1 |
/* |
2 |
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
* |
4 |
* The University of Notre Dame grants you ("Licensee") a |
5 |
* non-exclusive, royalty free, license to use, modify and |
6 |
* redistribute this software in source and binary code form, provided |
7 |
* that the following conditions are met: |
8 |
* |
9 |
* 1. Redistributions of source code must retain the above copyright |
10 |
* notice, this list of conditions and the following disclaimer. |
11 |
* |
12 |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
* notice, this list of conditions and the following disclaimer in the |
14 |
* documentation and/or other materials provided with the |
15 |
* distribution. |
16 |
* |
17 |
* This software is provided "AS IS," without a warranty of any |
18 |
* kind. All express or implied conditions, representations and |
19 |
* warranties, including any implied warranty of merchantability, |
20 |
* fitness for a particular purpose or non-infringement, are hereby |
21 |
* excluded. The University of Notre Dame and its licensors shall not |
22 |
* be liable for any damages suffered by licensee as a result of |
23 |
* using, modifying or distributing the software or its |
24 |
* derivatives. In no event will the University of Notre Dame or its |
25 |
* licensors be liable for any lost revenue, profit or data, or for |
26 |
* direct, indirect, special, consequential, incidental or punitive |
27 |
* damages, however caused and regardless of the theory of liability, |
28 |
* arising out of the use of or inability to use software, even if the |
29 |
* University of Notre Dame has been advised of the possibility of |
30 |
* such damages. |
31 |
* |
32 |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
* research, please cite the appropriate papers when you publish your |
34 |
* work. Good starting points are: |
35 |
* |
36 |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 |
* [4] Vardeman & Gezelter, in progress (2009). |
40 |
*/ |
41 |
|
42 |
/** |
43 |
* @file ForceManager.cpp |
44 |
* @author tlin |
45 |
* @date 11/09/2004 |
46 |
* @time 10:39am |
47 |
* @version 1.0 |
48 |
*/ |
49 |
|
50 |
|
51 |
#include "brains/ForceManager.hpp" |
52 |
#include "primitives/Molecule.hpp" |
53 |
#define __OPENMD_C |
54 |
#include "utils/simError.h" |
55 |
#include "primitives/Bond.hpp" |
56 |
#include "primitives/Bend.hpp" |
57 |
#include "primitives/Torsion.hpp" |
58 |
#include "primitives/Inversion.hpp" |
59 |
#include "nonbonded/NonBondedInteraction.hpp" |
60 |
#include "parallel/ForceMatrixDecomposition.hpp" |
61 |
|
62 |
#include <cstdio> |
63 |
#include <iostream> |
64 |
#include <iomanip> |
65 |
|
66 |
using namespace std; |
67 |
namespace OpenMD { |
68 |
|
69 |
ForceManager::ForceManager(SimInfo * info) : info_(info) { |
70 |
forceField_ = info_->getForceField(); |
71 |
interactionMan_ = new InteractionManager(); |
72 |
fDecomp_ = new ForceMatrixDecomposition(info_, interactionMan_); |
73 |
} |
74 |
|
75 |
/** |
76 |
* setupCutoffs |
77 |
* |
78 |
* Sets the values of cutoffRadius, switchingRadius, cutoffMethod, |
79 |
* and cutoffPolicy |
80 |
* |
81 |
* cutoffRadius : realType |
82 |
* If the cutoffRadius was explicitly set, use that value. |
83 |
* If the cutoffRadius was not explicitly set: |
84 |
* Are there electrostatic atoms? Use 12.0 Angstroms. |
85 |
* No electrostatic atoms? Poll the atom types present in the |
86 |
* simulation for suggested cutoff values (e.g. 2.5 * sigma). |
87 |
* Use the maximum suggested value that was found. |
88 |
* |
89 |
* cutoffMethod : (one of HARD, SWITCHED, SHIFTED_FORCE, |
90 |
* or SHIFTED_POTENTIAL) |
91 |
* If cutoffMethod was explicitly set, use that choice. |
92 |
* If cutoffMethod was not explicitly set, use SHIFTED_FORCE |
93 |
* |
94 |
* cutoffPolicy : (one of MIX, MAX, TRADITIONAL) |
95 |
* If cutoffPolicy was explicitly set, use that choice. |
96 |
* If cutoffPolicy was not explicitly set, use TRADITIONAL |
97 |
* |
98 |
* switchingRadius : realType |
99 |
* If the cutoffMethod was set to SWITCHED: |
100 |
* If the switchingRadius was explicitly set, use that value |
101 |
* (but do a sanity check first). |
102 |
* If the switchingRadius was not explicitly set: use 0.85 * |
103 |
* cutoffRadius_ |
104 |
* If the cutoffMethod was not set to SWITCHED: |
105 |
* Set switchingRadius equal to cutoffRadius for safety. |
106 |
*/ |
107 |
void ForceManager::setupCutoffs() { |
108 |
|
109 |
Globals* simParams_ = info_->getSimParams(); |
110 |
ForceFieldOptions& forceFieldOptions_ = forceField_->getForceFieldOptions(); |
111 |
|
112 |
if (simParams_->haveCutoffRadius()) { |
113 |
rCut_ = simParams_->getCutoffRadius(); |
114 |
} else { |
115 |
if (info_->usesElectrostaticAtoms()) { |
116 |
sprintf(painCave.errMsg, |
117 |
"ForceManager::setupCutoffs: No value was set for the cutoffRadius.\n" |
118 |
"\tOpenMD will use a default value of 12.0 angstroms" |
119 |
"\tfor the cutoffRadius.\n"); |
120 |
painCave.isFatal = 0; |
121 |
painCave.severity = OPENMD_INFO; |
122 |
simError(); |
123 |
rCut_ = 12.0; |
124 |
} else { |
125 |
RealType thisCut; |
126 |
set<AtomType*>::iterator i; |
127 |
set<AtomType*> atomTypes; |
128 |
atomTypes = info_->getSimulatedAtomTypes(); |
129 |
for (i = atomTypes.begin(); i != atomTypes.end(); ++i) { |
130 |
thisCut = interactionMan_->getSuggestedCutoffRadius((*i)); |
131 |
rCut_ = max(thisCut, rCut_); |
132 |
} |
133 |
sprintf(painCave.errMsg, |
134 |
"ForceManager::setupCutoffs: No value was set for the cutoffRadius.\n" |
135 |
"\tOpenMD will use %lf angstroms.\n", |
136 |
rCut_); |
137 |
painCave.isFatal = 0; |
138 |
painCave.severity = OPENMD_INFO; |
139 |
simError(); |
140 |
} |
141 |
} |
142 |
|
143 |
fDecomp_->setUserCutoff(rCut_); |
144 |
interactionMan_->setCutoffRadius(rCut_); |
145 |
|
146 |
map<string, CutoffMethod> stringToCutoffMethod; |
147 |
stringToCutoffMethod["HARD"] = HARD; |
148 |
stringToCutoffMethod["SWITCHED"] = SWITCHED; |
149 |
stringToCutoffMethod["SHIFTED_POTENTIAL"] = SHIFTED_POTENTIAL; |
150 |
stringToCutoffMethod["SHIFTED_FORCE"] = SHIFTED_FORCE; |
151 |
|
152 |
if (simParams_->haveCutoffMethod()) { |
153 |
string cutMeth = toUpperCopy(simParams_->getCutoffMethod()); |
154 |
map<string, CutoffMethod>::iterator i; |
155 |
i = stringToCutoffMethod.find(cutMeth); |
156 |
if (i == stringToCutoffMethod.end()) { |
157 |
sprintf(painCave.errMsg, |
158 |
"ForceManager::setupCutoffs: Could not find chosen cutoffMethod %s\n" |
159 |
"\tShould be one of: " |
160 |
"HARD, SWITCHED, SHIFTED_POTENTIAL, or SHIFTED_FORCE\n", |
161 |
cutMeth.c_str()); |
162 |
painCave.isFatal = 1; |
163 |
painCave.severity = OPENMD_ERROR; |
164 |
simError(); |
165 |
} else { |
166 |
cutoffMethod_ = i->second; |
167 |
} |
168 |
} else { |
169 |
sprintf(painCave.errMsg, |
170 |
"ForceManager::setupCutoffs: No value was set for the cutoffMethod.\n" |
171 |
"\tOpenMD will use SHIFTED_FORCE.\n"); |
172 |
painCave.isFatal = 0; |
173 |
painCave.severity = OPENMD_INFO; |
174 |
simError(); |
175 |
cutoffMethod_ = SHIFTED_FORCE; |
176 |
} |
177 |
|
178 |
map<string, CutoffPolicy> stringToCutoffPolicy; |
179 |
stringToCutoffPolicy["MIX"] = MIX; |
180 |
stringToCutoffPolicy["MAX"] = MAX; |
181 |
stringToCutoffPolicy["TRADITIONAL"] = TRADITIONAL; |
182 |
|
183 |
std::string cutPolicy; |
184 |
if (forceFieldOptions_.haveCutoffPolicy()){ |
185 |
cutPolicy = forceFieldOptions_.getCutoffPolicy(); |
186 |
}else if (simParams_->haveCutoffPolicy()) { |
187 |
cutPolicy = simParams_->getCutoffPolicy(); |
188 |
} |
189 |
|
190 |
if (!cutPolicy.empty()){ |
191 |
toUpper(cutPolicy); |
192 |
map<string, CutoffPolicy>::iterator i; |
193 |
i = stringToCutoffPolicy.find(cutPolicy); |
194 |
|
195 |
if (i == stringToCutoffPolicy.end()) { |
196 |
sprintf(painCave.errMsg, |
197 |
"ForceManager::setupCutoffs: Could not find chosen cutoffPolicy %s\n" |
198 |
"\tShould be one of: " |
199 |
"MIX, MAX, or TRADITIONAL\n", |
200 |
cutPolicy.c_str()); |
201 |
painCave.isFatal = 1; |
202 |
painCave.severity = OPENMD_ERROR; |
203 |
simError(); |
204 |
} else { |
205 |
cutoffPolicy_ = i->second; |
206 |
} |
207 |
} else { |
208 |
sprintf(painCave.errMsg, |
209 |
"ForceManager::setupCutoffs: No value was set for the cutoffPolicy.\n" |
210 |
"\tOpenMD will use TRADITIONAL.\n"); |
211 |
painCave.isFatal = 0; |
212 |
painCave.severity = OPENMD_INFO; |
213 |
simError(); |
214 |
cutoffPolicy_ = TRADITIONAL; |
215 |
} |
216 |
|
217 |
fDecomp_->setCutoffPolicy(cutoffPolicy_); |
218 |
|
219 |
// create the switching function object: |
220 |
|
221 |
switcher_ = new SwitchingFunction(); |
222 |
|
223 |
if (cutoffMethod_ == SWITCHED) { |
224 |
if (simParams_->haveSwitchingRadius()) { |
225 |
rSwitch_ = simParams_->getSwitchingRadius(); |
226 |
if (rSwitch_ > rCut_) { |
227 |
sprintf(painCave.errMsg, |
228 |
"ForceManager::setupCutoffs: switchingRadius (%f) is larger " |
229 |
"than the cutoffRadius(%f)\n", rSwitch_, rCut_); |
230 |
painCave.isFatal = 1; |
231 |
painCave.severity = OPENMD_ERROR; |
232 |
simError(); |
233 |
} |
234 |
} else { |
235 |
rSwitch_ = 0.85 * rCut_; |
236 |
sprintf(painCave.errMsg, |
237 |
"ForceManager::setupCutoffs: No value was set for the switchingRadius.\n" |
238 |
"\tOpenMD will use a default value of 85 percent of the cutoffRadius.\n" |
239 |
"\tswitchingRadius = %f. for this simulation\n", rSwitch_); |
240 |
painCave.isFatal = 0; |
241 |
painCave.severity = OPENMD_WARNING; |
242 |
simError(); |
243 |
} |
244 |
} else { |
245 |
if (simParams_->haveSwitchingRadius()) { |
246 |
map<string, CutoffMethod>::const_iterator it; |
247 |
string theMeth; |
248 |
for (it = stringToCutoffMethod.begin(); |
249 |
it != stringToCutoffMethod.end(); ++it) { |
250 |
if (it->second == cutoffMethod_) { |
251 |
theMeth = it->first; |
252 |
break; |
253 |
} |
254 |
} |
255 |
sprintf(painCave.errMsg, |
256 |
"ForceManager::setupCutoffs: the cutoffMethod (%s)\n" |
257 |
"\tis not set to SWITCHED, so switchingRadius value\n" |
258 |
"\twill be ignored for this simulation\n", theMeth.c_str()); |
259 |
painCave.isFatal = 0; |
260 |
painCave.severity = OPENMD_WARNING; |
261 |
simError(); |
262 |
} |
263 |
|
264 |
rSwitch_ = rCut_; |
265 |
} |
266 |
|
267 |
// Default to cubic switching function. |
268 |
sft_ = cubic; |
269 |
if (simParams_->haveSwitchingFunctionType()) { |
270 |
string funcType = simParams_->getSwitchingFunctionType(); |
271 |
toUpper(funcType); |
272 |
if (funcType == "CUBIC") { |
273 |
sft_ = cubic; |
274 |
} else { |
275 |
if (funcType == "FIFTH_ORDER_POLYNOMIAL") { |
276 |
sft_ = fifth_order_poly; |
277 |
} else { |
278 |
// throw error |
279 |
sprintf( painCave.errMsg, |
280 |
"ForceManager::setupSwitching : Unknown switchingFunctionType. (Input file specified %s .)\n" |
281 |
"\tswitchingFunctionType must be one of: " |
282 |
"\"cubic\" or \"fifth_order_polynomial\".", |
283 |
funcType.c_str() ); |
284 |
painCave.isFatal = 1; |
285 |
painCave.severity = OPENMD_ERROR; |
286 |
simError(); |
287 |
} |
288 |
} |
289 |
} |
290 |
switcher_->setSwitchType(sft_); |
291 |
switcher_->setSwitch(rSwitch_, rCut_); |
292 |
interactionMan_->setSwitchingRadius(rSwitch_); |
293 |
} |
294 |
|
295 |
void ForceManager::initialize() { |
296 |
|
297 |
if (!info_->isTopologyDone()) { |
298 |
|
299 |
info_->update(); |
300 |
interactionMan_->setSimInfo(info_); |
301 |
interactionMan_->initialize(); |
302 |
|
303 |
// We want to delay the cutoffs until after the interaction |
304 |
// manager has set up the atom-atom interactions so that we can |
305 |
// query them for suggested cutoff values |
306 |
setupCutoffs(); |
307 |
|
308 |
info_->prepareTopology(); |
309 |
} |
310 |
|
311 |
ForceFieldOptions& fopts = forceField_->getForceFieldOptions(); |
312 |
|
313 |
// Force fields can set options on how to scale van der Waals and |
314 |
// electrostatic interactions for atoms connected via bonds, bends |
315 |
// and torsions in this case the topological distance between |
316 |
// atoms is: |
317 |
// 0 = topologically unconnected |
318 |
// 1 = bonded together |
319 |
// 2 = connected via a bend |
320 |
// 3 = connected via a torsion |
321 |
|
322 |
vdwScale_.reserve(4); |
323 |
fill(vdwScale_.begin(), vdwScale_.end(), 0.0); |
324 |
|
325 |
electrostaticScale_.reserve(4); |
326 |
fill(electrostaticScale_.begin(), electrostaticScale_.end(), 0.0); |
327 |
|
328 |
vdwScale_[0] = 1.0; |
329 |
vdwScale_[1] = fopts.getvdw12scale(); |
330 |
vdwScale_[2] = fopts.getvdw13scale(); |
331 |
vdwScale_[3] = fopts.getvdw14scale(); |
332 |
|
333 |
electrostaticScale_[0] = 1.0; |
334 |
electrostaticScale_[1] = fopts.getelectrostatic12scale(); |
335 |
electrostaticScale_[2] = fopts.getelectrostatic13scale(); |
336 |
electrostaticScale_[3] = fopts.getelectrostatic14scale(); |
337 |
|
338 |
fDecomp_->distributeInitialData(); |
339 |
|
340 |
initialized_ = true; |
341 |
|
342 |
} |
343 |
|
344 |
void ForceManager::calcForces() { |
345 |
|
346 |
if (!initialized_) initialize(); |
347 |
|
348 |
preCalculation(); |
349 |
shortRangeInteractions(); |
350 |
// longRangeInteractions(); |
351 |
longRangeInteractionsRapaport(); |
352 |
postCalculation(); |
353 |
} |
354 |
|
355 |
void ForceManager::preCalculation() { |
356 |
SimInfo::MoleculeIterator mi; |
357 |
Molecule* mol; |
358 |
Molecule::AtomIterator ai; |
359 |
Atom* atom; |
360 |
Molecule::RigidBodyIterator rbIter; |
361 |
RigidBody* rb; |
362 |
Molecule::CutoffGroupIterator ci; |
363 |
CutoffGroup* cg; |
364 |
|
365 |
// forces are zeroed here, before any are accumulated. |
366 |
|
367 |
for (mol = info_->beginMolecule(mi); mol != NULL; |
368 |
mol = info_->nextMolecule(mi)) { |
369 |
for(atom = mol->beginAtom(ai); atom != NULL; |
370 |
atom = mol->nextAtom(ai)) { |
371 |
atom->zeroForcesAndTorques(); |
372 |
} |
373 |
|
374 |
//change the positions of atoms which belong to the rigidbodies |
375 |
for (rb = mol->beginRigidBody(rbIter); rb != NULL; |
376 |
rb = mol->nextRigidBody(rbIter)) { |
377 |
rb->zeroForcesAndTorques(); |
378 |
} |
379 |
|
380 |
if(info_->getNGlobalCutoffGroups() != info_->getNGlobalAtoms()){ |
381 |
for(cg = mol->beginCutoffGroup(ci); cg != NULL; |
382 |
cg = mol->nextCutoffGroup(ci)) { |
383 |
//calculate the center of mass of cutoff group |
384 |
cg->updateCOM(); |
385 |
} |
386 |
} |
387 |
} |
388 |
|
389 |
// Zero out the stress tensor |
390 |
tau *= 0.0; |
391 |
|
392 |
} |
393 |
|
394 |
void ForceManager::shortRangeInteractions() { |
395 |
Molecule* mol; |
396 |
RigidBody* rb; |
397 |
Bond* bond; |
398 |
Bend* bend; |
399 |
Torsion* torsion; |
400 |
Inversion* inversion; |
401 |
SimInfo::MoleculeIterator mi; |
402 |
Molecule::RigidBodyIterator rbIter; |
403 |
Molecule::BondIterator bondIter;; |
404 |
Molecule::BendIterator bendIter; |
405 |
Molecule::TorsionIterator torsionIter; |
406 |
Molecule::InversionIterator inversionIter; |
407 |
RealType bondPotential = 0.0; |
408 |
RealType bendPotential = 0.0; |
409 |
RealType torsionPotential = 0.0; |
410 |
RealType inversionPotential = 0.0; |
411 |
|
412 |
//calculate short range interactions |
413 |
for (mol = info_->beginMolecule(mi); mol != NULL; |
414 |
mol = info_->nextMolecule(mi)) { |
415 |
|
416 |
//change the positions of atoms which belong to the rigidbodies |
417 |
for (rb = mol->beginRigidBody(rbIter); rb != NULL; |
418 |
rb = mol->nextRigidBody(rbIter)) { |
419 |
rb->updateAtoms(); |
420 |
} |
421 |
|
422 |
for (bond = mol->beginBond(bondIter); bond != NULL; |
423 |
bond = mol->nextBond(bondIter)) { |
424 |
bond->calcForce(); |
425 |
bondPotential += bond->getPotential(); |
426 |
} |
427 |
|
428 |
for (bend = mol->beginBend(bendIter); bend != NULL; |
429 |
bend = mol->nextBend(bendIter)) { |
430 |
|
431 |
RealType angle; |
432 |
bend->calcForce(angle); |
433 |
RealType currBendPot = bend->getPotential(); |
434 |
|
435 |
bendPotential += bend->getPotential(); |
436 |
map<Bend*, BendDataSet>::iterator i = bendDataSets.find(bend); |
437 |
if (i == bendDataSets.end()) { |
438 |
BendDataSet dataSet; |
439 |
dataSet.prev.angle = dataSet.curr.angle = angle; |
440 |
dataSet.prev.potential = dataSet.curr.potential = currBendPot; |
441 |
dataSet.deltaV = 0.0; |
442 |
bendDataSets.insert(map<Bend*, BendDataSet>::value_type(bend, |
443 |
dataSet)); |
444 |
}else { |
445 |
i->second.prev.angle = i->second.curr.angle; |
446 |
i->second.prev.potential = i->second.curr.potential; |
447 |
i->second.curr.angle = angle; |
448 |
i->second.curr.potential = currBendPot; |
449 |
i->second.deltaV = fabs(i->second.curr.potential - |
450 |
i->second.prev.potential); |
451 |
} |
452 |
} |
453 |
|
454 |
for (torsion = mol->beginTorsion(torsionIter); torsion != NULL; |
455 |
torsion = mol->nextTorsion(torsionIter)) { |
456 |
RealType angle; |
457 |
torsion->calcForce(angle); |
458 |
RealType currTorsionPot = torsion->getPotential(); |
459 |
torsionPotential += torsion->getPotential(); |
460 |
map<Torsion*, TorsionDataSet>::iterator i = torsionDataSets.find(torsion); |
461 |
if (i == torsionDataSets.end()) { |
462 |
TorsionDataSet dataSet; |
463 |
dataSet.prev.angle = dataSet.curr.angle = angle; |
464 |
dataSet.prev.potential = dataSet.curr.potential = currTorsionPot; |
465 |
dataSet.deltaV = 0.0; |
466 |
torsionDataSets.insert(map<Torsion*, TorsionDataSet>::value_type(torsion, dataSet)); |
467 |
}else { |
468 |
i->second.prev.angle = i->second.curr.angle; |
469 |
i->second.prev.potential = i->second.curr.potential; |
470 |
i->second.curr.angle = angle; |
471 |
i->second.curr.potential = currTorsionPot; |
472 |
i->second.deltaV = fabs(i->second.curr.potential - |
473 |
i->second.prev.potential); |
474 |
} |
475 |
} |
476 |
|
477 |
for (inversion = mol->beginInversion(inversionIter); |
478 |
inversion != NULL; |
479 |
inversion = mol->nextInversion(inversionIter)) { |
480 |
RealType angle; |
481 |
inversion->calcForce(angle); |
482 |
RealType currInversionPot = inversion->getPotential(); |
483 |
inversionPotential += inversion->getPotential(); |
484 |
map<Inversion*, InversionDataSet>::iterator i = inversionDataSets.find(inversion); |
485 |
if (i == inversionDataSets.end()) { |
486 |
InversionDataSet dataSet; |
487 |
dataSet.prev.angle = dataSet.curr.angle = angle; |
488 |
dataSet.prev.potential = dataSet.curr.potential = currInversionPot; |
489 |
dataSet.deltaV = 0.0; |
490 |
inversionDataSets.insert(map<Inversion*, InversionDataSet>::value_type(inversion, dataSet)); |
491 |
}else { |
492 |
i->second.prev.angle = i->second.curr.angle; |
493 |
i->second.prev.potential = i->second.curr.potential; |
494 |
i->second.curr.angle = angle; |
495 |
i->second.curr.potential = currInversionPot; |
496 |
i->second.deltaV = fabs(i->second.curr.potential - |
497 |
i->second.prev.potential); |
498 |
} |
499 |
} |
500 |
} |
501 |
|
502 |
RealType shortRangePotential = bondPotential + bendPotential + |
503 |
torsionPotential + inversionPotential; |
504 |
Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); |
505 |
curSnapshot->statData[Stats::SHORT_RANGE_POTENTIAL] = shortRangePotential; |
506 |
curSnapshot->statData[Stats::BOND_POTENTIAL] = bondPotential; |
507 |
curSnapshot->statData[Stats::BEND_POTENTIAL] = bendPotential; |
508 |
curSnapshot->statData[Stats::DIHEDRAL_POTENTIAL] = torsionPotential; |
509 |
curSnapshot->statData[Stats::INVERSION_POTENTIAL] = inversionPotential; |
510 |
} |
511 |
|
512 |
void ForceManager::longRangeInteractionsRapaport() { |
513 |
|
514 |
Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); |
515 |
DataStorage* config = &(curSnapshot->atomData); |
516 |
DataStorage* cgConfig = &(curSnapshot->cgData); |
517 |
|
518 |
//calculate the center of mass of cutoff group |
519 |
|
520 |
SimInfo::MoleculeIterator mi; |
521 |
Molecule* mol; |
522 |
Molecule::CutoffGroupIterator ci; |
523 |
CutoffGroup* cg; |
524 |
|
525 |
if(info_->getNCutoffGroups() > 0){ |
526 |
for (mol = info_->beginMolecule(mi); mol != NULL; |
527 |
mol = info_->nextMolecule(mi)) { |
528 |
for(cg = mol->beginCutoffGroup(ci); cg != NULL; |
529 |
cg = mol->nextCutoffGroup(ci)) { |
530 |
cerr << "branch1\n"; |
531 |
cerr << "globind = " << cg->getGlobalIndex() << "\n"; |
532 |
cg->updateCOM(); |
533 |
} |
534 |
} |
535 |
} else { |
536 |
// center of mass of the group is the same as position of the atom |
537 |
// if cutoff group does not exist |
538 |
cerr << "branch2\n"; |
539 |
cgConfig->position = config->position; |
540 |
} |
541 |
|
542 |
fDecomp_->zeroWorkArrays(); |
543 |
fDecomp_->distributeData(); |
544 |
|
545 |
int cg1, cg2, atom1, atom2, topoDist; |
546 |
Vector3d d_grp, dag, d; |
547 |
RealType rgrpsq, rgrp, r2, r; |
548 |
RealType electroMult, vdwMult; |
549 |
RealType vij; |
550 |
Vector3d fij, fg, f1; |
551 |
tuple3<RealType, RealType, RealType> cuts; |
552 |
RealType rCutSq; |
553 |
bool in_switching_region; |
554 |
RealType sw, dswdr, swderiv; |
555 |
vector<int> atomListColumn, atomListRow, atomListLocal; |
556 |
InteractionData idat; |
557 |
SelfData sdat; |
558 |
RealType mf; |
559 |
RealType lrPot; |
560 |
RealType vpair; |
561 |
potVec longRangePotential(0.0); |
562 |
potVec workPot(0.0); |
563 |
|
564 |
int loopStart, loopEnd; |
565 |
|
566 |
idat.vdwMult = &vdwMult; |
567 |
idat.electroMult = &electroMult; |
568 |
idat.pot = &workPot; |
569 |
sdat.pot = fDecomp_->getEmbeddingPotential(); |
570 |
idat.vpair = &vpair; |
571 |
idat.f1 = &f1; |
572 |
idat.sw = &sw; |
573 |
idat.shiftedPot = (cutoffMethod_ == SHIFTED_POTENTIAL) ? true : false; |
574 |
idat.shiftedForce = (cutoffMethod_ == SHIFTED_FORCE) ? true : false; |
575 |
|
576 |
loopEnd = PAIR_LOOP; |
577 |
if (info_->requiresPrepair() ) { |
578 |
loopStart = PREPAIR_LOOP; |
579 |
} else { |
580 |
loopStart = PAIR_LOOP; |
581 |
} |
582 |
|
583 |
for (int iLoop = loopStart; iLoop <= loopEnd; iLoop++) { |
584 |
|
585 |
if (iLoop == loopStart) { |
586 |
bool update_nlist = fDecomp_->checkNeighborList(); |
587 |
if (update_nlist) |
588 |
neighborMatW = fDecomp_->buildLayerBasedNeighborList(); |
589 |
} |
590 |
|
591 |
int i; |
592 |
#pragma omp parallel for num_threads(2) private(i) |
593 |
for(i = 0; i < neighborMatW.size(); ++i) |
594 |
for(vector<int>::iterator j = neighborMatW[i].begin(); j != neighborMatW[i].end(); ++j) |
595 |
{ |
596 |
cg1 = i; |
597 |
cg2 = *j; |
598 |
|
599 |
cuts = fDecomp_->getGroupCutoffs(cg1, cg2); |
600 |
|
601 |
d_grp = fDecomp_->getIntergroupVector(cg1, cg2); |
602 |
curSnapshot->wrapVector(d_grp); |
603 |
rgrpsq = d_grp.lengthSquare(); |
604 |
|
605 |
rCutSq = cuts.second; |
606 |
|
607 |
if (rgrpsq < rCutSq) { |
608 |
idat.rcut = &cuts.first; |
609 |
if (iLoop == PAIR_LOOP) { |
610 |
vij = 0.0; |
611 |
fij = V3Zero; |
612 |
} |
613 |
|
614 |
in_switching_region = switcher_->getSwitch(rgrpsq, sw, dswdr, |
615 |
rgrp); |
616 |
|
617 |
atomListRow = fDecomp_->getAtomsInGroupRow(cg1); |
618 |
atomListColumn = fDecomp_->getAtomsInGroupColumn(cg2); |
619 |
|
620 |
for (vector<int>::iterator ia = atomListRow.begin(); |
621 |
ia != atomListRow.end(); ++ia) { |
622 |
atom1 = (*ia); |
623 |
|
624 |
for (vector<int>::iterator jb = atomListColumn.begin(); |
625 |
jb != atomListColumn.end(); ++jb) { |
626 |
atom2 = (*jb); |
627 |
|
628 |
if (!fDecomp_->skipAtomPair(atom1, atom2)) { |
629 |
vpair = 0.0; |
630 |
workPot = 0.0; |
631 |
f1 = V3Zero; |
632 |
|
633 |
fDecomp_->fillInteractionData(idat, atom1, atom2); |
634 |
|
635 |
topoDist = fDecomp_->getTopologicalDistance(atom1, atom2); |
636 |
vdwMult = vdwScale_[topoDist]; |
637 |
electroMult = electrostaticScale_[topoDist]; |
638 |
|
639 |
if (atomListRow.size() == 1 && atomListColumn.size() == 1) { |
640 |
idat.d = &d_grp; |
641 |
idat.r2 = &rgrpsq; |
642 |
cerr << "dgrp = " << d_grp << "\n"; |
643 |
} else { |
644 |
d = fDecomp_->getInteratomicVector(atom1, atom2); |
645 |
curSnapshot->wrapVector( d ); |
646 |
r2 = d.lengthSquare(); |
647 |
cerr << "datm = " << d<< "\n"; |
648 |
idat.d = &d; |
649 |
idat.r2 = &r2; |
650 |
} |
651 |
|
652 |
cerr << "idat.d = " << *(idat.d) << "\n"; |
653 |
r = sqrt( *(idat.r2) ); |
654 |
idat.rij = &r; |
655 |
|
656 |
if (iLoop == PREPAIR_LOOP) { |
657 |
interactionMan_->doPrePair(idat); |
658 |
} else { |
659 |
interactionMan_->doPair(idat); |
660 |
fDecomp_->unpackInteractionData(idat, atom1, atom2); |
661 |
|
662 |
cerr << "d = " << *(idat.d) << "\tv=" << vpair << "\tf=" << f1 << "\n"; |
663 |
vij += vpair; |
664 |
fij += f1; |
665 |
tau -= outProduct( *(idat.d), f1); |
666 |
} |
667 |
} |
668 |
} |
669 |
} |
670 |
|
671 |
if (iLoop == PAIR_LOOP) { |
672 |
if (in_switching_region) { |
673 |
swderiv = vij * dswdr / rgrp; |
674 |
fg = swderiv * d_grp; |
675 |
fij += fg; |
676 |
|
677 |
if (atomListRow.size() == 1 && atomListColumn.size() == 1) { |
678 |
tau -= outProduct( *(idat.d), fg); |
679 |
} |
680 |
|
681 |
for (vector<int>::iterator ia = atomListRow.begin(); |
682 |
ia != atomListRow.end(); ++ia) { |
683 |
atom1 = (*ia); |
684 |
mf = fDecomp_->getMassFactorRow(atom1); |
685 |
// fg is the force on atom ia due to cutoff group's |
686 |
// presence in switching region |
687 |
fg = swderiv * d_grp * mf; |
688 |
fDecomp_->addForceToAtomRow(atom1, fg); |
689 |
|
690 |
if (atomListRow.size() > 1) { |
691 |
if (info_->usesAtomicVirial()) { |
692 |
// find the distance between the atom |
693 |
// and the center of the cutoff group: |
694 |
dag = fDecomp_->getAtomToGroupVectorRow(atom1, cg1); |
695 |
tau -= outProduct(dag, fg); |
696 |
} |
697 |
} |
698 |
} |
699 |
for (vector<int>::iterator jb = atomListColumn.begin(); |
700 |
jb != atomListColumn.end(); ++jb) { |
701 |
atom2 = (*jb); |
702 |
mf = fDecomp_->getMassFactorColumn(atom2); |
703 |
// fg is the force on atom jb due to cutoff group's |
704 |
// presence in switching region |
705 |
fg = -swderiv * d_grp * mf; |
706 |
fDecomp_->addForceToAtomColumn(atom2, fg); |
707 |
|
708 |
if (atomListColumn.size() > 1) { |
709 |
if (info_->usesAtomicVirial()) { |
710 |
// find the distance between the atom |
711 |
// and the center of the cutoff group: |
712 |
dag = fDecomp_->getAtomToGroupVectorColumn(atom2, cg2); |
713 |
tau -= outProduct(dag, fg); |
714 |
} |
715 |
} |
716 |
} |
717 |
} |
718 |
//if (!SIM_uses_AtomicVirial) { |
719 |
// tau -= outProduct(d_grp, fij); |
720 |
//} |
721 |
} |
722 |
} |
723 |
} |
724 |
|
725 |
if (iLoop == PREPAIR_LOOP) { |
726 |
if (info_->requiresPrepair()) { |
727 |
|
728 |
fDecomp_->collectIntermediateData(); |
729 |
|
730 |
for (int atom1 = 0; atom1 < info_->getNAtoms(); atom1++) { |
731 |
fDecomp_->fillSelfData(sdat, atom1); |
732 |
interactionMan_->doPreForce(sdat); |
733 |
} |
734 |
|
735 |
fDecomp_->distributeIntermediateData(); |
736 |
|
737 |
} |
738 |
} |
739 |
|
740 |
} |
741 |
|
742 |
fDecomp_->collectData(); |
743 |
|
744 |
if (info_->requiresSelfCorrection()) { |
745 |
|
746 |
for (int atom1 = 0; atom1 < info_->getNAtoms(); atom1++) { |
747 |
fDecomp_->fillSelfData(sdat, atom1); |
748 |
interactionMan_->doSelfCorrection(sdat); |
749 |
} |
750 |
|
751 |
} |
752 |
|
753 |
longRangePotential = *(fDecomp_->getEmbeddingPotential()) + |
754 |
*(fDecomp_->getPairwisePotential()); |
755 |
|
756 |
lrPot = longRangePotential.sum(); |
757 |
|
758 |
//store the tau and long range potential |
759 |
curSnapshot->statData[Stats::LONG_RANGE_POTENTIAL] = lrPot; |
760 |
curSnapshot->statData[Stats::VANDERWAALS_POTENTIAL] = longRangePotential[VANDERWAALS_FAMILY]; |
761 |
curSnapshot->statData[Stats::ELECTROSTATIC_POTENTIAL] = longRangePotential[ELECTROSTATIC_FAMILY]; |
762 |
} |
763 |
|
764 |
void ForceManager::longRangeInteractions() { |
765 |
|
766 |
Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); |
767 |
DataStorage* config = &(curSnapshot->atomData); |
768 |
DataStorage* cgConfig = &(curSnapshot->cgData); |
769 |
|
770 |
//calculate the center of mass of cutoff group |
771 |
|
772 |
SimInfo::MoleculeIterator mi; |
773 |
Molecule* mol; |
774 |
Molecule::CutoffGroupIterator ci; |
775 |
CutoffGroup* cg; |
776 |
|
777 |
if(info_->getNCutoffGroups() > 0){ |
778 |
for (mol = info_->beginMolecule(mi); mol != NULL; |
779 |
mol = info_->nextMolecule(mi)) { |
780 |
for(cg = mol->beginCutoffGroup(ci); cg != NULL; |
781 |
cg = mol->nextCutoffGroup(ci)) { |
782 |
cerr << "branch1\n"; |
783 |
cerr << "globind = " << cg->getGlobalIndex() << "\n"; |
784 |
cg->updateCOM(); |
785 |
} |
786 |
} |
787 |
} else { |
788 |
// center of mass of the group is the same as position of the atom |
789 |
// if cutoff group does not exist |
790 |
cerr << "branch2\n"; |
791 |
cgConfig->position = config->position; |
792 |
} |
793 |
|
794 |
fDecomp_->zeroWorkArrays(); |
795 |
fDecomp_->distributeData(); |
796 |
|
797 |
int cg1, cg2, atom1, atom2, topoDist; |
798 |
Vector3d d_grp, dag, d; |
799 |
RealType rgrpsq, rgrp, r2, r; |
800 |
RealType electroMult, vdwMult; |
801 |
RealType vij; |
802 |
Vector3d fij, fg, f1; |
803 |
tuple3<RealType, RealType, RealType> cuts; |
804 |
RealType rCutSq; |
805 |
bool in_switching_region; |
806 |
RealType sw, dswdr, swderiv; |
807 |
vector<int> atomListColumn, atomListRow, atomListLocal; |
808 |
InteractionData idat; |
809 |
SelfData sdat; |
810 |
RealType mf; |
811 |
RealType lrPot; |
812 |
RealType vpair; |
813 |
potVec longRangePotential(0.0); |
814 |
potVec workPot(0.0); |
815 |
|
816 |
int loopStart, loopEnd; |
817 |
|
818 |
idat.vdwMult = &vdwMult; |
819 |
idat.electroMult = &electroMult; |
820 |
idat.pot = &workPot; |
821 |
sdat.pot = fDecomp_->getEmbeddingPotential(); |
822 |
idat.vpair = &vpair; |
823 |
idat.f1 = &f1; |
824 |
idat.sw = &sw; |
825 |
idat.shiftedPot = (cutoffMethod_ == SHIFTED_POTENTIAL) ? true : false; |
826 |
idat.shiftedForce = (cutoffMethod_ == SHIFTED_FORCE) ? true : false; |
827 |
|
828 |
loopEnd = PAIR_LOOP; |
829 |
if (info_->requiresPrepair() ) { |
830 |
loopStart = PREPAIR_LOOP; |
831 |
} else { |
832 |
loopStart = PAIR_LOOP; |
833 |
} |
834 |
|
835 |
for (int iLoop = loopStart; iLoop <= loopEnd; iLoop++) { |
836 |
|
837 |
if (iLoop == loopStart) { |
838 |
bool update_nlist = fDecomp_->checkNeighborList(); |
839 |
if (update_nlist) |
840 |
neighborList = fDecomp_->buildNeighborList(); |
841 |
|
842 |
} |
843 |
|
844 |
for (vector<pair<int, int> >::iterator it = neighborList.begin(); |
845 |
it != neighborList.end(); ++it) |
846 |
{ |
847 |
cg1 = (*it).first; |
848 |
cg2 = (*it).second; |
849 |
|
850 |
cuts = fDecomp_->getGroupCutoffs(cg1, cg2); |
851 |
|
852 |
d_grp = fDecomp_->getIntergroupVector(cg1, cg2); |
853 |
curSnapshot->wrapVector(d_grp); |
854 |
rgrpsq = d_grp.lengthSquare(); |
855 |
|
856 |
rCutSq = cuts.second; |
857 |
|
858 |
if (rgrpsq < rCutSq) { |
859 |
idat.rcut = &cuts.first; |
860 |
if (iLoop == PAIR_LOOP) { |
861 |
vij = 0.0; |
862 |
fij = V3Zero; |
863 |
} |
864 |
|
865 |
in_switching_region = switcher_->getSwitch(rgrpsq, sw, dswdr, |
866 |
rgrp); |
867 |
|
868 |
atomListRow = fDecomp_->getAtomsInGroupRow(cg1); |
869 |
atomListColumn = fDecomp_->getAtomsInGroupColumn(cg2); |
870 |
|
871 |
for (vector<int>::iterator ia = atomListRow.begin(); |
872 |
ia != atomListRow.end(); ++ia) { |
873 |
atom1 = (*ia); |
874 |
|
875 |
for (vector<int>::iterator jb = atomListColumn.begin(); |
876 |
jb != atomListColumn.end(); ++jb) { |
877 |
atom2 = (*jb); |
878 |
|
879 |
if (!fDecomp_->skipAtomPair(atom1, atom2)) { |
880 |
vpair = 0.0; |
881 |
workPot = 0.0; |
882 |
f1 = V3Zero; |
883 |
|
884 |
fDecomp_->fillInteractionData(idat, atom1, atom2); |
885 |
|
886 |
topoDist = fDecomp_->getTopologicalDistance(atom1, atom2); |
887 |
vdwMult = vdwScale_[topoDist]; |
888 |
electroMult = electrostaticScale_[topoDist]; |
889 |
|
890 |
if (atomListRow.size() == 1 && atomListColumn.size() == 1) { |
891 |
idat.d = &d_grp; |
892 |
idat.r2 = &rgrpsq; |
893 |
cerr << "dgrp = " << d_grp << "\n"; |
894 |
} else { |
895 |
d = fDecomp_->getInteratomicVector(atom1, atom2); |
896 |
curSnapshot->wrapVector( d ); |
897 |
r2 = d.lengthSquare(); |
898 |
cerr << "datm = " << d<< "\n"; |
899 |
idat.d = &d; |
900 |
idat.r2 = &r2; |
901 |
} |
902 |
|
903 |
cerr << "idat.d = " << *(idat.d) << "\n"; |
904 |
r = sqrt( *(idat.r2) ); |
905 |
idat.rij = &r; |
906 |
|
907 |
if (iLoop == PREPAIR_LOOP) { |
908 |
interactionMan_->doPrePair(idat); |
909 |
} else { |
910 |
interactionMan_->doPair(idat); |
911 |
fDecomp_->unpackInteractionData(idat, atom1, atom2); |
912 |
|
913 |
cerr << "d = " << *(idat.d) << "\tv=" << vpair << "\tf=" << f1 << "\n"; |
914 |
vij += vpair; |
915 |
fij += f1; |
916 |
tau -= outProduct( *(idat.d), f1); |
917 |
} |
918 |
} |
919 |
} |
920 |
} |
921 |
|
922 |
if (iLoop == PAIR_LOOP) { |
923 |
if (in_switching_region) { |
924 |
swderiv = vij * dswdr / rgrp; |
925 |
fg = swderiv * d_grp; |
926 |
fij += fg; |
927 |
|
928 |
if (atomListRow.size() == 1 && atomListColumn.size() == 1) { |
929 |
tau -= outProduct( *(idat.d), fg); |
930 |
} |
931 |
|
932 |
for (vector<int>::iterator ia = atomListRow.begin(); |
933 |
ia != atomListRow.end(); ++ia) { |
934 |
atom1 = (*ia); |
935 |
mf = fDecomp_->getMassFactorRow(atom1); |
936 |
// fg is the force on atom ia due to cutoff group's |
937 |
// presence in switching region |
938 |
fg = swderiv * d_grp * mf; |
939 |
fDecomp_->addForceToAtomRow(atom1, fg); |
940 |
|
941 |
if (atomListRow.size() > 1) { |
942 |
if (info_->usesAtomicVirial()) { |
943 |
// find the distance between the atom |
944 |
// and the center of the cutoff group: |
945 |
dag = fDecomp_->getAtomToGroupVectorRow(atom1, cg1); |
946 |
tau -= outProduct(dag, fg); |
947 |
} |
948 |
} |
949 |
} |
950 |
for (vector<int>::iterator jb = atomListColumn.begin(); |
951 |
jb != atomListColumn.end(); ++jb) { |
952 |
atom2 = (*jb); |
953 |
mf = fDecomp_->getMassFactorColumn(atom2); |
954 |
// fg is the force on atom jb due to cutoff group's |
955 |
// presence in switching region |
956 |
fg = -swderiv * d_grp * mf; |
957 |
fDecomp_->addForceToAtomColumn(atom2, fg); |
958 |
|
959 |
if (atomListColumn.size() > 1) { |
960 |
if (info_->usesAtomicVirial()) { |
961 |
// find the distance between the atom |
962 |
// and the center of the cutoff group: |
963 |
dag = fDecomp_->getAtomToGroupVectorColumn(atom2, cg2); |
964 |
tau -= outProduct(dag, fg); |
965 |
} |
966 |
} |
967 |
} |
968 |
} |
969 |
//if (!SIM_uses_AtomicVirial) { |
970 |
// tau -= outProduct(d_grp, fij); |
971 |
//} |
972 |
} |
973 |
} |
974 |
} |
975 |
|
976 |
if (iLoop == PREPAIR_LOOP) { |
977 |
if (info_->requiresPrepair()) { |
978 |
|
979 |
fDecomp_->collectIntermediateData(); |
980 |
|
981 |
for (int atom1 = 0; atom1 < info_->getNAtoms(); atom1++) { |
982 |
fDecomp_->fillSelfData(sdat, atom1); |
983 |
interactionMan_->doPreForce(sdat); |
984 |
} |
985 |
|
986 |
fDecomp_->distributeIntermediateData(); |
987 |
|
988 |
} |
989 |
} |
990 |
|
991 |
} |
992 |
|
993 |
fDecomp_->collectData(); |
994 |
|
995 |
if (info_->requiresSelfCorrection()) { |
996 |
|
997 |
for (int atom1 = 0; atom1 < info_->getNAtoms(); atom1++) { |
998 |
fDecomp_->fillSelfData(sdat, atom1); |
999 |
interactionMan_->doSelfCorrection(sdat); |
1000 |
} |
1001 |
|
1002 |
} |
1003 |
|
1004 |
longRangePotential = *(fDecomp_->getEmbeddingPotential()) + |
1005 |
*(fDecomp_->getPairwisePotential()); |
1006 |
|
1007 |
lrPot = longRangePotential.sum(); |
1008 |
|
1009 |
//store the tau and long range potential |
1010 |
curSnapshot->statData[Stats::LONG_RANGE_POTENTIAL] = lrPot; |
1011 |
curSnapshot->statData[Stats::VANDERWAALS_POTENTIAL] = longRangePotential[VANDERWAALS_FAMILY]; |
1012 |
curSnapshot->statData[Stats::ELECTROSTATIC_POTENTIAL] = longRangePotential[ELECTROSTATIC_FAMILY]; |
1013 |
} |
1014 |
|
1015 |
|
1016 |
void ForceManager::postCalculation() { |
1017 |
SimInfo::MoleculeIterator mi; |
1018 |
Molecule* mol; |
1019 |
Molecule::RigidBodyIterator rbIter; |
1020 |
RigidBody* rb; |
1021 |
Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); |
1022 |
|
1023 |
// collect the atomic forces onto rigid bodies |
1024 |
|
1025 |
for (mol = info_->beginMolecule(mi); mol != NULL; |
1026 |
mol = info_->nextMolecule(mi)) { |
1027 |
for (rb = mol->beginRigidBody(rbIter); rb != NULL; |
1028 |
rb = mol->nextRigidBody(rbIter)) { |
1029 |
Mat3x3d rbTau = rb->calcForcesAndTorquesAndVirial(); |
1030 |
tau += rbTau; |
1031 |
} |
1032 |
} |
1033 |
|
1034 |
#ifdef IS_MPI |
1035 |
Mat3x3d tmpTau(tau); |
1036 |
MPI_Allreduce(tmpTau.getArrayPointer(), tau.getArrayPointer(), |
1037 |
9, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD); |
1038 |
#endif |
1039 |
curSnapshot->statData.setTau(tau); |
1040 |
} |
1041 |
|
1042 |
} //end namespace OpenMD |