ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/devel_omp/src/brains/ForceManager.cpp
Revision: 1485
Committed: Wed Jul 28 19:52:00 2010 UTC (14 years, 9 months ago) by gezelter
Original Path: branches/development/src/brains/ForceManager.cpp
File size: 13047 byte(s)
Log Message:
Converting Sticky over to C++

File Contents

# User Rev Content
1 gezelter 507 /*
2 gezelter 246 * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3     *
4     * The University of Notre Dame grants you ("Licensee") a
5     * non-exclusive, royalty free, license to use, modify and
6     * redistribute this software in source and binary code form, provided
7     * that the following conditions are met:
8     *
9 gezelter 1390 * 1. Redistributions of source code must retain the above copyright
10 gezelter 246 * notice, this list of conditions and the following disclaimer.
11     *
12 gezelter 1390 * 2. Redistributions in binary form must reproduce the above copyright
13 gezelter 246 * notice, this list of conditions and the following disclaimer in the
14     * documentation and/or other materials provided with the
15     * distribution.
16     *
17     * This software is provided "AS IS," without a warranty of any
18     * kind. All express or implied conditions, representations and
19     * warranties, including any implied warranty of merchantability,
20     * fitness for a particular purpose or non-infringement, are hereby
21     * excluded. The University of Notre Dame and its licensors shall not
22     * be liable for any damages suffered by licensee as a result of
23     * using, modifying or distributing the software or its
24     * derivatives. In no event will the University of Notre Dame or its
25     * licensors be liable for any lost revenue, profit or data, or for
26     * direct, indirect, special, consequential, incidental or punitive
27     * damages, however caused and regardless of the theory of liability,
28     * arising out of the use of or inability to use software, even if the
29     * University of Notre Dame has been advised of the possibility of
30     * such damages.
31 gezelter 1390 *
32     * SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your
33     * research, please cite the appropriate papers when you publish your
34     * work. Good starting points are:
35     *
36     * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).
37     * [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).
38     * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).
39     * [4] Vardeman & Gezelter, in progress (2009).
40 gezelter 246 */
41    
42 gezelter 507 /**
43     * @file ForceManager.cpp
44     * @author tlin
45     * @date 11/09/2004
46     * @time 10:39am
47     * @version 1.0
48     */
49 gezelter 246
50     #include "brains/ForceManager.hpp"
51     #include "primitives/Molecule.hpp"
52     #include "UseTheForce/doForces_interface.h"
53 gezelter 1390 #define __OPENMD_C
54 chuckv 664 #include "UseTheForce/DarkSide/fInteractionMap.h"
55 gezelter 246 #include "utils/simError.h"
56 xsun 1215 #include "primitives/Bond.hpp"
57 tim 749 #include "primitives/Bend.hpp"
58 cli2 1275 #include "primitives/Torsion.hpp"
59     #include "primitives/Inversion.hpp"
60 gezelter 1467
61 gezelter 1390 namespace OpenMD {
62 gezelter 1469
63     ForceManager::ForceManager(SimInfo * info) : info_(info),
64     NBforcesInitialized_(false) {
65 gezelter 1470 lj_ = LJ::Instance();
66     lj_->setForceField(info_->getForceField());
67 gezelter 1480
68 gezelter 1483 gb_ = GB::Instance();
69     gb_->setForceField(info_->getForceField());
70    
71 gezelter 1485 sticky_ = Sticky::Instance();
72     sticky_->setForceField(info_->getForceField());
73    
74 gezelter 1480 eam_ = EAM::Instance();
75     eam_->setForceField(info_->getForceField());
76 gezelter 1469 }
77    
78 gezelter 1464 void ForceManager::calcForces() {
79 gezelter 1126
80 gezelter 246 if (!info_->isFortranInitialized()) {
81 gezelter 507 info_->update();
82 gezelter 246 }
83 gezelter 1126
84 gezelter 246 preCalculation();
85    
86     calcShortRangeInteraction();
87    
88 gezelter 1464 calcLongRangeInteraction();
89 gezelter 246
90 gezelter 1464 postCalculation();
91 tim 749
92 gezelter 507 }
93 gezelter 1126
94 gezelter 507 void ForceManager::preCalculation() {
95 gezelter 246 SimInfo::MoleculeIterator mi;
96     Molecule* mol;
97     Molecule::AtomIterator ai;
98     Atom* atom;
99     Molecule::RigidBodyIterator rbIter;
100     RigidBody* rb;
101    
102     // forces are zeroed here, before any are accumulated.
103     // NOTE: do not rezero the forces in Fortran.
104 chuckv 1245
105 gezelter 1126 for (mol = info_->beginMolecule(mi); mol != NULL;
106     mol = info_->nextMolecule(mi)) {
107 gezelter 507 for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
108     atom->zeroForcesAndTorques();
109     }
110 chuckv 1245
111 gezelter 507 //change the positions of atoms which belong to the rigidbodies
112 gezelter 1126 for (rb = mol->beginRigidBody(rbIter); rb != NULL;
113     rb = mol->nextRigidBody(rbIter)) {
114 gezelter 507 rb->zeroForcesAndTorques();
115     }
116 chuckv 1245
117 gezelter 246 }
118    
119 gezelter 1126 // Zero out the stress tensor
120     tau *= 0.0;
121    
122 gezelter 507 }
123 gezelter 1126
124 gezelter 507 void ForceManager::calcShortRangeInteraction() {
125 gezelter 246 Molecule* mol;
126     RigidBody* rb;
127     Bond* bond;
128     Bend* bend;
129     Torsion* torsion;
130 cli2 1275 Inversion* inversion;
131 gezelter 246 SimInfo::MoleculeIterator mi;
132     Molecule::RigidBodyIterator rbIter;
133     Molecule::BondIterator bondIter;;
134     Molecule::BendIterator bendIter;
135     Molecule::TorsionIterator torsionIter;
136 cli2 1275 Molecule::InversionIterator inversionIter;
137 tim 963 RealType bondPotential = 0.0;
138     RealType bendPotential = 0.0;
139     RealType torsionPotential = 0.0;
140 cli2 1275 RealType inversionPotential = 0.0;
141 gezelter 246
142     //calculate short range interactions
143 gezelter 1126 for (mol = info_->beginMolecule(mi); mol != NULL;
144     mol = info_->nextMolecule(mi)) {
145 gezelter 246
146 gezelter 507 //change the positions of atoms which belong to the rigidbodies
147 gezelter 1126 for (rb = mol->beginRigidBody(rbIter); rb != NULL;
148     rb = mol->nextRigidBody(rbIter)) {
149     rb->updateAtoms();
150 gezelter 507 }
151 gezelter 246
152 gezelter 1126 for (bond = mol->beginBond(bondIter); bond != NULL;
153     bond = mol->nextBond(bondIter)) {
154 tim 749 bond->calcForce();
155     bondPotential += bond->getPotential();
156 gezelter 507 }
157 gezelter 246
158 gezelter 1126 for (bend = mol->beginBend(bendIter); bend != NULL;
159     bend = mol->nextBend(bendIter)) {
160    
161     RealType angle;
162     bend->calcForce(angle);
163     RealType currBendPot = bend->getPotential();
164 gezelter 1448
165 gezelter 1126 bendPotential += bend->getPotential();
166     std::map<Bend*, BendDataSet>::iterator i = bendDataSets.find(bend);
167     if (i == bendDataSets.end()) {
168     BendDataSet dataSet;
169     dataSet.prev.angle = dataSet.curr.angle = angle;
170     dataSet.prev.potential = dataSet.curr.potential = currBendPot;
171     dataSet.deltaV = 0.0;
172     bendDataSets.insert(std::map<Bend*, BendDataSet>::value_type(bend, dataSet));
173     }else {
174     i->second.prev.angle = i->second.curr.angle;
175     i->second.prev.potential = i->second.curr.potential;
176     i->second.curr.angle = angle;
177     i->second.curr.potential = currBendPot;
178     i->second.deltaV = fabs(i->second.curr.potential -
179     i->second.prev.potential);
180     }
181 gezelter 507 }
182 gezelter 1126
183     for (torsion = mol->beginTorsion(torsionIter); torsion != NULL;
184     torsion = mol->nextTorsion(torsionIter)) {
185 tim 963 RealType angle;
186 gezelter 1126 torsion->calcForce(angle);
187 tim 963 RealType currTorsionPot = torsion->getPotential();
188 gezelter 1126 torsionPotential += torsion->getPotential();
189     std::map<Torsion*, TorsionDataSet>::iterator i = torsionDataSets.find(torsion);
190     if (i == torsionDataSets.end()) {
191     TorsionDataSet dataSet;
192     dataSet.prev.angle = dataSet.curr.angle = angle;
193     dataSet.prev.potential = dataSet.curr.potential = currTorsionPot;
194     dataSet.deltaV = 0.0;
195     torsionDataSets.insert(std::map<Torsion*, TorsionDataSet>::value_type(torsion, dataSet));
196     }else {
197     i->second.prev.angle = i->second.curr.angle;
198     i->second.prev.potential = i->second.curr.potential;
199     i->second.curr.angle = angle;
200     i->second.curr.potential = currTorsionPot;
201     i->second.deltaV = fabs(i->second.curr.potential -
202     i->second.prev.potential);
203     }
204     }
205 cli2 1275
206     for (inversion = mol->beginInversion(inversionIter);
207     inversion != NULL;
208     inversion = mol->nextInversion(inversionIter)) {
209     RealType angle;
210     inversion->calcForce(angle);
211     RealType currInversionPot = inversion->getPotential();
212     inversionPotential += inversion->getPotential();
213     std::map<Inversion*, InversionDataSet>::iterator i = inversionDataSets.find(inversion);
214     if (i == inversionDataSets.end()) {
215     InversionDataSet dataSet;
216     dataSet.prev.angle = dataSet.curr.angle = angle;
217     dataSet.prev.potential = dataSet.curr.potential = currInversionPot;
218     dataSet.deltaV = 0.0;
219     inversionDataSets.insert(std::map<Inversion*, InversionDataSet>::value_type(inversion, dataSet));
220     }else {
221     i->second.prev.angle = i->second.curr.angle;
222     i->second.prev.potential = i->second.curr.potential;
223     i->second.curr.angle = angle;
224     i->second.curr.potential = currInversionPot;
225     i->second.deltaV = fabs(i->second.curr.potential -
226     i->second.prev.potential);
227     }
228     }
229 gezelter 246 }
230    
231 gezelter 1126 RealType shortRangePotential = bondPotential + bendPotential +
232 cli2 1275 torsionPotential + inversionPotential;
233 gezelter 246 Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
234     curSnapshot->statData[Stats::SHORT_RANGE_POTENTIAL] = shortRangePotential;
235 tim 665 curSnapshot->statData[Stats::BOND_POTENTIAL] = bondPotential;
236     curSnapshot->statData[Stats::BEND_POTENTIAL] = bendPotential;
237     curSnapshot->statData[Stats::DIHEDRAL_POTENTIAL] = torsionPotential;
238 cli2 1275 curSnapshot->statData[Stats::INVERSION_POTENTIAL] = inversionPotential;
239 tim 665
240 gezelter 507 }
241 gezelter 1126
242 gezelter 1464 void ForceManager::calcLongRangeInteraction() {
243 gezelter 246 Snapshot* curSnapshot;
244     DataStorage* config;
245 tim 963 RealType* frc;
246     RealType* pos;
247     RealType* trq;
248     RealType* A;
249     RealType* electroFrame;
250     RealType* rc;
251 chuckv 1245 RealType* particlePot;
252 gezelter 246
253     //get current snapshot from SimInfo
254     curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
255 gezelter 1126
256 gezelter 246 //get array pointers
257     config = &(curSnapshot->atomData);
258     frc = config->getArrayPointer(DataStorage::dslForce);
259     pos = config->getArrayPointer(DataStorage::dslPosition);
260     trq = config->getArrayPointer(DataStorage::dslTorque);
261     A = config->getArrayPointer(DataStorage::dslAmat);
262     electroFrame = config->getArrayPointer(DataStorage::dslElectroFrame);
263 chuckv 1245 particlePot = config->getArrayPointer(DataStorage::dslParticlePot);
264 gezelter 246
265     //calculate the center of mass of cutoff group
266     SimInfo::MoleculeIterator mi;
267     Molecule* mol;
268     Molecule::CutoffGroupIterator ci;
269     CutoffGroup* cg;
270     Vector3d com;
271     std::vector<Vector3d> rcGroup;
272 gezelter 1126
273 gezelter 246 if(info_->getNCutoffGroups() > 0){
274 gezelter 1126
275     for (mol = info_->beginMolecule(mi); mol != NULL;
276     mol = info_->nextMolecule(mi)) {
277     for(cg = mol->beginCutoffGroup(ci); cg != NULL;
278     cg = mol->nextCutoffGroup(ci)) {
279 gezelter 507 cg->getCOM(com);
280     rcGroup.push_back(com);
281 gezelter 246 }
282 gezelter 507 }// end for (mol)
283 gezelter 246
284 gezelter 507 rc = rcGroup[0].getArrayPointer();
285 gezelter 246 } else {
286 gezelter 1126 // center of mass of the group is the same as position of the atom
287     // if cutoff group does not exist
288 gezelter 507 rc = pos;
289 gezelter 246 }
290 gezelter 1126
291 gezelter 246 //initialize data before passing to fortran
292 tim 963 RealType longRangePotential[LR_POT_TYPES];
293     RealType lrPot = 0.0;
294 chrisfen 998 Vector3d totalDipole;
295 gezelter 246 int isError = 0;
296    
297 chuckv 664 for (int i=0; i<LR_POT_TYPES;i++){
298     longRangePotential[i]=0.0; //Initialize array
299     }
300 gezelter 1126
301 xsun 1215 doForceLoop(pos,
302     rc,
303     A,
304     electroFrame,
305     frc,
306     trq,
307     tau.getArrayPointer(),
308     longRangePotential,
309 chuckv 1245 particlePot,
310 xsun 1215 &isError );
311    
312 gezelter 246 if( isError ){
313 gezelter 507 sprintf( painCave.errMsg,
314     "Error returned from the fortran force calculation.\n" );
315     painCave.isFatal = 1;
316     simError();
317 gezelter 246 }
318 chuckv 664 for (int i=0; i<LR_POT_TYPES;i++){
319     lrPot += longRangePotential[i]; //Quick hack
320     }
321 gezelter 1126
322 chrisfen 998 // grab the simulation box dipole moment if specified
323     if (info_->getCalcBoxDipole()){
324     getAccumulatedBoxDipole(totalDipole.getArrayPointer());
325 gezelter 1126
326 chrisfen 998 curSnapshot->statData[Stats::BOX_DIPOLE_X] = totalDipole(0);
327     curSnapshot->statData[Stats::BOX_DIPOLE_Y] = totalDipole(1);
328     curSnapshot->statData[Stats::BOX_DIPOLE_Z] = totalDipole(2);
329     }
330 gezelter 1126
331 gezelter 246 //store the tau and long range potential
332 chuckv 664 curSnapshot->statData[Stats::LONG_RANGE_POTENTIAL] = lrPot;
333 chrisfen 691 curSnapshot->statData[Stats::VANDERWAALS_POTENTIAL] = longRangePotential[VDW_POT];
334 tim 681 curSnapshot->statData[Stats::ELECTROSTATIC_POTENTIAL] = longRangePotential[ELECTROSTATIC_POT];
335 gezelter 507 }
336 gezelter 246
337 gezelter 1126
338 gezelter 1464 void ForceManager::postCalculation() {
339 gezelter 246 SimInfo::MoleculeIterator mi;
340     Molecule* mol;
341     Molecule::RigidBodyIterator rbIter;
342     RigidBody* rb;
343 gezelter 1126 Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
344 gezelter 246
345     // collect the atomic forces onto rigid bodies
346 gezelter 1126
347     for (mol = info_->beginMolecule(mi); mol != NULL;
348     mol = info_->nextMolecule(mi)) {
349     for (rb = mol->beginRigidBody(rbIter); rb != NULL;
350     rb = mol->nextRigidBody(rbIter)) {
351 gezelter 1464 Mat3x3d rbTau = rb->calcForcesAndTorquesAndVirial();
352     tau += rbTau;
353 gezelter 507 }
354 gezelter 1126 }
355 gezelter 1464
356 gezelter 1126 #ifdef IS_MPI
357 gezelter 1464 Mat3x3d tmpTau(tau);
358     MPI_Allreduce(tmpTau.getArrayPointer(), tau.getArrayPointer(),
359     9, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
360 gezelter 1126 #endif
361 gezelter 1464 curSnapshot->statData.setTau(tau);
362 gezelter 507 }
363 gezelter 246
364 gezelter 1390 } //end namespace OpenMD

Properties

Name Value
svn:executable *
svn:keywords Author Id Revision Date