ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/devel_omp/src/brains/ForceManager.cpp
Revision: 1489
Committed: Tue Aug 10 18:34:59 2010 UTC (14 years, 8 months ago) by gezelter
Original Path: branches/development/src/brains/ForceManager.cpp
File size: 13122 byte(s)
Log Message:
Migrating Sutton-Chen from Fortran over to C++

File Contents

# User Rev Content
1 gezelter 507 /*
2 gezelter 246 * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3     *
4     * The University of Notre Dame grants you ("Licensee") a
5     * non-exclusive, royalty free, license to use, modify and
6     * redistribute this software in source and binary code form, provided
7     * that the following conditions are met:
8     *
9 gezelter 1390 * 1. Redistributions of source code must retain the above copyright
10 gezelter 246 * notice, this list of conditions and the following disclaimer.
11     *
12 gezelter 1390 * 2. Redistributions in binary form must reproduce the above copyright
13 gezelter 246 * notice, this list of conditions and the following disclaimer in the
14     * documentation and/or other materials provided with the
15     * distribution.
16     *
17     * This software is provided "AS IS," without a warranty of any
18     * kind. All express or implied conditions, representations and
19     * warranties, including any implied warranty of merchantability,
20     * fitness for a particular purpose or non-infringement, are hereby
21     * excluded. The University of Notre Dame and its licensors shall not
22     * be liable for any damages suffered by licensee as a result of
23     * using, modifying or distributing the software or its
24     * derivatives. In no event will the University of Notre Dame or its
25     * licensors be liable for any lost revenue, profit or data, or for
26     * direct, indirect, special, consequential, incidental or punitive
27     * damages, however caused and regardless of the theory of liability,
28     * arising out of the use of or inability to use software, even if the
29     * University of Notre Dame has been advised of the possibility of
30     * such damages.
31 gezelter 1390 *
32     * SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your
33     * research, please cite the appropriate papers when you publish your
34     * work. Good starting points are:
35     *
36     * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).
37     * [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).
38     * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).
39     * [4] Vardeman & Gezelter, in progress (2009).
40 gezelter 246 */
41    
42 gezelter 507 /**
43     * @file ForceManager.cpp
44     * @author tlin
45     * @date 11/09/2004
46     * @time 10:39am
47     * @version 1.0
48     */
49 gezelter 246
50     #include "brains/ForceManager.hpp"
51     #include "primitives/Molecule.hpp"
52     #include "UseTheForce/doForces_interface.h"
53 gezelter 1390 #define __OPENMD_C
54 chuckv 664 #include "UseTheForce/DarkSide/fInteractionMap.h"
55 gezelter 246 #include "utils/simError.h"
56 xsun 1215 #include "primitives/Bond.hpp"
57 tim 749 #include "primitives/Bend.hpp"
58 cli2 1275 #include "primitives/Torsion.hpp"
59     #include "primitives/Inversion.hpp"
60 gezelter 1467
61 gezelter 1390 namespace OpenMD {
62 gezelter 1469
63     ForceManager::ForceManager(SimInfo * info) : info_(info),
64     NBforcesInitialized_(false) {
65 gezelter 1470 lj_ = LJ::Instance();
66     lj_->setForceField(info_->getForceField());
67 gezelter 1480
68 gezelter 1483 gb_ = GB::Instance();
69     gb_->setForceField(info_->getForceField());
70    
71 gezelter 1485 sticky_ = Sticky::Instance();
72     sticky_->setForceField(info_->getForceField());
73    
74 gezelter 1480 eam_ = EAM::Instance();
75     eam_->setForceField(info_->getForceField());
76 gezelter 1489
77     sc_ = SC::Instance();
78     sc_->setForceField(info_->getForceField());
79 gezelter 1469 }
80    
81 gezelter 1464 void ForceManager::calcForces() {
82 gezelter 1126
83 gezelter 246 if (!info_->isFortranInitialized()) {
84 gezelter 507 info_->update();
85 gezelter 246 }
86 gezelter 1126
87 gezelter 246 preCalculation();
88    
89     calcShortRangeInteraction();
90    
91 gezelter 1464 calcLongRangeInteraction();
92 gezelter 246
93 gezelter 1464 postCalculation();
94 tim 749
95 gezelter 507 }
96 gezelter 1126
97 gezelter 507 void ForceManager::preCalculation() {
98 gezelter 246 SimInfo::MoleculeIterator mi;
99     Molecule* mol;
100     Molecule::AtomIterator ai;
101     Atom* atom;
102     Molecule::RigidBodyIterator rbIter;
103     RigidBody* rb;
104    
105     // forces are zeroed here, before any are accumulated.
106     // NOTE: do not rezero the forces in Fortran.
107 chuckv 1245
108 gezelter 1126 for (mol = info_->beginMolecule(mi); mol != NULL;
109     mol = info_->nextMolecule(mi)) {
110 gezelter 507 for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
111     atom->zeroForcesAndTorques();
112     }
113 chuckv 1245
114 gezelter 507 //change the positions of atoms which belong to the rigidbodies
115 gezelter 1126 for (rb = mol->beginRigidBody(rbIter); rb != NULL;
116     rb = mol->nextRigidBody(rbIter)) {
117 gezelter 507 rb->zeroForcesAndTorques();
118     }
119 chuckv 1245
120 gezelter 246 }
121    
122 gezelter 1126 // Zero out the stress tensor
123     tau *= 0.0;
124    
125 gezelter 507 }
126 gezelter 1126
127 gezelter 507 void ForceManager::calcShortRangeInteraction() {
128 gezelter 246 Molecule* mol;
129     RigidBody* rb;
130     Bond* bond;
131     Bend* bend;
132     Torsion* torsion;
133 cli2 1275 Inversion* inversion;
134 gezelter 246 SimInfo::MoleculeIterator mi;
135     Molecule::RigidBodyIterator rbIter;
136     Molecule::BondIterator bondIter;;
137     Molecule::BendIterator bendIter;
138     Molecule::TorsionIterator torsionIter;
139 cli2 1275 Molecule::InversionIterator inversionIter;
140 tim 963 RealType bondPotential = 0.0;
141     RealType bendPotential = 0.0;
142     RealType torsionPotential = 0.0;
143 cli2 1275 RealType inversionPotential = 0.0;
144 gezelter 246
145     //calculate short range interactions
146 gezelter 1126 for (mol = info_->beginMolecule(mi); mol != NULL;
147     mol = info_->nextMolecule(mi)) {
148 gezelter 246
149 gezelter 507 //change the positions of atoms which belong to the rigidbodies
150 gezelter 1126 for (rb = mol->beginRigidBody(rbIter); rb != NULL;
151     rb = mol->nextRigidBody(rbIter)) {
152     rb->updateAtoms();
153 gezelter 507 }
154 gezelter 246
155 gezelter 1126 for (bond = mol->beginBond(bondIter); bond != NULL;
156     bond = mol->nextBond(bondIter)) {
157 tim 749 bond->calcForce();
158     bondPotential += bond->getPotential();
159 gezelter 507 }
160 gezelter 246
161 gezelter 1126 for (bend = mol->beginBend(bendIter); bend != NULL;
162     bend = mol->nextBend(bendIter)) {
163    
164     RealType angle;
165     bend->calcForce(angle);
166     RealType currBendPot = bend->getPotential();
167 gezelter 1448
168 gezelter 1126 bendPotential += bend->getPotential();
169     std::map<Bend*, BendDataSet>::iterator i = bendDataSets.find(bend);
170     if (i == bendDataSets.end()) {
171     BendDataSet dataSet;
172     dataSet.prev.angle = dataSet.curr.angle = angle;
173     dataSet.prev.potential = dataSet.curr.potential = currBendPot;
174     dataSet.deltaV = 0.0;
175     bendDataSets.insert(std::map<Bend*, BendDataSet>::value_type(bend, dataSet));
176     }else {
177     i->second.prev.angle = i->second.curr.angle;
178     i->second.prev.potential = i->second.curr.potential;
179     i->second.curr.angle = angle;
180     i->second.curr.potential = currBendPot;
181     i->second.deltaV = fabs(i->second.curr.potential -
182     i->second.prev.potential);
183     }
184 gezelter 507 }
185 gezelter 1126
186     for (torsion = mol->beginTorsion(torsionIter); torsion != NULL;
187     torsion = mol->nextTorsion(torsionIter)) {
188 tim 963 RealType angle;
189 gezelter 1126 torsion->calcForce(angle);
190 tim 963 RealType currTorsionPot = torsion->getPotential();
191 gezelter 1126 torsionPotential += torsion->getPotential();
192     std::map<Torsion*, TorsionDataSet>::iterator i = torsionDataSets.find(torsion);
193     if (i == torsionDataSets.end()) {
194     TorsionDataSet dataSet;
195     dataSet.prev.angle = dataSet.curr.angle = angle;
196     dataSet.prev.potential = dataSet.curr.potential = currTorsionPot;
197     dataSet.deltaV = 0.0;
198     torsionDataSets.insert(std::map<Torsion*, TorsionDataSet>::value_type(torsion, dataSet));
199     }else {
200     i->second.prev.angle = i->second.curr.angle;
201     i->second.prev.potential = i->second.curr.potential;
202     i->second.curr.angle = angle;
203     i->second.curr.potential = currTorsionPot;
204     i->second.deltaV = fabs(i->second.curr.potential -
205     i->second.prev.potential);
206     }
207     }
208 cli2 1275
209     for (inversion = mol->beginInversion(inversionIter);
210     inversion != NULL;
211     inversion = mol->nextInversion(inversionIter)) {
212     RealType angle;
213     inversion->calcForce(angle);
214     RealType currInversionPot = inversion->getPotential();
215     inversionPotential += inversion->getPotential();
216     std::map<Inversion*, InversionDataSet>::iterator i = inversionDataSets.find(inversion);
217     if (i == inversionDataSets.end()) {
218     InversionDataSet dataSet;
219     dataSet.prev.angle = dataSet.curr.angle = angle;
220     dataSet.prev.potential = dataSet.curr.potential = currInversionPot;
221     dataSet.deltaV = 0.0;
222     inversionDataSets.insert(std::map<Inversion*, InversionDataSet>::value_type(inversion, dataSet));
223     }else {
224     i->second.prev.angle = i->second.curr.angle;
225     i->second.prev.potential = i->second.curr.potential;
226     i->second.curr.angle = angle;
227     i->second.curr.potential = currInversionPot;
228     i->second.deltaV = fabs(i->second.curr.potential -
229     i->second.prev.potential);
230     }
231     }
232 gezelter 246 }
233    
234 gezelter 1126 RealType shortRangePotential = bondPotential + bendPotential +
235 cli2 1275 torsionPotential + inversionPotential;
236 gezelter 246 Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
237     curSnapshot->statData[Stats::SHORT_RANGE_POTENTIAL] = shortRangePotential;
238 tim 665 curSnapshot->statData[Stats::BOND_POTENTIAL] = bondPotential;
239     curSnapshot->statData[Stats::BEND_POTENTIAL] = bendPotential;
240     curSnapshot->statData[Stats::DIHEDRAL_POTENTIAL] = torsionPotential;
241 cli2 1275 curSnapshot->statData[Stats::INVERSION_POTENTIAL] = inversionPotential;
242 tim 665
243 gezelter 507 }
244 gezelter 1126
245 gezelter 1464 void ForceManager::calcLongRangeInteraction() {
246 gezelter 246 Snapshot* curSnapshot;
247     DataStorage* config;
248 tim 963 RealType* frc;
249     RealType* pos;
250     RealType* trq;
251     RealType* A;
252     RealType* electroFrame;
253     RealType* rc;
254 chuckv 1245 RealType* particlePot;
255 gezelter 246
256     //get current snapshot from SimInfo
257     curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
258 gezelter 1126
259 gezelter 246 //get array pointers
260     config = &(curSnapshot->atomData);
261     frc = config->getArrayPointer(DataStorage::dslForce);
262     pos = config->getArrayPointer(DataStorage::dslPosition);
263     trq = config->getArrayPointer(DataStorage::dslTorque);
264     A = config->getArrayPointer(DataStorage::dslAmat);
265     electroFrame = config->getArrayPointer(DataStorage::dslElectroFrame);
266 chuckv 1245 particlePot = config->getArrayPointer(DataStorage::dslParticlePot);
267 gezelter 246
268     //calculate the center of mass of cutoff group
269     SimInfo::MoleculeIterator mi;
270     Molecule* mol;
271     Molecule::CutoffGroupIterator ci;
272     CutoffGroup* cg;
273     Vector3d com;
274     std::vector<Vector3d> rcGroup;
275 gezelter 1126
276 gezelter 246 if(info_->getNCutoffGroups() > 0){
277 gezelter 1126
278     for (mol = info_->beginMolecule(mi); mol != NULL;
279     mol = info_->nextMolecule(mi)) {
280     for(cg = mol->beginCutoffGroup(ci); cg != NULL;
281     cg = mol->nextCutoffGroup(ci)) {
282 gezelter 507 cg->getCOM(com);
283     rcGroup.push_back(com);
284 gezelter 246 }
285 gezelter 507 }// end for (mol)
286 gezelter 246
287 gezelter 507 rc = rcGroup[0].getArrayPointer();
288 gezelter 246 } else {
289 gezelter 1126 // center of mass of the group is the same as position of the atom
290     // if cutoff group does not exist
291 gezelter 507 rc = pos;
292 gezelter 246 }
293 gezelter 1126
294 gezelter 246 //initialize data before passing to fortran
295 tim 963 RealType longRangePotential[LR_POT_TYPES];
296     RealType lrPot = 0.0;
297 chrisfen 998 Vector3d totalDipole;
298 gezelter 246 int isError = 0;
299    
300 chuckv 664 for (int i=0; i<LR_POT_TYPES;i++){
301     longRangePotential[i]=0.0; //Initialize array
302     }
303 gezelter 1126
304 xsun 1215 doForceLoop(pos,
305     rc,
306     A,
307     electroFrame,
308     frc,
309     trq,
310     tau.getArrayPointer(),
311     longRangePotential,
312 chuckv 1245 particlePot,
313 xsun 1215 &isError );
314    
315 gezelter 246 if( isError ){
316 gezelter 507 sprintf( painCave.errMsg,
317     "Error returned from the fortran force calculation.\n" );
318     painCave.isFatal = 1;
319     simError();
320 gezelter 246 }
321 chuckv 664 for (int i=0; i<LR_POT_TYPES;i++){
322     lrPot += longRangePotential[i]; //Quick hack
323     }
324 gezelter 1126
325 chrisfen 998 // grab the simulation box dipole moment if specified
326     if (info_->getCalcBoxDipole()){
327     getAccumulatedBoxDipole(totalDipole.getArrayPointer());
328 gezelter 1126
329 chrisfen 998 curSnapshot->statData[Stats::BOX_DIPOLE_X] = totalDipole(0);
330     curSnapshot->statData[Stats::BOX_DIPOLE_Y] = totalDipole(1);
331     curSnapshot->statData[Stats::BOX_DIPOLE_Z] = totalDipole(2);
332     }
333 gezelter 1126
334 gezelter 246 //store the tau and long range potential
335 chuckv 664 curSnapshot->statData[Stats::LONG_RANGE_POTENTIAL] = lrPot;
336 chrisfen 691 curSnapshot->statData[Stats::VANDERWAALS_POTENTIAL] = longRangePotential[VDW_POT];
337 tim 681 curSnapshot->statData[Stats::ELECTROSTATIC_POTENTIAL] = longRangePotential[ELECTROSTATIC_POT];
338 gezelter 507 }
339 gezelter 246
340 gezelter 1126
341 gezelter 1464 void ForceManager::postCalculation() {
342 gezelter 246 SimInfo::MoleculeIterator mi;
343     Molecule* mol;
344     Molecule::RigidBodyIterator rbIter;
345     RigidBody* rb;
346 gezelter 1126 Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
347 gezelter 246
348     // collect the atomic forces onto rigid bodies
349 gezelter 1126
350     for (mol = info_->beginMolecule(mi); mol != NULL;
351     mol = info_->nextMolecule(mi)) {
352     for (rb = mol->beginRigidBody(rbIter); rb != NULL;
353     rb = mol->nextRigidBody(rbIter)) {
354 gezelter 1464 Mat3x3d rbTau = rb->calcForcesAndTorquesAndVirial();
355     tau += rbTau;
356 gezelter 507 }
357 gezelter 1126 }
358 gezelter 1464
359 gezelter 1126 #ifdef IS_MPI
360 gezelter 1464 Mat3x3d tmpTau(tau);
361     MPI_Allreduce(tmpTau.getArrayPointer(), tau.getArrayPointer(),
362     9, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
363 gezelter 1126 #endif
364 gezelter 1464 curSnapshot->statData.setTau(tau);
365 gezelter 507 }
366 gezelter 246
367 gezelter 1390 } //end namespace OpenMD

Properties

Name Value
svn:executable *
svn:keywords Author Id Revision Date