ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/devel_omp/src/brains/ForceManager.cpp
Revision: 1595
Committed: Tue Jul 19 18:50:04 2011 UTC (13 years, 9 months ago) by chuckv
File size: 35589 byte(s)
Log Message:
Adding initial OpenMP support using new neighbor lists.


File Contents

# Content
1 /*
2 * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 *
4 * The University of Notre Dame grants you ("Licensee") a
5 * non-exclusive, royalty free, license to use, modify and
6 * redistribute this software in source and binary code form, provided
7 * that the following conditions are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 *
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the
15 * distribution.
16 *
17 * This software is provided "AS IS," without a warranty of any
18 * kind. All express or implied conditions, representations and
19 * warranties, including any implied warranty of merchantability,
20 * fitness for a particular purpose or non-infringement, are hereby
21 * excluded. The University of Notre Dame and its licensors shall not
22 * be liable for any damages suffered by licensee as a result of
23 * using, modifying or distributing the software or its
24 * derivatives. In no event will the University of Notre Dame or its
25 * licensors be liable for any lost revenue, profit or data, or for
26 * direct, indirect, special, consequential, incidental or punitive
27 * damages, however caused and regardless of the theory of liability,
28 * arising out of the use of or inability to use software, even if the
29 * University of Notre Dame has been advised of the possibility of
30 * such damages.
31 *
32 * SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your
33 * research, please cite the appropriate papers when you publish your
34 * work. Good starting points are:
35 *
36 * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).
37 * [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).
38 * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).
39 * [4] Vardeman & Gezelter, in progress (2009).
40 */
41
42 /**
43 * @file ForceManager.cpp
44 * @author tlin
45 * @date 11/09/2004
46 * @time 10:39am
47 * @version 1.0
48 */
49
50
51 #include "brains/ForceManager.hpp"
52 #include "primitives/Molecule.hpp"
53 #define __OPENMD_C
54 #include "utils/simError.h"
55 #include "primitives/Bond.hpp"
56 #include "primitives/Bend.hpp"
57 #include "primitives/Torsion.hpp"
58 #include "primitives/Inversion.hpp"
59 #include "nonbonded/NonBondedInteraction.hpp"
60 #include "parallel/ForceMatrixDecomposition.hpp"
61
62 #include <cstdio>
63 #include <iostream>
64 #include <iomanip>
65
66 using namespace std;
67 namespace OpenMD {
68
69 ForceManager::ForceManager(SimInfo * info) : info_(info) {
70 forceField_ = info_->getForceField();
71 interactionMan_ = new InteractionManager();
72 fDecomp_ = new ForceMatrixDecomposition(info_, interactionMan_);
73 }
74
75 /**
76 * setupCutoffs
77 *
78 * Sets the values of cutoffRadius, switchingRadius, cutoffMethod,
79 * and cutoffPolicy
80 *
81 * cutoffRadius : realType
82 * If the cutoffRadius was explicitly set, use that value.
83 * If the cutoffRadius was not explicitly set:
84 * Are there electrostatic atoms? Use 12.0 Angstroms.
85 * No electrostatic atoms? Poll the atom types present in the
86 * simulation for suggested cutoff values (e.g. 2.5 * sigma).
87 * Use the maximum suggested value that was found.
88 *
89 * cutoffMethod : (one of HARD, SWITCHED, SHIFTED_FORCE,
90 * or SHIFTED_POTENTIAL)
91 * If cutoffMethod was explicitly set, use that choice.
92 * If cutoffMethod was not explicitly set, use SHIFTED_FORCE
93 *
94 * cutoffPolicy : (one of MIX, MAX, TRADITIONAL)
95 * If cutoffPolicy was explicitly set, use that choice.
96 * If cutoffPolicy was not explicitly set, use TRADITIONAL
97 *
98 * switchingRadius : realType
99 * If the cutoffMethod was set to SWITCHED:
100 * If the switchingRadius was explicitly set, use that value
101 * (but do a sanity check first).
102 * If the switchingRadius was not explicitly set: use 0.85 *
103 * cutoffRadius_
104 * If the cutoffMethod was not set to SWITCHED:
105 * Set switchingRadius equal to cutoffRadius for safety.
106 */
107 void ForceManager::setupCutoffs() {
108
109 Globals* simParams_ = info_->getSimParams();
110 ForceFieldOptions& forceFieldOptions_ = forceField_->getForceFieldOptions();
111
112 if (simParams_->haveCutoffRadius()) {
113 rCut_ = simParams_->getCutoffRadius();
114 } else {
115 if (info_->usesElectrostaticAtoms()) {
116 sprintf(painCave.errMsg,
117 "ForceManager::setupCutoffs: No value was set for the cutoffRadius.\n"
118 "\tOpenMD will use a default value of 12.0 angstroms"
119 "\tfor the cutoffRadius.\n");
120 painCave.isFatal = 0;
121 painCave.severity = OPENMD_INFO;
122 simError();
123 rCut_ = 12.0;
124 } else {
125 RealType thisCut;
126 set<AtomType*>::iterator i;
127 set<AtomType*> atomTypes;
128 atomTypes = info_->getSimulatedAtomTypes();
129 for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
130 thisCut = interactionMan_->getSuggestedCutoffRadius((*i));
131 rCut_ = max(thisCut, rCut_);
132 }
133 sprintf(painCave.errMsg,
134 "ForceManager::setupCutoffs: No value was set for the cutoffRadius.\n"
135 "\tOpenMD will use %lf angstroms.\n",
136 rCut_);
137 painCave.isFatal = 0;
138 painCave.severity = OPENMD_INFO;
139 simError();
140 }
141 }
142
143 fDecomp_->setUserCutoff(rCut_);
144 interactionMan_->setCutoffRadius(rCut_);
145
146 map<string, CutoffMethod> stringToCutoffMethod;
147 stringToCutoffMethod["HARD"] = HARD;
148 stringToCutoffMethod["SWITCHED"] = SWITCHED;
149 stringToCutoffMethod["SHIFTED_POTENTIAL"] = SHIFTED_POTENTIAL;
150 stringToCutoffMethod["SHIFTED_FORCE"] = SHIFTED_FORCE;
151
152 if (simParams_->haveCutoffMethod()) {
153 string cutMeth = toUpperCopy(simParams_->getCutoffMethod());
154 map<string, CutoffMethod>::iterator i;
155 i = stringToCutoffMethod.find(cutMeth);
156 if (i == stringToCutoffMethod.end()) {
157 sprintf(painCave.errMsg,
158 "ForceManager::setupCutoffs: Could not find chosen cutoffMethod %s\n"
159 "\tShould be one of: "
160 "HARD, SWITCHED, SHIFTED_POTENTIAL, or SHIFTED_FORCE\n",
161 cutMeth.c_str());
162 painCave.isFatal = 1;
163 painCave.severity = OPENMD_ERROR;
164 simError();
165 } else {
166 cutoffMethod_ = i->second;
167 }
168 } else {
169 sprintf(painCave.errMsg,
170 "ForceManager::setupCutoffs: No value was set for the cutoffMethod.\n"
171 "\tOpenMD will use SHIFTED_FORCE.\n");
172 painCave.isFatal = 0;
173 painCave.severity = OPENMD_INFO;
174 simError();
175 cutoffMethod_ = SHIFTED_FORCE;
176 }
177
178 map<string, CutoffPolicy> stringToCutoffPolicy;
179 stringToCutoffPolicy["MIX"] = MIX;
180 stringToCutoffPolicy["MAX"] = MAX;
181 stringToCutoffPolicy["TRADITIONAL"] = TRADITIONAL;
182
183 std::string cutPolicy;
184 if (forceFieldOptions_.haveCutoffPolicy()){
185 cutPolicy = forceFieldOptions_.getCutoffPolicy();
186 }else if (simParams_->haveCutoffPolicy()) {
187 cutPolicy = simParams_->getCutoffPolicy();
188 }
189
190 if (!cutPolicy.empty()){
191 toUpper(cutPolicy);
192 map<string, CutoffPolicy>::iterator i;
193 i = stringToCutoffPolicy.find(cutPolicy);
194
195 if (i == stringToCutoffPolicy.end()) {
196 sprintf(painCave.errMsg,
197 "ForceManager::setupCutoffs: Could not find chosen cutoffPolicy %s\n"
198 "\tShould be one of: "
199 "MIX, MAX, or TRADITIONAL\n",
200 cutPolicy.c_str());
201 painCave.isFatal = 1;
202 painCave.severity = OPENMD_ERROR;
203 simError();
204 } else {
205 cutoffPolicy_ = i->second;
206 }
207 } else {
208 sprintf(painCave.errMsg,
209 "ForceManager::setupCutoffs: No value was set for the cutoffPolicy.\n"
210 "\tOpenMD will use TRADITIONAL.\n");
211 painCave.isFatal = 0;
212 painCave.severity = OPENMD_INFO;
213 simError();
214 cutoffPolicy_ = TRADITIONAL;
215 }
216
217 fDecomp_->setCutoffPolicy(cutoffPolicy_);
218
219 // create the switching function object:
220
221 switcher_ = new SwitchingFunction();
222
223 if (cutoffMethod_ == SWITCHED) {
224 if (simParams_->haveSwitchingRadius()) {
225 rSwitch_ = simParams_->getSwitchingRadius();
226 if (rSwitch_ > rCut_) {
227 sprintf(painCave.errMsg,
228 "ForceManager::setupCutoffs: switchingRadius (%f) is larger "
229 "than the cutoffRadius(%f)\n", rSwitch_, rCut_);
230 painCave.isFatal = 1;
231 painCave.severity = OPENMD_ERROR;
232 simError();
233 }
234 } else {
235 rSwitch_ = 0.85 * rCut_;
236 sprintf(painCave.errMsg,
237 "ForceManager::setupCutoffs: No value was set for the switchingRadius.\n"
238 "\tOpenMD will use a default value of 85 percent of the cutoffRadius.\n"
239 "\tswitchingRadius = %f. for this simulation\n", rSwitch_);
240 painCave.isFatal = 0;
241 painCave.severity = OPENMD_WARNING;
242 simError();
243 }
244 } else {
245 if (simParams_->haveSwitchingRadius()) {
246 map<string, CutoffMethod>::const_iterator it;
247 string theMeth;
248 for (it = stringToCutoffMethod.begin();
249 it != stringToCutoffMethod.end(); ++it) {
250 if (it->second == cutoffMethod_) {
251 theMeth = it->first;
252 break;
253 }
254 }
255 sprintf(painCave.errMsg,
256 "ForceManager::setupCutoffs: the cutoffMethod (%s)\n"
257 "\tis not set to SWITCHED, so switchingRadius value\n"
258 "\twill be ignored for this simulation\n", theMeth.c_str());
259 painCave.isFatal = 0;
260 painCave.severity = OPENMD_WARNING;
261 simError();
262 }
263
264 rSwitch_ = rCut_;
265 }
266
267 // Default to cubic switching function.
268 sft_ = cubic;
269 if (simParams_->haveSwitchingFunctionType()) {
270 string funcType = simParams_->getSwitchingFunctionType();
271 toUpper(funcType);
272 if (funcType == "CUBIC") {
273 sft_ = cubic;
274 } else {
275 if (funcType == "FIFTH_ORDER_POLYNOMIAL") {
276 sft_ = fifth_order_poly;
277 } else {
278 // throw error
279 sprintf( painCave.errMsg,
280 "ForceManager::setupSwitching : Unknown switchingFunctionType. (Input file specified %s .)\n"
281 "\tswitchingFunctionType must be one of: "
282 "\"cubic\" or \"fifth_order_polynomial\".",
283 funcType.c_str() );
284 painCave.isFatal = 1;
285 painCave.severity = OPENMD_ERROR;
286 simError();
287 }
288 }
289 }
290 switcher_->setSwitchType(sft_);
291 switcher_->setSwitch(rSwitch_, rCut_);
292 interactionMan_->setSwitchingRadius(rSwitch_);
293 }
294
295 void ForceManager::initialize() {
296
297 if (!info_->isTopologyDone()) {
298
299 info_->update();
300 interactionMan_->setSimInfo(info_);
301 interactionMan_->initialize();
302
303 // We want to delay the cutoffs until after the interaction
304 // manager has set up the atom-atom interactions so that we can
305 // query them for suggested cutoff values
306 setupCutoffs();
307
308 info_->prepareTopology();
309 }
310
311 ForceFieldOptions& fopts = forceField_->getForceFieldOptions();
312
313 // Force fields can set options on how to scale van der Waals and
314 // electrostatic interactions for atoms connected via bonds, bends
315 // and torsions in this case the topological distance between
316 // atoms is:
317 // 0 = topologically unconnected
318 // 1 = bonded together
319 // 2 = connected via a bend
320 // 3 = connected via a torsion
321
322 vdwScale_.reserve(4);
323 fill(vdwScale_.begin(), vdwScale_.end(), 0.0);
324
325 electrostaticScale_.reserve(4);
326 fill(electrostaticScale_.begin(), electrostaticScale_.end(), 0.0);
327
328 vdwScale_[0] = 1.0;
329 vdwScale_[1] = fopts.getvdw12scale();
330 vdwScale_[2] = fopts.getvdw13scale();
331 vdwScale_[3] = fopts.getvdw14scale();
332
333 electrostaticScale_[0] = 1.0;
334 electrostaticScale_[1] = fopts.getelectrostatic12scale();
335 electrostaticScale_[2] = fopts.getelectrostatic13scale();
336 electrostaticScale_[3] = fopts.getelectrostatic14scale();
337
338 fDecomp_->distributeInitialData();
339
340 initialized_ = true;
341
342 }
343
344 void ForceManager::calcForces() {
345
346 if (!initialized_) initialize();
347
348 preCalculation();
349 shortRangeInteractions();
350 // longRangeInteractions();
351 longRangeInteractionsRapaport();
352 postCalculation();
353 }
354
355 void ForceManager::preCalculation() {
356 SimInfo::MoleculeIterator mi;
357 Molecule* mol;
358 Molecule::AtomIterator ai;
359 Atom* atom;
360 Molecule::RigidBodyIterator rbIter;
361 RigidBody* rb;
362 Molecule::CutoffGroupIterator ci;
363 CutoffGroup* cg;
364
365 // forces are zeroed here, before any are accumulated.
366
367 for (mol = info_->beginMolecule(mi); mol != NULL;
368 mol = info_->nextMolecule(mi)) {
369 for(atom = mol->beginAtom(ai); atom != NULL;
370 atom = mol->nextAtom(ai)) {
371 atom->zeroForcesAndTorques();
372 }
373
374 //change the positions of atoms which belong to the rigidbodies
375 for (rb = mol->beginRigidBody(rbIter); rb != NULL;
376 rb = mol->nextRigidBody(rbIter)) {
377 rb->zeroForcesAndTorques();
378 }
379
380 if(info_->getNGlobalCutoffGroups() != info_->getNGlobalAtoms()){
381 for(cg = mol->beginCutoffGroup(ci); cg != NULL;
382 cg = mol->nextCutoffGroup(ci)) {
383 //calculate the center of mass of cutoff group
384 cg->updateCOM();
385 }
386 }
387 }
388
389 // Zero out the stress tensor
390 tau *= 0.0;
391
392 }
393
394 void ForceManager::shortRangeInteractions() {
395 Molecule* mol;
396 RigidBody* rb;
397 Bond* bond;
398 Bend* bend;
399 Torsion* torsion;
400 Inversion* inversion;
401 SimInfo::MoleculeIterator mi;
402 Molecule::RigidBodyIterator rbIter;
403 Molecule::BondIterator bondIter;;
404 Molecule::BendIterator bendIter;
405 Molecule::TorsionIterator torsionIter;
406 Molecule::InversionIterator inversionIter;
407 RealType bondPotential = 0.0;
408 RealType bendPotential = 0.0;
409 RealType torsionPotential = 0.0;
410 RealType inversionPotential = 0.0;
411
412 //calculate short range interactions
413 for (mol = info_->beginMolecule(mi); mol != NULL;
414 mol = info_->nextMolecule(mi)) {
415
416 //change the positions of atoms which belong to the rigidbodies
417 for (rb = mol->beginRigidBody(rbIter); rb != NULL;
418 rb = mol->nextRigidBody(rbIter)) {
419 rb->updateAtoms();
420 }
421
422 for (bond = mol->beginBond(bondIter); bond != NULL;
423 bond = mol->nextBond(bondIter)) {
424 bond->calcForce();
425 bondPotential += bond->getPotential();
426 }
427
428 for (bend = mol->beginBend(bendIter); bend != NULL;
429 bend = mol->nextBend(bendIter)) {
430
431 RealType angle;
432 bend->calcForce(angle);
433 RealType currBendPot = bend->getPotential();
434
435 bendPotential += bend->getPotential();
436 map<Bend*, BendDataSet>::iterator i = bendDataSets.find(bend);
437 if (i == bendDataSets.end()) {
438 BendDataSet dataSet;
439 dataSet.prev.angle = dataSet.curr.angle = angle;
440 dataSet.prev.potential = dataSet.curr.potential = currBendPot;
441 dataSet.deltaV = 0.0;
442 bendDataSets.insert(map<Bend*, BendDataSet>::value_type(bend,
443 dataSet));
444 }else {
445 i->second.prev.angle = i->second.curr.angle;
446 i->second.prev.potential = i->second.curr.potential;
447 i->second.curr.angle = angle;
448 i->second.curr.potential = currBendPot;
449 i->second.deltaV = fabs(i->second.curr.potential -
450 i->second.prev.potential);
451 }
452 }
453
454 for (torsion = mol->beginTorsion(torsionIter); torsion != NULL;
455 torsion = mol->nextTorsion(torsionIter)) {
456 RealType angle;
457 torsion->calcForce(angle);
458 RealType currTorsionPot = torsion->getPotential();
459 torsionPotential += torsion->getPotential();
460 map<Torsion*, TorsionDataSet>::iterator i = torsionDataSets.find(torsion);
461 if (i == torsionDataSets.end()) {
462 TorsionDataSet dataSet;
463 dataSet.prev.angle = dataSet.curr.angle = angle;
464 dataSet.prev.potential = dataSet.curr.potential = currTorsionPot;
465 dataSet.deltaV = 0.0;
466 torsionDataSets.insert(map<Torsion*, TorsionDataSet>::value_type(torsion, dataSet));
467 }else {
468 i->second.prev.angle = i->second.curr.angle;
469 i->second.prev.potential = i->second.curr.potential;
470 i->second.curr.angle = angle;
471 i->second.curr.potential = currTorsionPot;
472 i->second.deltaV = fabs(i->second.curr.potential -
473 i->second.prev.potential);
474 }
475 }
476
477 for (inversion = mol->beginInversion(inversionIter);
478 inversion != NULL;
479 inversion = mol->nextInversion(inversionIter)) {
480 RealType angle;
481 inversion->calcForce(angle);
482 RealType currInversionPot = inversion->getPotential();
483 inversionPotential += inversion->getPotential();
484 map<Inversion*, InversionDataSet>::iterator i = inversionDataSets.find(inversion);
485 if (i == inversionDataSets.end()) {
486 InversionDataSet dataSet;
487 dataSet.prev.angle = dataSet.curr.angle = angle;
488 dataSet.prev.potential = dataSet.curr.potential = currInversionPot;
489 dataSet.deltaV = 0.0;
490 inversionDataSets.insert(map<Inversion*, InversionDataSet>::value_type(inversion, dataSet));
491 }else {
492 i->second.prev.angle = i->second.curr.angle;
493 i->second.prev.potential = i->second.curr.potential;
494 i->second.curr.angle = angle;
495 i->second.curr.potential = currInversionPot;
496 i->second.deltaV = fabs(i->second.curr.potential -
497 i->second.prev.potential);
498 }
499 }
500 }
501
502 RealType shortRangePotential = bondPotential + bendPotential +
503 torsionPotential + inversionPotential;
504 Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
505 curSnapshot->statData[Stats::SHORT_RANGE_POTENTIAL] = shortRangePotential;
506 curSnapshot->statData[Stats::BOND_POTENTIAL] = bondPotential;
507 curSnapshot->statData[Stats::BEND_POTENTIAL] = bendPotential;
508 curSnapshot->statData[Stats::DIHEDRAL_POTENTIAL] = torsionPotential;
509 curSnapshot->statData[Stats::INVERSION_POTENTIAL] = inversionPotential;
510 }
511
512 void ForceManager::longRangeInteractionsRapaport() {
513
514 Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
515 DataStorage* config = &(curSnapshot->atomData);
516 DataStorage* cgConfig = &(curSnapshot->cgData);
517
518 //calculate the center of mass of cutoff group
519
520 SimInfo::MoleculeIterator mi;
521 Molecule* mol;
522 Molecule::CutoffGroupIterator ci;
523 CutoffGroup* cg;
524
525 if(info_->getNCutoffGroups() > 0){
526 for (mol = info_->beginMolecule(mi); mol != NULL;
527 mol = info_->nextMolecule(mi)) {
528 for(cg = mol->beginCutoffGroup(ci); cg != NULL;
529 cg = mol->nextCutoffGroup(ci)) {
530 cerr << "branch1\n";
531 cerr << "globind = " << cg->getGlobalIndex() << "\n";
532 cg->updateCOM();
533 }
534 }
535 } else {
536 // center of mass of the group is the same as position of the atom
537 // if cutoff group does not exist
538 cerr << "branch2\n";
539 cgConfig->position = config->position;
540 }
541
542 fDecomp_->zeroWorkArrays();
543 fDecomp_->distributeData();
544
545 int cg1, cg2, atom1, atom2, topoDist;
546 Vector3d d_grp, dag, d;
547 RealType rgrpsq, rgrp, r2, r;
548 RealType electroMult, vdwMult;
549 RealType vij;
550 Vector3d fij, fg, f1;
551 tuple3<RealType, RealType, RealType> cuts;
552 RealType rCutSq;
553 bool in_switching_region;
554 RealType sw, dswdr, swderiv;
555 vector<int> atomListColumn, atomListRow, atomListLocal;
556 InteractionData idat;
557 SelfData sdat;
558 RealType mf;
559 RealType lrPot;
560 RealType vpair;
561 potVec longRangePotential(0.0);
562 potVec workPot(0.0);
563
564 int loopStart, loopEnd;
565
566 idat.vdwMult = &vdwMult;
567 idat.electroMult = &electroMult;
568 idat.pot = &workPot;
569 sdat.pot = fDecomp_->getEmbeddingPotential();
570 idat.vpair = &vpair;
571 idat.f1 = &f1;
572 idat.sw = &sw;
573 idat.shiftedPot = (cutoffMethod_ == SHIFTED_POTENTIAL) ? true : false;
574 idat.shiftedForce = (cutoffMethod_ == SHIFTED_FORCE) ? true : false;
575
576 loopEnd = PAIR_LOOP;
577 if (info_->requiresPrepair() ) {
578 loopStart = PREPAIR_LOOP;
579 } else {
580 loopStart = PAIR_LOOP;
581 }
582
583 for (int iLoop = loopStart; iLoop <= loopEnd; iLoop++) {
584
585 if (iLoop == loopStart) {
586 bool update_nlist = fDecomp_->checkNeighborList();
587 if (update_nlist)
588 neighborMatW = fDecomp_->buildLayerBasedNeighborList();
589 }
590
591 int i;
592 #pragma omp parallel for num_threads(2) private(i)
593 for(i = 0; i < neighborMatW.size(); ++i)
594 for(vector<int>::iterator j = neighborMatW[i].begin(); j != neighborMatW[i].end(); ++j)
595 {
596 cg1 = i;
597 cg2 = *j;
598
599 cuts = fDecomp_->getGroupCutoffs(cg1, cg2);
600
601 d_grp = fDecomp_->getIntergroupVector(cg1, cg2);
602 curSnapshot->wrapVector(d_grp);
603 rgrpsq = d_grp.lengthSquare();
604
605 rCutSq = cuts.second;
606
607 if (rgrpsq < rCutSq) {
608 idat.rcut = &cuts.first;
609 if (iLoop == PAIR_LOOP) {
610 vij = 0.0;
611 fij = V3Zero;
612 }
613
614 in_switching_region = switcher_->getSwitch(rgrpsq, sw, dswdr,
615 rgrp);
616
617 atomListRow = fDecomp_->getAtomsInGroupRow(cg1);
618 atomListColumn = fDecomp_->getAtomsInGroupColumn(cg2);
619
620 for (vector<int>::iterator ia = atomListRow.begin();
621 ia != atomListRow.end(); ++ia) {
622 atom1 = (*ia);
623
624 for (vector<int>::iterator jb = atomListColumn.begin();
625 jb != atomListColumn.end(); ++jb) {
626 atom2 = (*jb);
627
628 if (!fDecomp_->skipAtomPair(atom1, atom2)) {
629 vpair = 0.0;
630 workPot = 0.0;
631 f1 = V3Zero;
632
633 fDecomp_->fillInteractionData(idat, atom1, atom2);
634
635 topoDist = fDecomp_->getTopologicalDistance(atom1, atom2);
636 vdwMult = vdwScale_[topoDist];
637 electroMult = electrostaticScale_[topoDist];
638
639 if (atomListRow.size() == 1 && atomListColumn.size() == 1) {
640 idat.d = &d_grp;
641 idat.r2 = &rgrpsq;
642 cerr << "dgrp = " << d_grp << "\n";
643 } else {
644 d = fDecomp_->getInteratomicVector(atom1, atom2);
645 curSnapshot->wrapVector( d );
646 r2 = d.lengthSquare();
647 cerr << "datm = " << d<< "\n";
648 idat.d = &d;
649 idat.r2 = &r2;
650 }
651
652 cerr << "idat.d = " << *(idat.d) << "\n";
653 r = sqrt( *(idat.r2) );
654 idat.rij = &r;
655
656 if (iLoop == PREPAIR_LOOP) {
657 interactionMan_->doPrePair(idat);
658 } else {
659 interactionMan_->doPair(idat);
660 fDecomp_->unpackInteractionData(idat, atom1, atom2);
661
662 cerr << "d = " << *(idat.d) << "\tv=" << vpair << "\tf=" << f1 << "\n";
663 vij += vpair;
664 fij += f1;
665 tau -= outProduct( *(idat.d), f1);
666 }
667 }
668 }
669 }
670
671 if (iLoop == PAIR_LOOP) {
672 if (in_switching_region) {
673 swderiv = vij * dswdr / rgrp;
674 fg = swderiv * d_grp;
675 fij += fg;
676
677 if (atomListRow.size() == 1 && atomListColumn.size() == 1) {
678 tau -= outProduct( *(idat.d), fg);
679 }
680
681 for (vector<int>::iterator ia = atomListRow.begin();
682 ia != atomListRow.end(); ++ia) {
683 atom1 = (*ia);
684 mf = fDecomp_->getMassFactorRow(atom1);
685 // fg is the force on atom ia due to cutoff group's
686 // presence in switching region
687 fg = swderiv * d_grp * mf;
688 fDecomp_->addForceToAtomRow(atom1, fg);
689
690 if (atomListRow.size() > 1) {
691 if (info_->usesAtomicVirial()) {
692 // find the distance between the atom
693 // and the center of the cutoff group:
694 dag = fDecomp_->getAtomToGroupVectorRow(atom1, cg1);
695 tau -= outProduct(dag, fg);
696 }
697 }
698 }
699 for (vector<int>::iterator jb = atomListColumn.begin();
700 jb != atomListColumn.end(); ++jb) {
701 atom2 = (*jb);
702 mf = fDecomp_->getMassFactorColumn(atom2);
703 // fg is the force on atom jb due to cutoff group's
704 // presence in switching region
705 fg = -swderiv * d_grp * mf;
706 fDecomp_->addForceToAtomColumn(atom2, fg);
707
708 if (atomListColumn.size() > 1) {
709 if (info_->usesAtomicVirial()) {
710 // find the distance between the atom
711 // and the center of the cutoff group:
712 dag = fDecomp_->getAtomToGroupVectorColumn(atom2, cg2);
713 tau -= outProduct(dag, fg);
714 }
715 }
716 }
717 }
718 //if (!SIM_uses_AtomicVirial) {
719 // tau -= outProduct(d_grp, fij);
720 //}
721 }
722 }
723 }
724
725 if (iLoop == PREPAIR_LOOP) {
726 if (info_->requiresPrepair()) {
727
728 fDecomp_->collectIntermediateData();
729
730 for (int atom1 = 0; atom1 < info_->getNAtoms(); atom1++) {
731 fDecomp_->fillSelfData(sdat, atom1);
732 interactionMan_->doPreForce(sdat);
733 }
734
735 fDecomp_->distributeIntermediateData();
736
737 }
738 }
739
740 }
741
742 fDecomp_->collectData();
743
744 if (info_->requiresSelfCorrection()) {
745
746 for (int atom1 = 0; atom1 < info_->getNAtoms(); atom1++) {
747 fDecomp_->fillSelfData(sdat, atom1);
748 interactionMan_->doSelfCorrection(sdat);
749 }
750
751 }
752
753 longRangePotential = *(fDecomp_->getEmbeddingPotential()) +
754 *(fDecomp_->getPairwisePotential());
755
756 lrPot = longRangePotential.sum();
757
758 //store the tau and long range potential
759 curSnapshot->statData[Stats::LONG_RANGE_POTENTIAL] = lrPot;
760 curSnapshot->statData[Stats::VANDERWAALS_POTENTIAL] = longRangePotential[VANDERWAALS_FAMILY];
761 curSnapshot->statData[Stats::ELECTROSTATIC_POTENTIAL] = longRangePotential[ELECTROSTATIC_FAMILY];
762 }
763
764 void ForceManager::longRangeInteractions() {
765
766 Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
767 DataStorage* config = &(curSnapshot->atomData);
768 DataStorage* cgConfig = &(curSnapshot->cgData);
769
770 //calculate the center of mass of cutoff group
771
772 SimInfo::MoleculeIterator mi;
773 Molecule* mol;
774 Molecule::CutoffGroupIterator ci;
775 CutoffGroup* cg;
776
777 if(info_->getNCutoffGroups() > 0){
778 for (mol = info_->beginMolecule(mi); mol != NULL;
779 mol = info_->nextMolecule(mi)) {
780 for(cg = mol->beginCutoffGroup(ci); cg != NULL;
781 cg = mol->nextCutoffGroup(ci)) {
782 cerr << "branch1\n";
783 cerr << "globind = " << cg->getGlobalIndex() << "\n";
784 cg->updateCOM();
785 }
786 }
787 } else {
788 // center of mass of the group is the same as position of the atom
789 // if cutoff group does not exist
790 cerr << "branch2\n";
791 cgConfig->position = config->position;
792 }
793
794 fDecomp_->zeroWorkArrays();
795 fDecomp_->distributeData();
796
797 int cg1, cg2, atom1, atom2, topoDist;
798 Vector3d d_grp, dag, d;
799 RealType rgrpsq, rgrp, r2, r;
800 RealType electroMult, vdwMult;
801 RealType vij;
802 Vector3d fij, fg, f1;
803 tuple3<RealType, RealType, RealType> cuts;
804 RealType rCutSq;
805 bool in_switching_region;
806 RealType sw, dswdr, swderiv;
807 vector<int> atomListColumn, atomListRow, atomListLocal;
808 InteractionData idat;
809 SelfData sdat;
810 RealType mf;
811 RealType lrPot;
812 RealType vpair;
813 potVec longRangePotential(0.0);
814 potVec workPot(0.0);
815
816 int loopStart, loopEnd;
817
818 idat.vdwMult = &vdwMult;
819 idat.electroMult = &electroMult;
820 idat.pot = &workPot;
821 sdat.pot = fDecomp_->getEmbeddingPotential();
822 idat.vpair = &vpair;
823 idat.f1 = &f1;
824 idat.sw = &sw;
825 idat.shiftedPot = (cutoffMethod_ == SHIFTED_POTENTIAL) ? true : false;
826 idat.shiftedForce = (cutoffMethod_ == SHIFTED_FORCE) ? true : false;
827
828 loopEnd = PAIR_LOOP;
829 if (info_->requiresPrepair() ) {
830 loopStart = PREPAIR_LOOP;
831 } else {
832 loopStart = PAIR_LOOP;
833 }
834
835 for (int iLoop = loopStart; iLoop <= loopEnd; iLoop++) {
836
837 if (iLoop == loopStart) {
838 bool update_nlist = fDecomp_->checkNeighborList();
839 if (update_nlist)
840 neighborList = fDecomp_->buildNeighborList();
841
842 }
843
844 for (vector<pair<int, int> >::iterator it = neighborList.begin();
845 it != neighborList.end(); ++it)
846 {
847 cg1 = (*it).first;
848 cg2 = (*it).second;
849
850 cuts = fDecomp_->getGroupCutoffs(cg1, cg2);
851
852 d_grp = fDecomp_->getIntergroupVector(cg1, cg2);
853 curSnapshot->wrapVector(d_grp);
854 rgrpsq = d_grp.lengthSquare();
855
856 rCutSq = cuts.second;
857
858 if (rgrpsq < rCutSq) {
859 idat.rcut = &cuts.first;
860 if (iLoop == PAIR_LOOP) {
861 vij = 0.0;
862 fij = V3Zero;
863 }
864
865 in_switching_region = switcher_->getSwitch(rgrpsq, sw, dswdr,
866 rgrp);
867
868 atomListRow = fDecomp_->getAtomsInGroupRow(cg1);
869 atomListColumn = fDecomp_->getAtomsInGroupColumn(cg2);
870
871 for (vector<int>::iterator ia = atomListRow.begin();
872 ia != atomListRow.end(); ++ia) {
873 atom1 = (*ia);
874
875 for (vector<int>::iterator jb = atomListColumn.begin();
876 jb != atomListColumn.end(); ++jb) {
877 atom2 = (*jb);
878
879 if (!fDecomp_->skipAtomPair(atom1, atom2)) {
880 vpair = 0.0;
881 workPot = 0.0;
882 f1 = V3Zero;
883
884 fDecomp_->fillInteractionData(idat, atom1, atom2);
885
886 topoDist = fDecomp_->getTopologicalDistance(atom1, atom2);
887 vdwMult = vdwScale_[topoDist];
888 electroMult = electrostaticScale_[topoDist];
889
890 if (atomListRow.size() == 1 && atomListColumn.size() == 1) {
891 idat.d = &d_grp;
892 idat.r2 = &rgrpsq;
893 cerr << "dgrp = " << d_grp << "\n";
894 } else {
895 d = fDecomp_->getInteratomicVector(atom1, atom2);
896 curSnapshot->wrapVector( d );
897 r2 = d.lengthSquare();
898 cerr << "datm = " << d<< "\n";
899 idat.d = &d;
900 idat.r2 = &r2;
901 }
902
903 cerr << "idat.d = " << *(idat.d) << "\n";
904 r = sqrt( *(idat.r2) );
905 idat.rij = &r;
906
907 if (iLoop == PREPAIR_LOOP) {
908 interactionMan_->doPrePair(idat);
909 } else {
910 interactionMan_->doPair(idat);
911 fDecomp_->unpackInteractionData(idat, atom1, atom2);
912
913 cerr << "d = " << *(idat.d) << "\tv=" << vpair << "\tf=" << f1 << "\n";
914 vij += vpair;
915 fij += f1;
916 tau -= outProduct( *(idat.d), f1);
917 }
918 }
919 }
920 }
921
922 if (iLoop == PAIR_LOOP) {
923 if (in_switching_region) {
924 swderiv = vij * dswdr / rgrp;
925 fg = swderiv * d_grp;
926 fij += fg;
927
928 if (atomListRow.size() == 1 && atomListColumn.size() == 1) {
929 tau -= outProduct( *(idat.d), fg);
930 }
931
932 for (vector<int>::iterator ia = atomListRow.begin();
933 ia != atomListRow.end(); ++ia) {
934 atom1 = (*ia);
935 mf = fDecomp_->getMassFactorRow(atom1);
936 // fg is the force on atom ia due to cutoff group's
937 // presence in switching region
938 fg = swderiv * d_grp * mf;
939 fDecomp_->addForceToAtomRow(atom1, fg);
940
941 if (atomListRow.size() > 1) {
942 if (info_->usesAtomicVirial()) {
943 // find the distance between the atom
944 // and the center of the cutoff group:
945 dag = fDecomp_->getAtomToGroupVectorRow(atom1, cg1);
946 tau -= outProduct(dag, fg);
947 }
948 }
949 }
950 for (vector<int>::iterator jb = atomListColumn.begin();
951 jb != atomListColumn.end(); ++jb) {
952 atom2 = (*jb);
953 mf = fDecomp_->getMassFactorColumn(atom2);
954 // fg is the force on atom jb due to cutoff group's
955 // presence in switching region
956 fg = -swderiv * d_grp * mf;
957 fDecomp_->addForceToAtomColumn(atom2, fg);
958
959 if (atomListColumn.size() > 1) {
960 if (info_->usesAtomicVirial()) {
961 // find the distance between the atom
962 // and the center of the cutoff group:
963 dag = fDecomp_->getAtomToGroupVectorColumn(atom2, cg2);
964 tau -= outProduct(dag, fg);
965 }
966 }
967 }
968 }
969 //if (!SIM_uses_AtomicVirial) {
970 // tau -= outProduct(d_grp, fij);
971 //}
972 }
973 }
974 }
975
976 if (iLoop == PREPAIR_LOOP) {
977 if (info_->requiresPrepair()) {
978
979 fDecomp_->collectIntermediateData();
980
981 for (int atom1 = 0; atom1 < info_->getNAtoms(); atom1++) {
982 fDecomp_->fillSelfData(sdat, atom1);
983 interactionMan_->doPreForce(sdat);
984 }
985
986 fDecomp_->distributeIntermediateData();
987
988 }
989 }
990
991 }
992
993 fDecomp_->collectData();
994
995 if (info_->requiresSelfCorrection()) {
996
997 for (int atom1 = 0; atom1 < info_->getNAtoms(); atom1++) {
998 fDecomp_->fillSelfData(sdat, atom1);
999 interactionMan_->doSelfCorrection(sdat);
1000 }
1001
1002 }
1003
1004 longRangePotential = *(fDecomp_->getEmbeddingPotential()) +
1005 *(fDecomp_->getPairwisePotential());
1006
1007 lrPot = longRangePotential.sum();
1008
1009 //store the tau and long range potential
1010 curSnapshot->statData[Stats::LONG_RANGE_POTENTIAL] = lrPot;
1011 curSnapshot->statData[Stats::VANDERWAALS_POTENTIAL] = longRangePotential[VANDERWAALS_FAMILY];
1012 curSnapshot->statData[Stats::ELECTROSTATIC_POTENTIAL] = longRangePotential[ELECTROSTATIC_FAMILY];
1013 }
1014
1015
1016 void ForceManager::postCalculation() {
1017 SimInfo::MoleculeIterator mi;
1018 Molecule* mol;
1019 Molecule::RigidBodyIterator rbIter;
1020 RigidBody* rb;
1021 Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
1022
1023 // collect the atomic forces onto rigid bodies
1024
1025 for (mol = info_->beginMolecule(mi); mol != NULL;
1026 mol = info_->nextMolecule(mi)) {
1027 for (rb = mol->beginRigidBody(rbIter); rb != NULL;
1028 rb = mol->nextRigidBody(rbIter)) {
1029 Mat3x3d rbTau = rb->calcForcesAndTorquesAndVirial();
1030 tau += rbTau;
1031 }
1032 }
1033
1034 #ifdef IS_MPI
1035 Mat3x3d tmpTau(tau);
1036 MPI_Allreduce(tmpTau.getArrayPointer(), tau.getArrayPointer(),
1037 9, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
1038 #endif
1039 curSnapshot->statData.setTau(tau);
1040 }
1041
1042 } //end namespace OpenMD

Properties

Name Value
svn:executable *
svn:keywords Author Id Revision Date