocalIndex()].z() << "\n"; |
559 |
} |
560 |
} |
561 |
} else |
562 |
{ |
563 |
// center of mass of the group is the same as position of the atom |
564 |
// if cutoff group does not exist |
565 |
// cerr << ":" << __LINE__ << "branch2\n"; |
566 |
cgConfig->position = config->position; |
567 |
} |
568 |
|
569 |
fDecomp_->zeroWorkArrays(); |
570 |
fDecomp_->distributeData(); |
571 |
|
572 |
int atom1, atom2, topoDist; |
573 |
CutoffGroup *cg1; |
574 |
Vector3d d_grp, dag, d; |
575 |
RealType rgrpsq, rgrp, r2, r; |
576 |
RealType electroMult, vdwMult; |
577 |
RealType vij; |
578 |
Vector3d fij, fg, f1; |
579 |
tuple3<RealType, RealType, RealType> cuts; |
580 |
RealType rCutSq; |
581 |
bool in_switching_region; |
582 |
RealType sw, dswdr, swderiv; |
583 |
vector<int> atomListColumn, atomListRow, atomListLocal; |
584 |
InteractionData idat; |
585 |
SelfData sdat; |
586 |
RealType mf; |
587 |
RealType lrPot; |
588 |
RealType vpair; |
589 |
potVec longRangePotential(0.0); |
590 |
potVec workPot(0.0); |
591 |
|
592 |
int loopStart, loopEnd; |
593 |
|
594 |
idat.vdwMult = &vdwMult; |
595 |
idat.electroMult = &electroMult; |
596 |
idat.pot = &workPot; |
597 |
sdat.pot = fDecomp_->getEmbeddingPotential(); |
598 |
idat.vpair = &vpair; |
599 |
idat.f1 = &f1; |
600 |
idat.sw = &sw; |
601 |
idat.shiftedPot = (cutoffMethod_ == SHIFTED_POTENTIAL) ? true : false; |
602 |
idat.shiftedForce = (cutoffMethod_ == SHIFTED_FORCE) ? true : false; |
603 |
|
604 |
loopEnd = PAIR_LOOP; |
605 |
if (info_->requiresPrepair()) |
606 |
{ |
607 |
loopStart = PREPAIR_LOOP; |
608 |
} else |
609 |
{ |
610 |
loopStart = PAIR_LOOP; |
611 |
} |
612 |
|
613 |
for (int iLoop = loopStart; iLoop <= loopEnd; iLoop++) |
614 |
{ |
615 |
|
616 |
if (iLoop == loopStart) |
617 |
{ |
618 |
bool update_nlist = fDecomp_->checkNeighborList(); |
619 |
if (update_nlist) |
620 |
neighborMatW = fDecomp_->buildLayerBasedNeighborList(); |
621 |
} |
622 |
|
623 |
// printf("before omp loop\n"); |
624 |
//#pragma omp parallel for num_threads(3) default(none) shared(curSnapshot, idat, iLoop, sw, cerr) \ |
625 |
private(i, j, cg1, cg2, cuts, d_grp, rgrpsq, rCutSq, vij, fij, in_switching_region, rgrp, dswdr, atomListRow, atomListColumn, atom1, atom2, vpair, workPot, f1, topoDist, vdwMult, electroMult, d, r2, r, swderiv, fg, mf, dag) |
626 |
for (mol = info_->beginMolecule(mi); mol != NULL; mol = info_->nextMolecule(mi)) |
627 |
{ |
628 |
for (cg1 = mol->beginCutoffGroup(ci); cg1 != NULL; cg1 = mol->nextCutoffGroup(ci)) |
629 |
{ |
630 |
// printf("Thread %d executes loop iteration %d\n", omp_get_thread_num(), i); |
631 |
for (vector<CutoffGroup *>::iterator cg2 = neighborMatW[cg1->getGlobalIndex()].begin(); cg2 != neighborMatW[cg1->getGlobalIndex()].end(); ++cg2) |
632 |
{ |
633 |
|
634 |
cuts = fDecomp_->getGroupCutoffs(cg1->getGlobalIndex(), (*cg2)->getGlobalIndex()); |
635 |
|
636 |
d_grp = fDecomp_->getIntergroupVector(cg1, (*cg2)); |
637 |
curSnapshot->wrapVector(d_grp); |
638 |
rgrpsq = d_grp.lengthSquare(); |
639 |
|
640 |
rCutSq = cuts.second; |
641 |
|
642 |
if (rgrpsq < rCutSq) |
643 |
{ |
644 |
idat.rcut = &cuts.first; |
645 |
if (iLoop == PAIR_LOOP) |
646 |
{ |
647 |
vij = 0.0; |
648 |
fij = V3Zero; |
649 |
} |
650 |
|
651 |
in_switching_region = switcher_->getSwitch(rgrpsq, sw, dswdr, rgrp); |
652 |
|
653 |
atomListRow = fDecomp_->getAtomsInGroupRow(cg1->getGlobalIndex()); |
654 |
atomListColumn = fDecomp_->getAtomsInGroupColumn((*cg2)->getGlobalIndex()); |
655 |
|
656 |
for (vector<int>::iterator ia = atomListRow.begin(); ia != atomListRow.end(); ++ia) |
657 |
{ |
658 |
atom1 = (*ia); |
659 |
|
660 |
for (vector<int>::iterator jb = atomListColumn.begin(); jb != atomListColumn.end(); ++jb) |
661 |
{ |
662 |
atom2 = (*jb); |
663 |
|
664 |
if (!fDecomp_->skipAtomPair(atom1, atom2)) |
665 |
{ |
666 |
vpair = 0.0; |
667 |
workPot = 0.0; |
668 |
f1 = V3Zero; |
669 |
|
670 |
fDecomp_->fillInteractionData(idat, atom1, atom2); |
671 |
|
672 |
topoDist = fDecomp_->getTopologicalDistance(atom1, atom2); |
673 |
vdwMult = vdwScale_[topoDist]; |
674 |
electroMult = electrostaticScale_[topoDist]; |
675 |
|
676 |
if (atomListRow.size() == 1 && atomListColumn.size() == 1) |
677 |
{ |
678 |
idat.d = &d_grp; |
679 |
idat.r2 = &rgrpsq; |
680 |
// cerr << "dgrp = " << d_grp << ":" << __LINE__ << "\n"; |
681 |
} else |
682 |
{ |
683 |
d = fDecomp_->getInteratomicVector(atom1, atom2); |
684 |
curSnapshot->wrapVector(d); |
685 |
r2 = d.lengthSquare(); |
686 |
// cerr << "datm = " << d << ":" << __LINE__ << "\n"; |
687 |
idat.d = &d; |
688 |
idat.r2 = &r2; |
689 |
} |
690 |
|
691 |
// cerr << "idat.d = " << *(idat.d) << ":" << __LINE__ << "\n"; |
692 |
r = sqrt(*(idat.r2)); |
693 |
idat.rij = &r; |
694 |
// cerr << "idat.rij = " << *(idat.rij) << "\n"; |
695 |
|
696 |
if (iLoop == PREPAIR_LOOP) |
697 |
{ |
698 |
interactionMan_->doPrePair(idat); |
699 |
} else |
700 |
{ |
701 |
interactionMan_->doPair(idat); |
702 |
fDecomp_->unpackInteractionData(idat, atom1, atom2); |
703 |
|
704 |
// cerr << "d = " << *(idat.d) << "\tv=" << vpair << "\tf=" << f1 << ":" << __LINE__ << "\n"; |
705 |
vij += vpair; |
706 |
fij += f1; |
707 |
tau -= outProduct(*(idat.d), f1); |
708 |
} |
709 |
} |
710 |
} |
711 |
} |
712 |
|
713 |
if (iLoop == PAIR_LOOP) |
714 |
{ |
715 |
if (in_switching_region) |
716 |
{ |
717 |
swderiv = vij * dswdr / rgrp; |
718 |
fg = swderiv * d_grp; |
719 |
fij += fg; |
720 |
|
721 |
if (atomListRow.size() == 1 && atomListColumn.size() == 1) |
722 |
{ |
723 |
tau -= outProduct(*(idat.d), fg); |
724 |
} |
725 |
|
726 |
for (vector<int>::iterator ia = atomListRow.begin(); ia != atomListRow.end(); ++ia) |
727 |
{ |
728 |
atom1 = (*ia); |
729 |
mf = fDecomp_->getMassFactorRow(atom1); |
730 |
// fg is the force on atom ia due to cutoff group's |
731 |
// presence in switching region |
732 |
fg = swderiv * d_grp * mf; |
733 |
fDecomp_->addForceToAtomRow(atom1, fg); |
734 |
|
735 |
if (atomListRow.size() > 1) |
736 |
{ |
737 |
if (info_->usesAtomicVirial()) |
738 |
{ |
739 |
// find the distance between the atom |
740 |
// and the center of the cutoff group: |
741 |
dag = fDecomp_->getAtomToGroupVectorRow(atom1, cg1->getGlobalIndex()); |
742 |
tau -= outProduct(dag, fg); |
743 |
} |
744 |
} |
745 |
} |
746 |
for (vector<int>::iterator jb = atomListColumn.begin(); jb != atomListColumn.end(); ++jb) |
747 |
{ |
748 |
atom2 = (*jb); |
749 |
mf = fDecomp_->getMassFactorColumn(atom2); |
750 |
// fg is the force on atom jb due to cutoff group's |
751 |
// presence in switching region |
752 |
fg = -swderiv * d_grp * mf; |
753 |
fDecomp_->addForceToAtomColumn(atom2, fg); |
754 |
|
755 |
if (atomListColumn.size() > 1) |
756 |
{ |
757 |
if (info_->usesAtomicVirial()) |
758 |
{ |
759 |
// find the distance between the atom |
760 |
// and the center of the cutoff group: |
761 |
dag = fDecomp_->getAtomToGroupVectorColumn(atom2, (*cg2)->getGlobalIndex()); |
762 |
tau -= outProduct(dag, fg); |
763 |
} |
764 |
} |
765 |
} |
766 |
} |
767 |
//if (!SIM_uses_AtomicVirial) { |
768 |
// tau -= outProduct(d_grp, fij); |
769 |
//} |
770 |
} |
771 |
} |
772 |
} |
773 |
} |
774 |
}// END: omp for loop |
775 |
// printf("after omp loop\n"); |
776 |
|
777 |
if (iLoop == PREPAIR_LOOP) |
778 |
{ |
779 |
if (info_->requiresPrepair()) |
780 |
{ |
781 |
|
782 |
fDecomp_->collectIntermediateData(); |
783 |
|
784 |
for (int atom1 = 0; atom1 < info_->getNAtoms(); atom1++) |
785 |
{ |
786 |
fDecomp_->fillSelfData(sdat, atom1); |
787 |
interactionMan_->doPreForce(sdat); |
788 |
} |
789 |
|
790 |
fDecomp_->distributeIntermediateData(); |
791 |
|
792 |
} |
793 |
} |
794 |
} |
795 |
|
796 |
fDecomp_->collectData(); |
797 |
|
798 |
if (info_->requiresSelfCorrection()) |
799 |
{ |
800 |
|
801 |
for (int atom1 = 0; atom1 < info_->getNAtoms(); atom1++) |
802 |
{ |
803 |
fDecomp_->fillSelfData(sdat, atom1); |
804 |
interactionMan_->doSelfCorrection(sdat); |
805 |
} |
806 |
|
807 |
} |
808 |
|
809 |
longRangePotential = *(fDecomp_->getEmbeddingPotential()) + *(fDecomp_->getPairwisePotential()); |
810 |
|
811 |
lrPot = longRangePotential.sum(); |
812 |
|
813 |
//store the tau and long range potential |
814 |
curSnapshot->statData[Stats::LONG_RANGE_POTENTIAL] = lrPot; |
815 |
curSnapshot->statData[Stats::VANDERWAALS_POTENTIAL] = longRangePotential[VANDERWAALS_FAMILY]; |
816 |
curSnapshot->statData[Stats::ELECTROSTATIC_POTENTIAL] = longRangePotential[ELECTROSTATIC_FAMILY]; |
817 |
} |
818 |
|
819 |
void ForceManager::longRangeInteractions() { |
820 |
|
821 |
Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); |
822 |
DataStorage* config = &(curSnapshot->atomData); |
823 |
DataStorage* cgConfig = &(curSnapshot->cgData); |
824 |
|
825 |
//calculate the center of mass of cutoff group |
826 |
|
827 |
SimInfo::MoleculeIterator mi; |
828 |
Molecule* mol; |
829 |
Molecule::CutoffGroupIterator ci; |
830 |
CutoffGroup* cg; |
831 |
|
832 |
if (info_->getNCutoffGroups() > 0) |
833 |
{ |
834 |
for (mol = info_->beginMolecule(mi); mol != NULL; mol = info_->nextMolecule(mi)) |
835 |
{ |
836 |
for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) |
837 |
{ |
838 |
cerr << "branch1\n"; |
839 |
cerr << "globind = " << cg->getGlobalIndex() << "\n"; |
840 |
cg->updateCOM(); |
841 |
} |
842 |
} |
843 |
} else |
844 |
{ |
845 |
// center of mass of the group is the same as position of the atom |
846 |
// if cutoff group does not exist |
847 |
cerr << "branch2\n"; |
848 |
cgConfig->position = config->position; |
849 |
} |
850 |
|
851 |
fDecomp_->zeroWorkArrays(); |
852 |
fDecomp_->distributeData(); |
853 |
|
854 |
int cg1, cg2, atom1, atom2, topoDist; |
855 |
Vector3d d_grp, dag, d; |
856 |
RealType rgrpsq, rgrp, r2, r; |
857 |
RealType electroMult, vdwMult; |
858 |
RealType vij; |
859 |
Vector3d fij, fg, f1; |
860 |
tuple3<RealType, RealType, RealType> cuts; |
861 |
RealType rCutSq; |
862 |
bool in_switching_region; |
863 |
RealType sw, dswdr, swderiv; |
864 |
vector<int> atomListColumn, atomListRow, atomListLocal; |
865 |
InteractionData idat; |
866 |
SelfData sdat; |
867 |
RealType mf; |
868 |
RealType lrPot; |
869 |
RealType vpair; |
870 |
potVec longRangePotential(0.0); |
871 |
potVec workPot(0.0); |
872 |
|
873 |
int loopStart, loopEnd; |
874 |
|
875 |
idat.vdwMult = &vdwMult; |
876 |
idat.electroMult = &electroMult; |
877 |
idat.pot = &workPot; |
878 |
sdat.pot = fDecomp_->getEmbeddingPotential(); |
879 |
idat.vpair = &vpair; |
880 |
idat.f1 = &f1; |
881 |
idat.sw = &sw; |
882 |
idat.shiftedPot = (cutoffMethod_ == SHIFTED_POTENTIAL) ? true : false; |
883 |
idat.shiftedForce = (cutoffMethod_ == SHIFTED_FORCE) ? true : false; |
884 |
|
885 |
loopEnd = PAIR_LOOP; |
886 |
if (info_->requiresPrepair()) |
887 |
{ |
888 |
loopStart = PREPAIR_LOOP; |
889 |
} else |
890 |
{ |
891 |
loopStart = PAIR_LOOP; |
892 |
} |
893 |
|
894 |
for (int iLoop = loopStart; iLoop <= loopEnd; iLoop++) |
895 |
{ |
896 |
|
897 |
if (iLoop == loopStart) |
898 |
{ |
899 |
bool update_nlist = fDecomp_->checkNeighborList(); |
900 |
if (update_nlist) |
901 |
neighborList = fDecomp_->buildNeighborList(); |
902 |
|
903 |
} |
904 |
|
905 |
for (vector<pair<int, int> >::iterator it = neighborList.begin(); it != neighborList.end(); ++it) |
906 |
{ |
907 |
cg1 = (*it).first; |
908 |
cg2 = (*it).second; |
909 |
|
910 |
cuts = fDecomp_->getGroupCutoffs(cg1, cg2); |
911 |
|
912 |
d_grp = fDecomp_->getIntergroupVector(cg1, cg2); |
913 |
curSnapshot->wrapVector(d_grp); |
914 |
rgrpsq = d_grp.lengthSquare(); |
915 |
|
916 |
rCutSq = cuts.second; |
917 |
|
918 |
if (rgrpsq < rCutSq) |
919 |
{ |
920 |
idat.rcut = &cuts.first; |
921 |
if (iLoop == PAIR_LOOP) |
922 |
{ |
923 |
vij = 0.0; |
924 |
fij = V3Zero; |
925 |
} |
926 |
|
927 |
in_switching_region = switcher_->getSwitch(rgrpsq, sw, dswdr, rgrp); |
928 |
|
929 |
atomListRow = fDecomp_->getAtomsInGroupRow(cg1); |
930 |
atomListColumn = fDecomp_->getAtomsInGroupColumn(cg2); |
931 |
|
932 |
for (vector<int>::iterator ia = atomListRow.begin(); ia != atomListRow.end(); ++ia) |
933 |
{ |
934 |
atom1 = (*ia); |
935 |
|
936 |
for (vector<int>::iterator jb = atomListColumn.begin(); jb != atomListColumn.end(); ++jb) |
937 |
{ |
938 |
atom2 = (*jb); |
939 |
|
940 |
if (!fDecomp_->skipAtomPair(atom1, atom2)) |
941 |
{ |
942 |
vpair = 0.0; |
943 |
workPot = 0.0; |
944 |
f1 = V3Zero; |
945 |
|
946 |
fDecomp_->fillInteractionData(idat, atom1, atom2); |
947 |
|
948 |
topoDist = fDecomp_->getTopologicalDistance(atom1, atom2); |
949 |
vdwMult = vdwScale_[topoDist]; |
950 |
electroMult = electrostaticScale_[topoDist]; |
951 |
|
952 |
if (atomListRow.size() == 1 && atomListColumn.size() == 1) |
953 |
{ |
954 |
idat.d = &d_grp; |
955 |
idat.r2 = &rgrpsq; |
956 |
cerr << "dgrp = " << d_grp << "\n"; |
957 |
} else |
958 |
{ |
959 |
d = fDecomp_->getInteratomicVector(atom1, atom2); |
960 |
curSnapshot->wrapVector(d); |
961 |
r2 = d.lengthSquare(); |
962 |
cerr << "datm = " << d << "\n"; |
963 |
idat.d = &d; |
964 |
idat.r2 = &r2; |
965 |
} |
966 |
|
967 |
cerr << "idat.d = " << *(idat.d) << "\n"; |
968 |
r = sqrt(*(idat.r2)); |
969 |
idat.rij = &r; |
970 |
|
971 |
if (iLoop == PREPAIR_LOOP) |
972 |
{ |
973 |
interactionMan_->doPrePair(idat); |
974 |
} else |
975 |
{ |
976 |
interactionMan_->doPair(idat); |
977 |
fDecomp_->unpackInteractionData(idat, atom1, atom2); |
978 |
|
979 |
cerr << "d = " << *(idat.d) << "\tv=" << vpair << "\tf=" << f1 << "\n"; |
980 |
vij += vpair; |
981 |
fij += f1; |
982 |
tau -= outProduct(*(idat.d), f1); |
983 |
} |
984 |
} |
985 |
} |
986 |
} |
987 |
|
988 |
if (iLoop == PAIR_LOOP) |
989 |
{ |
990 |
if (in_switching_region) |
991 |
{ |
992 |
swderiv = vij * dswdr / rgrp; |
993 |
fg = swderiv * d_grp; |
994 |
fij += fg; |
995 |
|
996 |
if (atomListRow.size() == 1 && atomListColumn.size() == 1) |
997 |
{ |
998 |
tau -= outProduct(*(idat.d), fg); |
999 |
} |
1000 |
|
1001 |
for (vector<int>::iterator ia = atomListRow.begin(); ia != atomListRow.end(); ++ia) |
1002 |
{ |
1003 |
atom1 = (*ia); |
1004 |
mf = fDecomp_->getMassFactorRow(atom1); |
1005 |
// fg is the force on atom ia due to cutoff group's |
1006 |
// presence in switching region |
1007 |
fg = swderiv * d_grp * mf; |
1008 |
fDecomp_->addForceToAtomRow(atom1, fg); |
1009 |
|
1010 |
if (atomListRow.size() > 1) |
1011 |
{ |
1012 |
if (info_->usesAtomicVirial()) |
1013 |
{ |
1014 |
// find the distance between the atom |
1015 |
// and the center of the cutoff group: |
1016 |
dag = fDecomp_->getAtomToGroupVectorRow(atom1, cg1); |
1017 |
tau -= outProduct(dag, fg); |
1018 |
} |
1019 |
} |
1020 |
} |
1021 |
for (vector<int>::iterator jb = atomListColumn.begin(); jb != atomListColumn.end(); ++jb) |
1022 |
{ |
1023 |
atom2 = (*jb); |
1024 |
mf = fDecomp_->getMassFactorColumn(atom2); |
1025 |
// fg is the force on atom jb due to cutoff group's |
1026 |
// presence in switching region |
1027 |
fg = -swderiv * d_grp * mf; |
1028 |
fDecomp_->addForceToAtomColumn(atom2, fg); |
1029 |
|
1030 |
if (atomListColumn.size() > 1) |
1031 |
{ |
1032 |
if (info_->usesAtomicVirial()) |
1033 |
{ |
1034 |
// find the distance between the atom |
1035 |
// and the center of the cutoff group: |
1036 |
dag = fDecomp_->getAtomToGroupVectorColumn(atom2, cg2); |
1037 |
tau -= outProduct(dag, fg); |
1038 |
} |
1039 |
} |
1040 |
} |
1041 |
} |
1042 |
//if (!SIM_uses_AtomicVirial) { |
1043 |
// tau -= outProduct(d_grp, fij); |
1044 |
//} |
1045 |
} |
1046 |
} |
1047 |
} |
1048 |
|
1049 |
if (iLoop == PREPAIR_LOOP) |
1050 |
{ |
1051 |
if (info_->requiresPrepair()) |
1052 |
{ |
1053 |
|
1054 |
fDecomp_->collectIntermediateData(); |
1055 |
|
1056 |
for (int atom1 = 0; atom1 < info_->getNAtoms(); atom1++) |
1057 |
{ |
1058 |
fDecomp_->fillSelfData(sdat, atom1); |
1059 |
interactionMan_->doPreForce(sdat); |
1060 |
} |
1061 |
|
1062 |
fDecomp_->distributeIntermediateData(); |
1063 |
|
1064 |
} |
1065 |
} |
1066 |
|
1067 |
} |
1068 |
|
1069 |
fDecomp_->collectData(); |
1070 |
|
1071 |
if (info_->requiresSelfCorrection()) |
1072 |
{ |
1073 |
|
1074 |
for (int atom1 = 0; atom1 < info_->getNAtoms(); atom1++) |
1075 |
{ |
1076 |
fDecomp_->fillSelfData(sdat, atom1); |
1077 |
interactionMan_->doSelfCorrection(sdat); |
1078 |
} |
1079 |
|
1080 |
} |
1081 |
|
1082 |
longRangePotential = *(fDecomp_->getEmbeddingPotential()) + *(fDecomp_->getPairwisePotential()); |
1083 |
|
1084 |
lrPot = longRangePotential.sum(); |
1085 |
|
1086 |
//store the tau and long range potential |
1087 |
curSnapshot->statData[Stats::LONG_RANGE_POTENTIAL] = lrPot; |
1088 |
curSnapshot->statData[Stats::VANDERWAALS_POTENTIAL] = longRangePotential[VANDERWAALS_FAMILY]; |
1089 |
curSnapshot->statData[Stats::ELECTROSTATIC_POTENTIAL] = longRangePotential[ELECTROSTATIC_FAMILY]; |
1090 |
} |
1091 |
|
1092 |
void ForceManager::postCalculation() { |
1093 |
SimInfo::MoleculeIterator mi; |
1094 |
Molecule* mol; |
1095 |
Molecule::RigidBodyIterator rbIter; |
1096 |
RigidBody* rb; |
1097 |
Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); |
1098 |
|
1099 |
// collect the atomic forces onto rigid bodies |
1100 |
|
1101 |
for (mol = info_->beginMolecule(mi); mol != NULL; mol = info_->nextMolecule(mi)) |
1102 |
{ |
1103 |
for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) |
1104 |
{ |
1105 |
Mat3x3d rbTau = rb->calcForcesAndTorquesAndVirial(); |
1106 |
tau += rbTau; |
1107 |
} |
1108 |
} |
1109 |
|
1110 |
#ifdef IS_MPI |
1111 |
Mat3x3d tmpTau(tau); |
1112 |
MPI_Allreduce(tmpTau.getArrayPointer(), tau.getArrayPointer(), |
1113 |
9, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD); |
1114 |
#endif |
1115 |
curSnapshot->statData.setTau(tau); |
1116 |
} |
1117 |
|
1118 |
} //end namespace OpenMD |